Preprint
Article

Looking Deeper into Images for Autonomous Road Weather Detection

This version is not peer-reviewed.

Submitted:

09 December 2022

Posted:

13 December 2022

You are already at the latest version

A peer-reviewed article of this preprint also exists.

Abstract
There is great interest in automatically detecting road weather and understanding its impacts on the overall safety of the transport network. This can, for example, support road condition-based maintenance or even serve as detection systems that assist safe driving during adverse climate conditions. In computer vision, previous work has demonstrated the effectiveness of deep learning in predicting weather conditions from outdoor images. However, training deep learning models to accurately predict weather conditions using real-world road-facing images is difficult due to: (1) the simultaneous occurrence of multiple weather conditions; (2) imbalanced occurrence of weather conditions throughout the year; and (3) road idiosyncrasies, such as road layouts, illumination, road objects etc. In this paper, we explore the use of focal loss function to force the learning process to focus on weather instances that are hard to learn with the objective to help address data imbalance. In addition, we explore the attention mechanism for pixel based dynamic weight adjustment to handle road idiosyncrasies using state-of-the-art vision transformer models. Experiments with a novel multi-label road weather dataset show that focal loss significantly increases the accuracy of computer vision approaches for imbalanced weather conditions. Furthermore, vision transformers outperforms current state-of-the-art convolutional neural networks in predicting weather conditions with a validation accuracy of 92% and F1-score of 81.22%, which is impressive considering the imbalanced nature of the dataset.
Keywords: 
Subject: 
Computer Science and Mathematics  -   Artificial Intelligence and Machine Learning
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Alerts
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated