Preprint
Article

SKI-1/S1P Facilitates SARS-CoV-2 Spike Induced Cell-To-Cell Fusion via Activation of Srebp-2 and Metalloproteases, Whereas PCSK9 Enhances the Degradation of ACE2

Altmetrics

Downloads

191

Views

119

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

09 December 2022

Posted:

12 December 2022

You are already at the latest version

Alerts
Abstract
Proprotein convertases activate various envelope glycoproteins and participate in cellular entry of many viruses. We recently showed that the convertase furin is critical for the infectivity of SARS-CoV-2. This study investigated the implication of the two cholesterol-regulating convertases SKI-1 and PCSK9 in SARS-CoV-2 entry. We used cell-to-cell fusion assays in HeLa cells and pseudoparticle entry into Calu-3 cells. SKI-1 increases cell-to-cell fusion by enhancing the activation of SREBP-2, whereas PCSK9 reduces cell-to-cell fusion by promoting the cellular degradation of ACE2. Metalloprotease activation is sensitive to enhanced cholesterol levels resulting from SKI-1-activated SREBP-2 that leads to enhanced S2’ formation. However, high metalloprotease activity results in S2’ shedding into a new C-terminal fragment (S2”), leading to reduced cell-to-cell fusion. Indeed, S-mutants that increase S2’’ formation, abolish S2’ and cell-to-cell fusion, as well as pseudoparticles entry, indicating that the formation of S2’’ prevents SARS-CoV-2 cell-to-cell fusion and entry. We next demonstrated that PCSK9 enhanced the cellular degradation of ACE2, thereby reducing cell-to-cell fusion. However, different from the LDLR, a canonical target of PCSK9, the C-terminal CHRD domain of PCSK9 is dispensable for the PCSK9-induced degradation of ACE2. Molecular modeling suggested binding of ACE2 to the Pro/Catalytic domains of mature PCSK9. Thus, both cholesterol-regulating convertases SKI-1 and PCSK9 can modulate SARS-CoV-2 entry via two independent mechanisms.
Keywords: 
Subject: Biology and Life Sciences  -   Biochemistry and Molecular Biology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated