The purpose of this paper is to develop a theoretical predictive model for LNG shipping routes selection process. Strategic decisions about shipping costs could be improved if a deeper knowledge about products economic value is provided. Developments made on the extraction and industrial processes related to this fossil fuel are driving the natural gas sector towards a unique globalised market. Moreover, data analytics applications as well as machine learning are topics presented as perfect catalysers for achieving an unprecedented natural gas globalised market. Additionally, this paper aims at showing the state of the art of new techniques used in transportation engineering that might have synergies with other industries (eg. commodities cost reduction, energy supply…). Finally, this paper aims to provide foundation for further research and development using more sophisticated data and algorithms that will help to close the gap between theoretical and practical scope of this techniques.
Keywords:
Subject: Engineering - Civil Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.