Preprint
Review

Apiaceae Medicinal Plants: A Review of Traditional Uses, Phytochemistry, Bolting and Flowering, and Controlling Approaches

Altmetrics

Downloads

612

Views

185

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

04 May 2023

Posted:

05 May 2023

You are already at the latest version

Alerts
Abstract
Apiaceae plants have been widely used as traditional Chinese medicines (TCMs) for the treatment of removing dampness, relieving superficies, and dispelling cold, etc. In order to exploit the potential application and improve the yield and quality of Apiaceae medicinal plants (AMPs), The traditional use, phytochemistry, modern pharmacological use, effect of bolting and flowering (BF), and approaches for controlling the BF were summarized. Currently, about 228 AMPs have been recorded as TCMs with 6 medicinal parts, 72 traditional uses, 62 modern pharmacological uses, and 5 main kinds of metabolites. Three effect degrees (i.e., significantly affected, affected to some extent, and no significantly affected) could be classed based on the yield and quality. The BF of individual plants (e.g., Angelica sinensis) could be effectively controlled by the standard cultivation techniques, while the mechanism of BF has not been systemically revealed. This review will provide useful references for the reasonable exploration and high-quality production of AMPs.
Keywords: 
Subject: Biology and Life Sciences  -   Life Sciences

1. Introduction

Apiaceae (syn. Umbelliferae) is one of the largest angiosperm families including 300 genera (3000 species) in the world and 100 genera (614 species) in China [1]. Apiaceae plants have been widely used as medical healthcare, nutrition, food industry, and other fields [2]. Currently, 55 genera (230 species) of Apiaceae plants have been applied in medical healthcare, and over 20 species have been widely used as traditional Chinese medicines (TCMs) [3]. Extensive studies have demonstrated that Apiaceae medicinal plants (AMPs) present a variety of pharmacological properties for the treatment of central nervous system, cardiovascular, and respiratory system diseases, amongst others [1,4]. These pharmacological activities are largely associated with bioactive metabolites such as polysaccharides, alkaloids, phenylpropanoids (simple phenylpropanoids and coumarins), flavonoids, and polyene alkynes [1,5,6].
In China, Apiaceae plants have been primarily used as traditional medicines for main treatment of removing dampness, relaxing tendons, activating blood, relieving superficies, and dispelling cold, etc. [1,2]. For example, rhizomatous and whole plants are mainly used for the treatment of common cold due to wind-cold, cough, asthma, rheumatic arthralgia, as well as ulcerative carbuncle and pyogenes infections; fruits are mainly used for the treatment of expelling pathogenic wind and regulating vital energy, harmonizing the stomach and promoting digestion, as well as relaxing abdominal pain and expelling parasite [1,2].
As known, the occurrence of bolting and flowering (BF) plays a critical role in transiting from vegetative growth to reproductive development in plant life cycle [7]. However, the BF significantly reduces the accumulation of metabolites in vegetative organs, which ultimately leads to the lignification of rhizomes and/or roots such as sugar beet [8], lettuce [9], and Chinese cabbage [10]. Particularly, it is more common that the BF significantly reduces the yield and quality for the rhizomatous AMPs [11]. Extensive studies have demonstrated that the BF is regulated by both internal factors (e.g., germplasm resource, seedling size, and plant age) and external factors (e.g., vernalization, photoperiodism, and environmental stresses) [12]. To date, the BF, especially in the rhizomatous AMPs, has not been effectively controlled [11,13].
In order to comprehensively learn about the current status of AMPs, herein, the progress on traditional use, phytochemistry, bolting and flowering, and controlling approaches were summarized. These reviews will provide references for efficient cultivation and quality improvement of AMPs.

2. Materials and Methods

All information involved in AMPs was searched on scientific databases (i.e., PubMed, Web of science, Springer, and CNKI) using the keywords including: Apiaceae plant, traditional use, phytochemistry, bolting and flowering, and lignification. Additional information was collected from ethnobotanical literatures focusing on herb from Flora of China and local herbal classic literature, such as Divine Husbandman’s Classic of the Materia Medica (Shen Nong Ben Cao Jing), Compendium of Materia Medica, Illustrated Book on Plants, Collection of National Chinese Herbal Medicine, and Pharmacopoeia of the People’s Republic of China. The names of all the plants were corresponded to the Catalogue of Life China. Chemical structures were drawn using ChemDraw 2021 software.

3. A tour of Apiaceae Medicinal Plants (AMPs)

Apiaceae plants have been traditionally used as medicines in China for ca. 2400 years (Figure 1). In 390-278 BC, 3 Apiaceae plants including Angelica dahurica, Ligusticum chuanxiong, and Cnidium monnieri were firstly recorded as medicines in Sorrow after Departure [1,2]. With the progress of Chinese civilization, ca. 100 Apiaceae plants were historically recorded as medicines. Specifically, 12 AMPs such as Angelica decursiva, Bupleurum chinense, and Centella asiatica were recorded in the known herbal text of China, the Divine Husbandman’s Classic of the Materia Medica (Shen Nong Ben Cao Jing) in 1st-2nd century AD [14]; In 1578 and 1848, 24 and 31 AMPs were respectively recorded in the Compendium of Materia Medica and Illustrated Book on Plants [15]. In the 21st century, the number of AMPs has been increasing up to 93 species recorded in Flora of China in 2002 [16], and 96 species in Collection of National Chinese Herbal Medicine in 2014 [17]. In recent years, 22 species are recorded in Pharmacopoeia of the People’s Republic of China [18]; specifially, 18 species are used with rhizomes and/or roots (Table 1).

4. Classification of AMPs Species

To our best knowledge, a total of 228 AMPs used as TCMs are collected from previously published literatures and books (Table 1). Based on the traditionally used medicinal parts, the 228 AMPs are categorized into 6 classes including: 51 species (21 genera) used with the whole plants (i.e., rhizome and/or root, stem, and leaf), 184 species (44 genera) used with rhizomes and/or roots, 5 species (5 genera) used with stems, 9 species (8 genera) used with leaves, 17 species (14 genera) used with fruits, and single species (single genus) used with seeds.
Specifically, the 51 species (21 genera) used with whole plants include: Anethum, Anthriscus, Apium, Bupleurum, Centella, Conium, Coriandrum, Cryptotaenia, Eryngium, Ferula, Foeniculum, Hydrocotyle, Oenanthe, Peucedanum, Pimpinella, Pleurospermum, Pternopetalum, Sanicula, Sium, Spuriopimpinella, and Torilis genera. Specially, Sanicula (e.g., S. astrantiifolia, S. caerulescens, S. chinensis), Hydrocotyle (e.g., H. himalaica, H. hookeri, and H. nepalensis), and Pimpinella (e.g., P. candolleana, P. coriacea, and P. diversifolia) genera plants are usually used with whole plants.
The 184 species (44 genera) used with rhizomes and/or roots, which are mainly used in AMPs, include: Angelica, Anthriscus, Apium, Archangelica, Bupleurum, Carum, Changium, Chuanminshen, Cicuta, Cnidium, Conioselinum, Daucus, Eriocycla, Ferula, Foeniculum, Glehnia, Heracleum, Hymenidium, Kitagawia, Levisticum, Libanotis, Ligusticopsis, Ligusticum, Meeboldia, Nothosmyrnium, Oenanthe, Osmorhiza, Ostericum, Peucedanum, Phlojodicarpus, Physospermopsis, Pimpinella, Pleurospermum, Pternopetalum, Sanicula, Saposhnikovia, Selinum, Semenovia, Seseli, Seselopsis, Spuriopimpinella, Tongoloa, Torilis, and Vicatia genera. Specially, Angelica (e.g., A. biserrata, A. dahurica, and A. sinensis), Bupleurum (e.g., B. bicaule, B. chinense, and B. scorzonerifolium), and Ligusticum (L. chuanxiong, L. jeholense, and L. sinense) genera plants are usually used with whole plants.
The 5 species (5 genera) used with stems include: Aegopodium (A. alpestre), Coriandrum (C. sativum), Foeniculum (F. vulgare), Ligusticum (L. chuanxiong), and Oenanthe (O. javanica); the 9 species (8 genera) used with leaves include: Aegopodium (A. alpestre), Anethum (A. graveolens), Angelica (A. morii), Anthriscus (A. nemorosa and A. sylvestris), Carum (C. carvi), Daucus (D. carota), Foeniculum (F. vulgare), and Ligusticum (L. chuanxiong); the 17 species (14 genera) used with fruits include: Ammi (A. majus), Carum (C. buriaticum and C. carvi), Cnidium (C. monnieri), Coriandrum (C. sativum), Cuminum (C. cyminum), Cyclorhiza (C. peucedanifolia), Daucus (D. carota L. and D. carota var. Carota), Pimpinella (P. anisum), Trachyspermum (T. ammi), and Visnaga (V. daucoides) genera; as well as the single genera used with seeds is Ferula (F. bungeana) (Table 1).

5. Traditional Uses

As shown in Table 1, distinct traditional uses of the 228 AMPs were recorded. Based on their clinical agents, a total of 79 traditional uses are enriched, with 40 species (e.g., Angelica apaensis, Conium maculatum, and Hydrocotyle hookeri) contributing to the treatment of relieving pain, 36 species (e.g., Aegopodium alpestre, Apium graveolens, and Carum carvi) to the treatment of dispelling wind; and 21 species (e.g., Conioselinum vaginatum, Hydrocotyle sibthorpioides var. batrachium, and Ligusticum sinense) to the treatment of eliminating dampness (Figure 2).
What’s more, AMPs were also widely used as ethnodrug in ethnic minority of China. For example, Carum carvi was used as Tibetan medicine for the treatment of dispelling wind and eliminating dampness, treating cat fever and joint pain [86], Trachyspermum ammi [235] was used as Uygur medicine for the treatment of eliminating cold damp, dispelling coldness, and promoting digestion; Angelica acutiloba was used as Korean nationalities medicine for the treatment of strengthening spleen, enriching blood, stopping bleeding, and promoting coronary circulation [236]; Angelica sinensis was used as Tujia minority medicine for the treatment of enriching the blood, treating dysmenorrheal, and relaxing bowel [237]; and Chuanminshen violaceum was used as geo-authentic medicine of Sichuan province for the treatment of moistening lung melt phlegm, as well as nourishing spleen and stomach [89].
Meanwhile, AMPs combined with other herbs have also been applied in many prescriptions for thousands of years [238]. For example, Decoction of Notopterygium for Rheumatism, a famous Chinese prescription, composed of Notopterygium incisum, Angelica biserrata, Ligusticum sinense, Eryngium foetidum, and Ligusticum chuanxiong, etc., has been widely used for the treatment of exopathogenic wind-cold, rheumatism, headache, and pantalgia [94]. Xinyisan composed of Yulania liliiflora, Actaea cimicifuga, Angelica dahurica, Eryngium foetidum, and Ligusticum sinense, etc., has been widely used for the treatment of deficiency of pulmonary qi and nasal obstruction due to wind-cold pathogens and damp-heat in lung channel [94,167]. Shiquan Dabu Wan of Angelica sinensis, recorded in Pharmacopoeia of the People’s Republic of China, has been mainly used for treatment of pallor, fatigability, and palpitations [239]; and Juanbi Tang of Notopterygium incisum and Angelica biserrata, recorded in Medical Words (Qing dynasty), has been mainly used for treatment of arthralgia due to wind cold-dampness [120].

6. Modern Pharmacological Uses

Modern pharmacological researches of the 228 AMPs were recorded (Table 1). Based on their pharmacological effects, a total of 62 modern uses are enriched (Figure 3), with 36 species (e.g., Angelica biserrata, Bupleurum. marginatum, and Foeniculum vulgare) showing anti-inflammatory activity, 20 species (e.g., Chuanminshen violaceum, Cryptotaenia japonica, and Ferula songarica) showing antioxidant activity, and 16 species (e.g., Anethum graveolens, Centella asiatica, and Changium smyrnioides) showing antitumor activity.
Specifically, the sesquiterpene-coumarin, such as (3’S, 5’S, 8’R, 9’S, 10’R)-kellerin, gummosin, galbanic acid, and methyl galbanate in Ferula sinkiangensis resin, showed the anti-neuroinflammatory effect and might be a potential natural therapeutic agent for Alzheimer’s disease [240]. The ferulin B and C in Ferula ferulaeoides rhizomes could restrain the multiplication of HepG2 stomach cancer cell lines, and 2,3-dihydro-7-hydroxyl-2R*, 3R*-dimethyl-2-[4,8-dimethyl-3(E),7-nonadienyl]-furo[3,2-c] coumarin could restrain the proliferation of HepG2, MCF-7, and C6 cancer cell lines [107,241]. The osthole in Angelica biserrata could restrain the multiplication of human gastric cancer cell lines MKN-45 and BGC-823, human lung adenocarcinoma cell line A549, human mammary carcinoma cell line MCF-7, and human colon carcinoma cell line LOVO [242]. The phthalides (i.e., sedanolide and 3-n-butylphthalide) in Apium graveolens showed the anticarcinogenic and neuroprotective properties [243,244].

7. Phytochemistry

As shown in Table 1, hundreds of bioactive metabolites have been identified from the 228 AMPs [1,245]. Based on their chemical structures, these metabolites can be categorized into 5 main classes including: (1) polysaccharides, (2) alkaloids, (3) phenylpropanoids, (4) flavonoids, and (5) terpenoids (Figure 4).
Among the 22 AMPs recorded in the Pharmacopoeia of the People’s Republic of China [18], 18 bioactive metabolites in the 17 AMPs (e.g., Angelica biserrata, Bupleurum chinense DC., and Centella asiatica) (Figure 5) were described as quality control indicators, which include: 10 phenylpropanoids (i.e., osthole, columbianadin, imperatorin, isoimperatorin, nodakenin, ferulic acid, ttrans-anethole, notopterol, praeruptorin A, and praeruptorin B), 4 terpenoids (i.e., saikosaponin a, saikosaponin d, asiaticoside, and madecassoside), 2 chromones (i.e., prim-O-glucosylcimifugin and 5-O-methylvisammioside), and 2 phthalides (i.e., ligustilide and levistilide A,); and there is no specific quality marker mentioned for the other 5 AMPs (e.g., Changium smyrnioides, Daucus carota L., and Glehnia littoralis) (Table 2).

7.1. Polysaccharides

Polysaccharides are the largest component of biomass and account for ca. 90% of the carbohydrates in plants [246]. Studies have demonstrated that polysaccharides in medicinal plants are the indispensable bioactive compounds presenting uniquely pharmacological effects such as immunomodulatory, hypoglycemic, antitumor, anti-diabetic, and antioxidant, amongst others, with almost no side effect or adverse drug reaction [247,248]. To date, polysaccharides in the 228 AMPs have also been identified to show multiple pharmacological effects. For example, polysaccharides in Angelica sinensis present the effect of hematopoietic, antitumor, and liver protection, etc., [238,249]; polysaccharides in Angelica dahurica protect the effect of spleen lymphocytes, natural killer cells, and procoagulant, etc., [250,251]; as well as polysaccharides in Bupleurum chinense and Bupleurum smithii present the effect of macrophage modulation, kidney protection, and inflammatory alleviation, etc., [252,253,254].

7.2. Alkaloids

About 27 000 alkaloids presenting as water-soluble salts of organic acids, esters, and combined with tannins or sugars have been found in plants [255]. Many alkaloids are valuable medicinal agents that can be utilized to treat various diseases including malaria, diabetes, cancer, cardiac dysfunction, and blood clotting related diseases, etc., [256,257,258]. While alkaloids in the 228 AMPs mainly exist in the Ligusticum, Apium, Conium, and Cuminum genera [245]. Pharmacological studies demonstrated that alkaloids in Ligusticum chuanxiong show the activity of inhibiting myocardial fibrosis, protecting ischemic myocardium, and relieving cerebral ischemia-reperfusion injury [150,259,260]; and a novel alkaloid 2-pentylpiperidine named as conmaculatin in Conium maculatum shows strong peripheral and central antinociceptive activity [261]. While some alkaloids have been verified to show antidepressant activity, such as berberine in Berberis aristata, strictosidine acid in Psychotria myriantha, and Anonaine in Annona cherimolia, which could be explored as an emerging therapeutic alternative for the treatment of depression of AMPs.

7.3. Phenylpropanoids

Phenylpropanoids are a large class of secondary metabolites biosynthesized from the amino acids, phenylalanine, and tyrosine [262]. Over 8000 aromatic metabolites of the phenylpropanoids that have been identified in plants include simple phenylpropanoids (propenyl benzene, phenylpropionic acid, and phenylpropyl alcohol), coumarins, lignins, lignans, and flavonoids [263].

7.3.1. Simple Phenylpropanoids

To date, limited simple phenylpropanoids have been identified from the AMPs, such as 3 phenylpropanoids (e.g., trans-isoelemicin, sarisan, and trans-isomyristicin) existed in roots of Ligusticum mutellina [264]; and ferulic acid, one of the phenylpropionic acids, as an important bioactive metabolite of AMPs had many activities, mainly existed in the Angelica, Ligusticum, Ferula, and Pleurospermum genera [238,265,266]. Pharmacological studies demonstrated that ferulic acid in Angelica sinensis shows strong properties in inhibiting platelet aggregation, increasing coronary blood flow, and stimulating smooth muscle [267,268]; ferulic acid in Angelica acutiloba shows antidiabetic effects, immunostimulant properties, antiinfammatory, antimicrobial, anti-arrhythmic, and antithrombotic activity [269]; and ferulic acid in Ligusticum tenuissimum shows anti-melanogenic and anti-oxidative effects [270].

7.3.2. Coumarins

Coumarins are the most widespread in 20 genera of AMPs (e.g., Angelica, Bupleurum, and Peucedanum) and mainly include simple coumarins, pyranocoumarins, and furocoumarins [56,271,272]. In recent years, distinct coumarins have been identified from the AMPs, such as 99 coumarins in Ferula [273], 116 coumarins in Angelica decursiva and Peucedanum praeruptorum [179], as well as 9 coumarins in Angelica dahurica [274]. Furthermore, 8 coumarins have been selected as quality markers including cnidiadin (1) in Angelica biserrata and Cnidium monnieri, zosimin (2) in Angelica biserrata, imperatorin (3) in Angelica dahurica and Angelica dahurica cv. Hangbaizhi, isoimperatorin (4) in Angelica dahurica, Angelica dahurica cv. Hangbaizhi, Notopterygium franchetii, and Notopterygium incisum, nodakenin (5) in Angelica decursiva, Notopterygium franchetii, and Notopterygium incisum, notopterol (14) in Notopterygium franchetii and Notopterygium incisum, as well as praeruptorin A (15) and praeruptorin B (16) in Peucedanum praeruptorum (Table 2 and Figure 5) [18].
To date, various biological activities of coumarins have been demonstrated including antifungal, antimicrobial, antiviral, anti-cancerous, antitumor, anti-inflammatory, anti-filarial, enzyme inhibitors, antiaflatoxigenic, analgesics, antioxidant, and oestrogenic [275,276,277,278]. For example, coumarins are recognized as the main bioactive constituents in Peucedani genus and play critical roles in relieving cough and asthma, strengthening heart function, as well as preventing and treating cardiovascular diseases such as nodakenin, (+)-praeruptorin B, and praeruptorin C [279]; imperatorin oxypeucedanin hydrate, xanthotoxol, bergaptol, 5-methoxy-8-hydroxypsoralen, isoimperatorin, phelloptorin, and pabularinone in Angelica dahurica exhibited moderate DPPH•scavenging activity, strong ABTS·+ scavenging activity, and significant inhibition on HepG2 cells, which could be explored as new and potential natural antioxidants and cancer prevention agents [30]; pabulenol and osthol extract in Angelica genuflexa show anti-platelet and anti-coagulant components [38]; decursinol angelate in Angelica gigas shows platelet aggregation and blood coagulation activity [38].

7.4. Flavonoids

Flavonoids are a group of the most abundant secondary metabolites in plants [262]. Generally, flavonoids can be further categorized into 8 subgroups including: flavones (e.g., apigenin, luteolin, and baicalein), flavonols (e.g., kaempferol, quercetin, and myricetin), flavanones (e.g., naringenin, hesperitin, and liquiritigenin), flavanonols (e.g., dihydrokaempferol, dihydromyricetin, and dihydroquercetin), isoflavones (e.g., daidzein, purerarin, and peterocarpin), aurones, anthocyanidins, and proanthocyanidins [280,281,282]. In recent years, flavonoids have been identified from the AMPs, such as 6 flavonoids (e.g., luteolin, isoquercitrin, and rutin) in Ferula [107], 12 flavonoids (e.g., quercetin-3-O-rutinoside, kaempferol-3,7-di-O-rhamnoside, quercetin-3-O-arabinoside) in Bupleurum [283], and 18 flavonoids (e.g., rutin, quercetin, and quercitrin) in Hydrocotyle [134].
To date, various biological activities of flavonoids have been demonstrated including antioxidant, antiinflammatory, antidiabetic, anticancer, antiobesity, and cardioprotective [280,284]. For example, apigenin in Apium graveolens shows anticancer property [21], and flavonoids in Pimpinella diversifolia DC., Anthriscus sylvestris, and Sanicula astrantiifolia show antioxidant effect [196,285]; as well as quercetin and its metabolites show vasodilator effects with selectivity toward the resistance vessels [286].

7.5. Terpenoids

About 25 000 terpenoids have been reported in plants and they are most diverse secondary metabolites containing three subgroups including: monoterpenoids, sesquiterpenes, and triterpenoids [287]. Actually, terpenoids have been also identified from the AMPs, such as 4 terpenoids (e.g., angelicoidenol, pregnenolone, and β-sitosterol) in Pleurospermum [141], 75 terpenoids (e.g., myrcene, farnesene, and xiongterpene) in Ligusticum [140], 109 terpenoids (e.g., nerolidol, guaiol, and ferulactone A) in Ferula [273], and 13 triterpenoids (e.g., ranuncoside, oleanane, and barrigenol) in Hydrocotyle sibthorpioides Lam. [135].
Studies have found that terpenoids possess various biological activities such as anti-inflammatory, anti-oxidation, and anti-fibrosis activities, antitumor, anti-Alzheimer’s disease, and anti-depression [288,289]. For example, xiongterpene in Ligusticum chuanxiong shows insecticide effect [150], asiaticoside in Centella asiatica shows antitumor property [290], as well as saikosaponin d in Bupleurum chinense DC. and Bupleurum scorzonerifolium show the effect of reducing blood glucose, inhibiting inflammation, and reducing insulin resistance [291].

7.6. Other Compounds

Chromones and phthalides also exist in the AMPs and show pharmacological properties. Specifically, phthalides (e.g., ligustilide, n-butylidenephthalide, and Z-ligustilide) in the Angelica sinensis show the effect of inhibiting vasodilation, decreasing platelet aggregation, as well as exerting analgesic, anti-inflammatory, and anti-proliferative [238]; butylphthalide in Ligusticum sinense shows the effect of anti-inflammatory, antithrombus, dilate blood vessels, improve brain microcirculation, and anti-myocardial ischemia [154].
For the chromones, 3 chromones [i.e., 5 thydroxy 2 [(angebyloxy) mehyI] fuan [3, 2’: 6, 7] chrmone, angeliticin A, and noreugenin)] in Angelica polymorpha [292], 10 chromones (e.g., cnidimoside A, cnidimol B, and peucenin) in Cnidiummonnieri (L.) Cuss. [93], and 22 chromones [e.g., edebouriellol, hamaudol, and 3ʹ(R)-(+)-hamaudol] in Saposhnikovia divaricate [217] have been identified. Studies have found that 2 chromones 3ʹS-(-)-O-acetylhamaudol and (±)-hamaudol in Angelica morii show the effect of inhibiting Ca2+ influx of vascular smooth muscle [293], prim-O-glucosylcimifugin and 5-O-methylvisammioside show the effect of antipyretic, analgesic, and anti-inflammatory [294], and chromones in Bupleurum multinerve shows the analgesic effect [295].

8. Effect of Bolting and Flowering (BF) on Yield and Quality

Previous literatures have repeatedly emphasized that the BF reduces the yield and quality of plants, especially in rhizomatous medicinal plants [11]. Here, a total of 38 rhizomatous plants reported in the 228 AMPs are associated with the BF (Table 3). Based on the effect degree of the BF on the yield and quality, the 38 rhizomatous AMPs belonging to 17 genera can be categorized into 3 classes including: (1) the BF significantly affects the yield and quality of 14 AMPs (i.e., Angelica acutiloba, Angelica biserrata, Angelica dahurica, Angelica dahurica cv. Hangbaizhi, Angelica decursiva, Angelica polymorpha, Angelica sinensis, Daucus carota, Heracleum hemsleyanum, Heracleum rapula, Libanotis iliensis, Libanotis seseloides, Peucedanum praeruptorum, and Saposhnikovia divaricata), and their rhizomes and/or roots are wholly lignified and absolutely useless for clinical effects; (2) the BF affects the yield of 11 AMPs (i.e., Angelica gigas, Bupleurum chinense, Bupleurum scorzonerifolium, Changium smyrnioides, Chuanminshen violaceum, Glehnia littoralis, Ligusticum chuanxiong, Ligusticum jeholense, Ligusticum sinense, Notopterygium franchetii, and Notopterygium incisum), while their rhizomes or roots can be used as medicine to some extent; as well as (3) the BF has no significant effect on the yield and quality of 13 AMPs (i.e., Angelica sylvestris, Cicuta virosa, Ferula ferulaeoides, Ferula fukanensis, Ferula lehmannii, Ferula olivacea, Ferula sinkiangensis, Ferula teterrima, Levisticum officinale, Libanotis buchtormensis, Libanotis lancifolia, Libanotis spodotrichoma, and Pimpinella candolleana), and their rhizomes or roots are still used as medicine (Figure 6).
For the class (1), bolting and flowering reduce the yield and contents of bioactive compounds of plants with none or almost no medicinal value, representatively, a 8.3- and 16.1-fold reduction of dry weight and quality marker ferulic acid content in Angelica sinensis [296]; and a 1.5- and 1.5-fold reduction of dry weight and quality marker isoimperatorin content in Angelica dahurica [297] have been observed after the BF. For the class (2), bolting and flowering reduce the yield and contents of bioactive compounds of plants with little medicinal value, representatively, a 1.34-fold reduction of saikosaponinsands, while no significant change of dry weight in Bupleurum chinense [298,299]; and a 2.0- and 1.7-fold reduction of dry weigh and polysaccharides content in Changium smyrnioides [300] have been observed after the BF. For the class (3), the yield and quality of the 13 AMPs are not affected after bolting and flowering by the harvest stages [19].

9. Approaches to Control the BF

Generally, Most Apiaceae plants are “low-temperature and long-day” perennial herbs, in other words, the plants must experience vernalization (i.e., an extended period of cool weather at 0 to 10℃) and long days (> 12 h daylight) to induce the BF, such as Angelica sinensis [320], Daucus carota [321], and Coriandrum sativum [322].
As shown in Table 4, approaches to inhibit the BF of 24 AMPs have been listed. For example, the bolting rate of Angelica sinensis can be significantly decreased through planting the green stem cultivar (Mingui 2) instead of the purple stem cultivar (Mingui 1) [323], selecting smaller seedlings (i.e., root-shoulder diameter <0.55 cm) instead of larger seedlings [324,325], storing the seedlings at freezing temperature (i.e., <0℃ ) during overwinter stage [320], shading the plants under sunshade (i.e., >40%) during growth stage [326], and providing the plants with good growth conditions (e.g., plant intensity, nutrient and water balance) [327]. The bolting rate of Angelica dahurica can be significantly decreased through planting the purebreeds [328], selecting the immature seeds for seeding [303], increasing the potassic fertilizer while decreasing the nitrogen and phosphorus fertilizers [329], and planting with standard techniques [330]. The bolting rate of Saposhnikovia divaricata can also be significantly decreased through controlling the sunshade [331], sowing date [332], planting density [333], and preventing the excessive growth [331].
To inhibit the occurrence of BF of AMPs, plenty of measures that can be used include: breeding new cultivars to reduce the BF, controlling the seedling age and size to delay the transition from vegetative growth to flowering, storing seedlings at freezing temperatures to avoid vernalization, growing the plants under sunshade to avoid long-day photoperiodism, and planting with standard techniques to reduce pests and diseases (Figure 7).

10. The Mechanism of BF Inducing the Rhizome Lignification

Extensive experiments have demonstrated that the BF induces the lignification of fleshy rhizomes, meanwhile, enhances the degradation of bioactive metabolites [11,13,323]. Studies on anatomical structures reveal that the ratio of secondary phloem to secondary xylem respectively changes from 2:1 to 1:10 and 2/5-1/2 to 1/2-3/4 for the rhizomes of Angelica sinensis and Angelica dahurica before and after BF, meanwhile, the number of secretory cells producing essential oils significantly decreased [363,364]. Studies have been found that EARLY BOLTING IN SHORT DAY (EBS) acts as a negative transcriptional regulator preventing premature flowering of Arabidopsis thaliana and have been observed as co-enrichment of a subset of EBS-associated genes with H3K4me3, H3K27me3, and Polycomb repressor complex 2 [365]; a potential genetic resource for radish late-bolting breeding with introgression of the RsVRN1In-536 insertion allele into early-bolting genotype could contribute to delay bolting time of Raphanus sativus [366]; and peroxidases (PRXs) involved in lignin monomers biosynthesis were downregulated in Peucedanum praeruptorum at the bolting stage [367].
As known, lignin biosynthesis belongs to the general phenylpropanoid pathway, which starts from phenylalanine and is catalyzed by a serial of enzymes [13,368]. Specifically, phenylalanine is catalyzed to form p-Coumaroyl CoA sequentially through the 3 enzymes phenylalanine ammonia lyase (PAL), cinnamate 4-hydroxylase (C4H), and 4-coumarate-CoA ligase (4CL); lignin biosynthesis is synthesized via 3 sub-pathways including: (1) lignins are catalyzed to from p-Coumaroyl CoA sequentially through the three enzymes cinnamoyl-CoA reductases (CCR), cinnamyl alcohol dehydrogenases (CAD), and laccases (LACs); and then coniferyl aldehyde is catalyzed to from p-Coumaroyl CoA sequentially through the 4 enzymes hydroxycinnamoyl shikimate/quinate transferase (HCT), p-coumarate 3-hydroxylase (C3H), caffeoyl-CoA 3-O-methyltransferase (CCOMT), and CCR; (2) lignins are catalyzed to from coniferyl aldehyde sequentially through the 2 enzymes CAD and LACs; as well as (3) lignins are catalyzed to from coniferyl aldehyde sequentially through the 3 enzymes ferulate 5-hydroxylase (F5H), caffeic acid 3-O-methyltransferase (COMT), and LACs (Figure 8).
Although lignin biosynthesis has been depicted, studies on the mechanism of BF inducing rhizome lignification are still limited. To our knowledge, only the mechanism of BF affecting Angelica sinensis has been conducted, with the expression level of genes (e.g., PAL1, 4CLs, HCT, CAD1, and LACs) significantly upregulated at the stem-node forming and elongating stage compared with stem-node pre-differentiation stage, leading to the reduction of accumulation of bioactive metabolites (i.e., ferulic acid and flavonoids) [13].

11. Conclusions and Future Aspect

In this review, we summarized the tour of AMPs, classification of AMPs species, traditional use, modern pharmacological use, phytochemistry, effect of BF on yield and quality, approach to control the BF, and the mechanism of BF inducing the rhizome lignification. Although ca. 228 AMPs, 72 traditional uses, 62 modern uses, and 5 main kinds of metabolites have been recorded, the potential properties still need to be exploited. Although the urgent problems in the BF significantly reducing the yield and quality of AMPs have been found and several approaches have been applied in controlling the BF, the effective measures to inhibit the BF and its mechanism have not been systemically revealed. Thus, in order to effectively control the BF of AMPs, on one hand, standard cultivation techniques of AMPs should be applied; on the other hand, new cultivars should be innovated by the modern biotechnology such as the CRISPR/Cas9 system.

Author Contributions

collected and analyzed the references, drew the chemical structures, and wrote the manuscript, M.L.L.; checked the classification and traditional use of Apiaceae medicinal plants, M.L.; checked the language and modern pharmacological use, L.W.; Conceptualization, Methodology, Supervision, Writing-review and editing, M.F.L.; Conceptualization and Project administration, J.W.

Funding

This research was funded by the National Natural Science Foundation of China (32160083), earmarked fund for CARS (CARS-21), and Gansu Education Science and Technology Innovation Project (2022CXZXS-022).

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Wei, J.; Gao, Y.Z.; Zhou, J.; Liu, Z.W. Collection and sorting of medicinal plants in Chinese Apiaceae (Umbelliferae). China J. Chin. Mater. Med. 2019, 44, 5329–5335. [Google Scholar]
  2. Yuan, C.Q. Ethnobotanical research on Umbelliferous plants in China. Chin. J. Ethnomed. Ethnoph. 1999, 4, 221-224+248. [Google Scholar]
  3. Zhao, Z.L.; Yan, Y.P. Pharmaceutical Botany (2nd edition); Scientific & Technical Publishers: Place Scientific & Technical Publishers, 2020. [Google Scholar]
  4. Cai, S.Q. Pharmacognostics; People’s Medical Publishing House: Place People’s Medical Publishing House, 2011. [Google Scholar]
  5. Li, B.; Zhang, W.H.; Gong, H.D. Researches on forage plant resources of Umbelliferae in Gansu. J. Mudanjiang Norm. Univ. 2022, 2, 57–61. [Google Scholar]
  6. Liu, Y.; Liu, M.; Liu, M.Y. Resource plants of Apiaceae (Umbelliferae) in China. Terr. Nat. Res. Study. 2002, 4, 76–78. [Google Scholar]
  7. Kitashiba, H.; Yokoi, S. Genes for Bolting and Flowering. In The Radish Genome, Nishio, T., Kitashiba, H., Eds. Springer International Publishing: Cham, 2017; pp. 151–163.
  8. Mutasa-Göttgens, E.S.; Qi, A.; Zhang, W.; Schulze-Buxloh, G.; Jennings, A.; Hohmann, U.; Müller, A.E.; Hedden, P. Bolting and flowering control in sugar beet: relationships and effects of gibberellin, the bolting gene B and vernalization. AoB PLANTS 2010, 2010, plq012. [Google Scholar] [CrossRef] [PubMed]
  9. Ning, K.; Han, Y.Y.; Chen, Z.J.; Luo, C.; Wang, S.L.; Zhang, W.J.; Li, L.; Zhang, X.L.; Fan, S.X.; Wang, Q. Genome-wide analysis of MADS-box family genes during flower development in lettuce. Plant, Cell Environ. 2019, 42, 1868–1881. [Google Scholar] [CrossRef]
  10. Wen, F.Y.; Zhang, B.; Liu, X.H.; Zhao, B.; Song, L.J.; Luo, Z.M. Research on bolting character and its genetic of Chinese cabbage. Acta Agric. Bor. Sin. 2006, 21, 68–71. [Google Scholar]
  11. Zhao, D.Y.; Hao, Q.X.; Kang, L.P.; Zhang, Y.; Chen, M.L.; Wnag, T.L.; Guo, L.P. Advance in studying early bolting of Umbelliferae medicinal plant. China J. Chin. Mater. Med. 2016, 41, 20–23. [Google Scholar]
  12. Lincoln, T.; Eduardo, Z. Plant Physiology (5th Edition); Sinauer Associates: New York, USA, 2010. [Google Scholar]
  13. Li, M.L.; Cui, X.W.; Jin, L.; Li, M.F.; Wei, J.H. Bolting reduces ferulic acid and flavonoid biosynthesis and induces root lignification in Angelica sinensis. Plant Physiol. Biochem. 2022, 170, 171–179. [Google Scholar] [CrossRef]
  14. Shang, Z.J. Collation and Annotation of Sheng Nong’s Herbal Classic; Academy Press: Place Academy Press, 2008. [Google Scholar]
  15. Li, S.Z. Compendium of Materia Medica; China Yanshi Publishing House: Place China Yanshi Publishing House, 2012. [Google Scholar]
  16. Flora Reipublicae Popularis Sinicae, Delectis Florae Reipublicae Popularis Sinicae, Agendae Academiae Sinicae Edita. Flora of China; Science Press: Place Science Press, 2002. [Google Scholar]
  17. Wang, G.Q. The Compilation of National Chinese Herbal Medicine; People’s Medical Publishing House: Place People’s Medical Publishing House, 2014. [Google Scholar]
  18. Chinese Pharmacopoeia Commission. Pharmacopoeia of the People’s Republic of China; China Medical Science Press: Place China Medical Science Press, 2020. [Google Scholar]
  19. Nanjing university of Chinese medicine. Dictionary of Chinese Medicine; Shanghai Scientific & Technical Publishers: Place Shanghai Scientific & Technical Publishers, 2006. [Google Scholar]
  20. Sun, G.R.; Xu, P.; Chang, K. GC/MS analysis of volatile components from Aegopodiumalpestre Seeds. J. Anhui Agric. Sci. 2009, 37, 161. [Google Scholar]
  21. Zhou, H.; Lu, X.Y.; Tian, Y.; Huang, C.J. Advances in studies on chemical constituents and pharmacological activities of Apium L. Amino Acids Biotic. Resour. 2006, 28, 6–9. [Google Scholar]
  22. Chahal, K.K.; Kumar, A.; Bhardwaj, U.; Kaur, R. Chemistry and biological activities of Anethum graveolens L. essential oil: A review. J. pharmacogn. phytochem. 2017, 6, 295–306. [Google Scholar]
  23. Park, M.A.; Sim, M.J.; Kim, Y.C. Anti-photoaging effects of Angelica acutiloba root ethanol extract in Human dermal fibroblasts. Toxicol. Res. 2017, 33, 125–134. [Google Scholar] [CrossRef]
  24. Yan, Z.K.; Niu, Z.D.; Pan, N.; Xu, G.J.; Yang, X.W. Analysis of exsential oils in roots and fruits of Angelica in Northeast China. China J. Chin. Mater. Med. 1990, 15, 35–37.36. [Google Scholar]
  25. Sui, C.X. Study on chemical composition of Angelica serrata. Heilongjiang Med. J. 2010, 23, 263. [Google Scholar]
  26. Wu, Z.Y. Essentials of China Meteria Medica (Ⅰ); Shanghai Scientific & Technical Publishers: Place Shanghai Scientific & Technical Publishers, 1988. [Google Scholar]
  27. Zhou, L.L.; Zeng, J.G. Research advances on chemical constituents and pharmacological effects of Angelica pubescens. Mod. Chin. Med. 2019, 21, 1739–1748. [Google Scholar]
  28. Meng, H.L.; Wen, G.S.; Yang, S.C. Research progress of the medicinal plant Heracleum apaensis. Res. Prac. Chin. Med. 2008, 22, 62–65. [Google Scholar]
  29. Liu, M.; Hu, X.; Wang, X.; Zhang, J.J.; Peng, X.B.; Hu, Z.G.; Liu, Y.F. Constructing a core collection of the medicinal plant Angelica biserrata using genetic and metabolic data. Front Plant Sci. 2020, 11, 600249. [Google Scholar] [CrossRef]
  30. Bai, Y.; Li, D.H.; Zhou, T.T.; Qin, N.B.; Li, Z.L.; Yu, Z.G.; Hua, H.M. Coumarins from the roots of Angelica dahurica with antioxidant and antiproliferative activities. J. Funct. Foods 2016, 20, 453–462. [Google Scholar] [CrossRef]
  31. Choi, I.H.; Lim, H.H.; Song, Y.K.; Lee, J.W.; Kim, Y.S.; Ko, I.G.; Kim, K.J.; Shin, M.S.; Kim, K.H.; Kim, C.J. Analgesic and anti-inflammatory effect of the aqueous extract of root of Angelica Dahurica. Orient. Pharm. Exp. Med. 2008, 7, 527–533. [Google Scholar] [CrossRef]
  32. Lechner, D.; Stavri, M.; Oluwatuyi, M.; Pereda-Miranda, R.; Gibbons, S. The anti-staphylococcal activity of Angelica dahurica (Bai Zhi). Phytochemistry 2004, 65, 331–335. [Google Scholar] [CrossRef]
  33. Saiki, Y.; Morinaga, K.; Okegawa, O.; Sakai, S.; Amaya, Y.; Ueno, A.; Fukushima, S. On the coumarins of the roots of Angelica dahurica Benth. et Hook. Yakugaku Zasshi 1971, 91, 1313–1317. [Google Scholar] [CrossRef]
  34. Wei, W.; Wu, X.W.; Deng, G.G.; Yang, X.W. Anti-inflammatory coumarins with short- and long-chain hydrophobic groups from roots of Angelica dahurica cv. Hangbaizhi. Phytochemistry 2016, 123, 58–68. [Google Scholar] [CrossRef]
  35. Wei, W.; Yang, X.W.; Zhou, Y.Y. Chemical constituents from n-Butanol soluble parts of roots of Angelica dahurica cv. Hangbaizhi. Mod. Chin. Med. 2017, 19, 630–634. [Google Scholar]
  36. Zhao, D.; Islam, M.N.; Ahn, B.R.; Jung, H.A.; Kim, B.W.; Choi, J.S. In vitro antioxidant and anti-inflammatory activities of Angelica decursiva. Arch. Pharm. Res. 2012, 35, 179–192. [Google Scholar] [CrossRef]
  37. Ahn, M.J.; Lee, M.K.; Kim, Y.C.; Sung, S.H. The simultaneous determination of coumarins in Angelica gigas root by high performance liquid chromatography-diode array detector coupled with electrospray ionization/mass spectrometry. J. Pharm. Biomed. Anal. 2008, 46, 258–266. [Google Scholar] [CrossRef]
  38. Lee, Y.; Lee, S.; Jin, J.; Yun-Choi, H. Platelet anti-aggregatory effects of coumarins from the roots of Angelica genuflexa and A. gigas. Arch. Pharm. Res. 2013, 26, 723–726. [Google Scholar] [CrossRef]
  39. Gu, X.Y.; Zhang, H.Q.; Wang, N.H. The chemical constituents of root of Angelica laxifoliata Diels. J. Plant Resour. Environ. 1999, 8, 1–5. [Google Scholar]
  40. Song, P.P.; Xu, Z.R.; Wang, N.H. Studies on the chemical constituents in roots of Angelica tianmuensis and A. megaphylla. J. Chin. Medic. Mater. 2010, 33, 1249–1251. [Google Scholar]
  41. Wang, Y. Optimization of extraction technology of ferulic acid from A. megaphylla. J. Jiangxi Univ. TCM. 2018, 30, 97–100. [Google Scholar]
  42. Sun, S.; Kong, L.Y.; Zhang, H.Q.; He, S.A. Structural determination of chromone from Angelica morri Hayata. Chin. J. Nat. Med. 2005, 3, 97–100. [Google Scholar]
  43. Sun, S.; Liu, B.; Kong, L.Y.; Zhang, H.Q.; He, S.A. Chemical Study on Angelica morri Hayata. J. China Pharm. Univ. 2002, 33, 181–183. [Google Scholar]
  44. Tang, L.X. Identification of pharmacokinetics of Angelica grosserrata Maximi. Strait Pharm. J. 1999, 11, 48–49. [Google Scholar]
  45. Song, P.P.; Lv, Y.; Xu, Z.L.; Jiang, Q.; Wang, N.H. Chemical Constituents of Angelica nitida roots. J. Chin. Medic. Mater. 2014, 37, 55–57. [Google Scholar]
  46. Yang, Y.; Zhang, Y.; Ren, F.X.; Yu, N.J.; Xu, R.; Zhao, Y.M. Chemical constituents from the roots of Angelica polymorpha Maxim. Acta Pharm. Sin. 2013, 48, 718–722. [Google Scholar]
  47. Zhan, Y.H. Chinese Materia Medica Resources in Shennongjia; Hubei Science and Technology Press: Place Hubei Science and Technology Press, 1994; p. 418. [Google Scholar]
  48. Kataki, M.S.; Kakoti, B.B. Women’s ginseng (Angelica sinensis): An ethnopharmacological dossie. Curr. Tradit. Med. 2015, 1, 26–40. [Google Scholar] [CrossRef]
  49. Upton, R. American Herbal Pharmacopoeia and Therapeutic Compendium: Dang Gui Root-Angelica Sinensis (Oliv.); American Herbal Pharmacopoeia and Therapeutic Compendium: Scotts Valley, CA, USA, 2003. [Google Scholar]
  50. Zhou, A.L.; Du, F.M. Separation of coumarin components from Angelica omeiensis root. Chin. Trad. Herb. Drugs. 1982, 13, 6–8. [Google Scholar]
  51. Rao, G.X.; Liu, Q.X.; Dai, Z.J.; Yang, Q.; Dai, W.S. Textual research and discussing mlodern variety of Peucedanum praeruptorum Dunn, Chinese herb. J. Yunnan Coll. Tradit. Chin. Med. 1995, 18, 1-6+11. [Google Scholar]
  52. Tan, H.; Ma, C.Y.; Geng, Y. Advancement in studies of chemical constituents and pharmacological activities of Anthriscus sylvestris. Chin. Arch. Tradit. Chin. Med. 2017, 35, 1194–1196. [Google Scholar]
  53. Liu, Y.S. The research and function of Oenanthe javanice. J. Sichuan TCM. 2004, 22, 25–26. [Google Scholar]
  54. Marongiu, B.; Piras, A.; Porcedda, S.; Falconieri, D.; Maxia, A.; Frau, M.A.; Gonçalves, M.J.; Cavaleiro, C.; Salgueiro, L. Isolation of the volatile fraction from Apium graveolens L. (Apiaceae) by supercritical carbon dioxide extraction and hydrodistillation: Chemical composition and antifungal activity. Nat. Prod. Res. 2012, 27, 1521–1527. [Google Scholar] [CrossRef] [PubMed]
  55. Zhang, H.Q.; Yuan, C.Q.; Wang, N.H. The chemical constituents of the root of Archangelica brevicaulis (Rupr.) Rchb. J. Plant Resour. Environ. 1999, 8, 22–25. [Google Scholar]
  56. Pan, S.L.; Shun, Q.S.; Bai, Q.M. The Coloured Atlas of the Medicinal from Genus Bupleurum in China; Shanghai Scientific and Technological Literature Press: Place Shanghai Scientific and Technological Literature Press, 2002. [Google Scholar]
  57. Yang, Z.Y.; Liu, S.F.; Chao, Z.; Pan, S.L. The content of saikosaponin a,c and d in four species of Bupleurum in Xinjiang by HPLC. China J. Chin. Mater. Med. 2008, 33, 460–461. [Google Scholar]
  58. Wei, X.M.; Yan, H.; Lu, Y.Y.; Ma, S.Y.; Cheng, X.L.; Wei, F. HPLC simultaneous determination of 6 main saponins in Bupleurum bicaule Helm. J. Pharm Anal. 2018, 38, 618–622. [Google Scholar]
  59. Zhu, Z.J.; Pan, R.L.; Si, J.Y.; Fu, Y.; Huang, Q.Q. Study on the chemical constituents of Bupleurum bicaule Helm. Nat. Prod. Res. Dev. 2008, 20, 833–835. [Google Scholar]
  60. Jin, H.F.; Jiang, Y.; Luo, S.Q. Studies on the chemical constituents of roots of Bupleurum longicaule Wall. ex DC. var. francheti de Boiss and B. chaishoui Shan et Sheh. China J. Chin. Mater. Med. 1996, 21, 739-741+762. [Google Scholar]
  61. Zhu, Z.B.; Liang, Z.S.; Han, R.L.; Dong, J.E. Growth and saikosaponin production of the medicinal herb Bupleurum chinense DC. under different levels of nitrogen and phosphorus. Ind. Crops. Prod. 2009, 29, 96–101. [Google Scholar] [CrossRef]
  62. Zhu, Z.B.; Liang, Z.S.; Han, R.L.; Wang, X. Impact of fertilization on drought response in the medicinal herb Bupleurum chinense DC.: Growth and saikosaponin production. Ind. Crops. Prod. 2009, 29, 629–633. [Google Scholar] [CrossRef]
  63. Huang, H.Q.; Wang, X.H.; Fu, H.; Wang, Y.; Yang, S.H. Research progress on medicinal plant resources of Bupleurum L. Chin. Trad. Herb. Drugs. 2017, 48, 2989–2996. [Google Scholar]
  64. Ou, X.L.; Huang, T.Y. Research progress on chemical constituents of Bupleurum. J. Chin. Medic. Mater. 2021, 44, 749–755. [Google Scholar]
  65. Li, G.H.; Luo, Y.Y.; Wang, Y.; Yuan, C.Q.; Wang, N.H. Analysis of saikosaponins in medicinal Bupleurum spp. J. Plant Resour. Environ. 1996, 5, 59–60. [Google Scholar]
  66. Shih, Y.C.; Lee, L.T.; Hu, N.Y.; Tong, T.S. Method for treating or relieving inflammatory bowel disease. US-2013022694-A1, 2013.
  67. Liu, Z.B.; SUn, Y.S.; Wang, J.H.; Li, S.H.; Huang, H.M. HPLC detemnation of saikosaponins a, C, and d in different parts of Bupleurum falcatum. Chin. J. Pham. Anal. 2011, 31, 225–227. [Google Scholar]
  68. Ma, X.C.; Chen, S.P.; Wang, J.H.; Li, J.Y.; Xie, Y.L. Planting density oa affects dry material accumulation and saikosaponin contents of Bupleurum falcatum L. J. Shandong Agric. Univ. (Nat. Sci.). 2011, 42, 65–69. [Google Scholar]
  69. Feng, S.J. Brief Report on Chemical Constituents of Bupleurum chinensis. Chin. Trad. Herb. Drugs. 1981, 12, 30. [Google Scholar]
  70. Zhang, G.X.; Wang, H.; Yin, X.; Kong, W.J.; Wang, Q.L.; Chen, Y.; Wei, J.H.; Liu, J.X.; Guo, X.W. Characterization of the complete chloroplast genome of Bupleurum hamiltonii N. P. Balakr. (Apiaceae) and its phylogenetic implications. Mitochondrial DNA B 2021, 6, 447–449. [Google Scholar] [CrossRef]
  71. Liu, L.J.; Tian, Z.K.; Wang, X.K. Study on volatile oil composition of Bupleurum komarovianum Lincz. Chin. Pharm. J. 1993, 28, 239. [Google Scholar]
  72. Tian, Z.K.; Ma, Y.L.; Liu, L.J.; An, F.T.; Wang, X.K.; Wang, L.; et al. Studies on the saponin components of Bupleurum Komarovianum Lincz. J. Shenyang Coll. Pharm. 1993, 10, 82-84+93. [Google Scholar]
  73. Shi, B.; Liu, W.; Wei, S.P.; Wu, W.J. Chemical composition, antibacterial and antioxidant activity of the essential oil of Bupleurum longiradiatum. Nat. Prod. Commun. 2010, 5, 1139–1142. [Google Scholar] [CrossRef]
  74. Yan, J.; Wei, Y.F.; Gu, R.; Kang, M. Content determination of saikosaponin a, c, d in overground and underground part of 4 species of Bupleurum Radix from Sichuan by HPLC. Chin. J. Exp. Tradit. Med. For. 2014, 20, 73–76. [Google Scholar]
  75. Yan, J.; Wei, Y.F.; Zhou, Y.L.; Long, F.; Kang, L.; Chen, W.; Xu, Y. Study on HPLC characteristic map of the overground part of Bupleurum from Sichuan. J. Chin. Medic. Mater. 2019, 42, 773–777. [Google Scholar]
  76. Yan, J.; Yan, Y.M.; Wei, Y.F.; Wu, W.J. Chemical constituents of acrial part of Bupleunum malconense. Chin. Trad. Herb. Drugs. 2017, 48, 1282–1285. [Google Scholar]
  77. Aoyagi, H.; Kobayashi, Y.; Yamada, K.; Yokoyama, M.; Kusakari, K.; Tanaka, H. Efficient production of saikosaponins in Bupleurum falcatum root fragments combined with signal transducers. Appl. Microbiol. Biotechnol. 2001, 57, 482–488. [Google Scholar] [PubMed]
  78. Ma, Y.; Liu, K.K.; Pu, X.; Cui, Z.J.; Wang, Z.H.; Zhao, W.L.; Guo, Y.X.; Jin, L. Investigation on the Resources of Bupleurum in Central Gansu. Mod. Chin. Med. 2022, 24, 2119–2125. [Google Scholar]
  79. Guo, S.Q.; Chi, X.X.; Bai, Y.J.; Wang, H.G. Determination of saikosaponin d in Bupleurum Sibircum Vest by HPLC. Chin. J. Ethnomed. Ethnoph. 2020, 29, 44–47. [Google Scholar]
  80. Song, Z.Z.; Jia, Z.J. Studies on the Chemical Components of Bupleurum Sibiricum Vest (Ⅰ). J. Lanzhou Univ. (Nat. Sci.). 1992, 28, 99–103. [Google Scholar]
  81. Liu, L.Z.; Ji, X.J.; Xu, L.X.; Zhang, Y.; Zhang, F.J.; Li, D.C.; Ya, B.Q. Quality standards of Bupleuri Smithii Radix. Chin. J. Exp. Tradit. Med. For. 2014, 20, 105–109. [Google Scholar]
  82. Zhang, T.T.; Gao, S.; He, J.H. Research progress on chemical composition and pharmacological action of Bupleurum smithii Wolff. J. Chin. Medic. Mater. 2013, 36, 1542–1545. [Google Scholar]
  83. Li, Y.L.; Han, Q.; Lv, J.X.; Wang, J.X.; Zhao, Y.Y. Study on chemical constituents of the essential oil of Bupleurum yinchowense. Chin. Trad. Herb. Drugs. 1997, 28, 650–651. [Google Scholar]
  84. Liu, X.L.; Shang, Z.J. Reopening discussion on original plants of “Yinzhouchaihu”. J. Chin. Medic. Mater. 1994, 17, 40-42+56. [Google Scholar]
  85. Pang, M.; Cui, X.M. Extraction of Carum carvi L. essential oil by supercritical carbon dioxide and its composition analysis. Food Mach. 2022, 38, 175-179+194. [Google Scholar]
  86. Shen, N.D.; Wei, M.Q.; Li, N. Progress of Carum carvi L.’s economic value and researching on it’s development and utilization. J. Qinghai Norm. Univ. (Nat. Sci.). 2010, 1, 54–56. [Google Scholar]
  87. Xiang, J.M.; Xiao, W.; Xu, L.J.; Xiao, P.G. Research progress in Centella asiatica. Mod. Chin. Med. 2016, 18, 233–238,258. [Google Scholar]
  88. Ji, X.; Xuan, H.B.; Huang, B.K. Overview of studies on active constituents and pharmacological actions of Changium smyrnioides. J. Pharm. Pract. 2015, 33, 102–105,137. [Google Scholar]
  89. Chen, D.D.; Peng, C. Research progress of Chuanmingshen Violaceum. China Pharm. 2011, 20, 1–2. [Google Scholar]
  90. Chen, H.L.; Su, X.L.; Deng, Y.; Yu, T.; Zhang, H.B.; Zhang, M. Chenical constituents from the bioactive extract of Chuanminshen violaceum. Chin. Tradit. Pat. Med. 2008, 30, 1334–1336. [Google Scholar]
  91. Fan, J.; Feng, H.B.; Yu, Y.; Sun, M.X.; Liu, Y.R.; Li, T.Z.; Sun, X.; Liu, S.J.; Sun, M.D. Antioxidant activities of the polysaccharides of Chuanminshen violaceum. Carbohydr. Polym. 2017, 157, 629–636. [Google Scholar] [CrossRef]
  92. Wang, H.M.; Feng, J. Study on chemical components of volatile oil of Cicuta Virosa L. root. J. Tianjin Med. Univ. 2000, 6, 376–377. [Google Scholar]
  93. Tian, B.; Qu, X.L.; Lin, Y.P.; Yuan, Q.H.; Song, Y. Research progress on chemical constituents and pharmacological effects of Cnidium monnieri (L.) Cuss. Pharm. Clin. Chin. Mater. Med. 2020, 11, 70-73+80. [Google Scholar]
  94. Wang, Y.P.; Wang, Y.H.; Zhan, Z.L.; Li, G. Herbal textual research on Ligustici Rhizoma et Radix in famous classical formulas. Chin. J. Exp. Tradit. Med. For. 2022, 28, 68–81. [Google Scholar]
  95. Xue, Y.C.; Wang, N.H.; Zhang, H.Q. Studies on the chemical constituents of the root of Conioselinum vaginatum (Spreng.) Thell. J. China Pharm. Univ. 1996, 27, 267–270. [Google Scholar]
  96. Ran, X.D. Chin. Med.; Harbin Publishing House: Place Harbin Publishing House, 1993; p. 1226. [Google Scholar]
  97. Vetter, J. Poison hemlock (Conium maculatum L.). Food Chem. Toxicol. 2004, 42, 1373–1382. [Google Scholar] [CrossRef] [PubMed]
  98. Mandal, S.; Mandal, M. Coriander (Coriandrum sativum L.) essential oil: Chemistry and biological activity. Asian Pac. J. Trop. Biomed. 2015, 5, 421–428. [Google Scholar] [CrossRef]
  99. Li, S.H.; Niu, Y.Y. Study on chemical constituents in Cryptotaenia japonica. Chin. Trad. Herb. Drugs. 2012, 43, 2365–2368. [Google Scholar]
  100. Lu, J.; Zhang, J.Q.; Zhao, P.R.; Liu, T.; Wen, Y.; Li, Z.H. Study on chemical compositions, antioxidant activity and antibacterial activity of essential oil from Cryptotaenia japonica. Non. For. Res. 2017, 35, 100–104. [Google Scholar]
  101. Gachkar, L.; Yadegari, D.; Rezaei, M.B.; Taghizadeh, M.; Astaneh, S.A.; Rasooli, I. Chemical and biological characteristics of Cuminum cyminum and Rosmarinus officinalis essential oils. Food Chem. 2007, 102, 898–904. [Google Scholar] [CrossRef]
  102. Zhong, W.J.; Cao, L.; Zhong, W.H.; Liang, J.; Zhong, G.Y. Analysis of varieties and standards of Umbelliferae medicinal plants used in Tibetan medicine. World Sci. Tech./Mod. Tradit. Chin. Med. Mat. Medica. 2016, 18, 582–589. [Google Scholar]
  103. Cui, C.Y.; Xiao, L.; Yang, Y.T.; Li, Q. Research progress in chemical constituents and pharmacological activities of Carotae Fructus. Liaoning Chem. Ind. 2020, 49, 651–654. [Google Scholar]
  104. Wu, Y.; Xu, Z.L.; Li, H.; Meng, X.Y.; Bao, Y.L.; Li, Y.X. Components of essential oils in different parts of Daucus carota L. var. sativa Hoffm. Chem. Res. Chin. Univ. 2006, 22, 328–334. [Google Scholar] [CrossRef]
  105. Guan, L.L.; Pang, Y.X.; Zhang, Y.B.; Yu, F.L.; Zhang, X.R.; Chen, Z.X. Research progress on Eryngium foetidum L.-A Chinese minority medicine. Chin. J. Trop. Agric. 2013, 33, 23–26. [Google Scholar]
  106. Sun, T.Z.; Jia, Y.M.; Bao, Z.Y. Recent clinical application and development suggestions of Ferula breals kuan. China Int. TCM Expo. TCM Acad. Exch. Conf. 2003, 2, 59–60. [Google Scholar]
  107. Yang, X.W. Bioactive Material Basis of Medicinal Plants in Genus Ferula. Mod. Chin. Med. 2018, 20, 123–144. [Google Scholar]
  108. Xinjiang Institute Biological Soil Desert Research. Medicinal Flora of Xinjiang; Xinjiang People’s Publishing House: Place Xinjiang People’s Publishing House, 1977; pp. 116–117. [Google Scholar]
  109. Yang, M.H.; Tang, D.P.; Sheng, P. Research progress of Ferula ferulaeoides. Chin. J. Mod. Appl. Pharm. 2020, 37, 2031–2041. [Google Scholar]
  110. Aybek, R.; NIlufar, M.; Keyser, S. Determination of volatile oil and ferulic acid in different parts of wild Ferula sinkiangensis K. M. Shen and Ferula fukanensis K. M. Shen Cultivars. Med. Plant 2018, 9, 36–38. [Google Scholar]
  111. Li, J.; Xu, H.Y.; Jia, X.G.; Tian, S.G. Research progress on chemical constituents and biological activities of Ferula L. J. Xinjiang Med. Univ. 2012, 35, 1159–1161. [Google Scholar]
  112. Zhang, Y.L.; Kai, S.; Su, L.M.; Wang, G.P. Advances in studies of Ferula fukanensis. J. Xinjiang Univ. (Nat. Sci. Ed.). 2007, 24, 156–159. [Google Scholar]
  113. Li, X.Y.; Li, G.Y.; Wang, H.Y.; Wang, Y.; Wang, J.H. Chemical constituents from FerulaLehmannii Boiss. Mod. Chin. Med. 2010, 12, 17–20. [Google Scholar]
  114. Huang, Y.T.; Yue, L.J.; Shen, X.Y.; Wang, K.; Liu, C.L. Chemical constituents and pharmacological activities of Ferula sinkiangensis K.M. Shen: research advances. J. Int. Pharm. Res. 2017, 44, 495–499. [Google Scholar]
  115. Lai, X.H.; Yang, X.R. Research progress on endangered medicinal plants Ferula sinkiangensis. Mod. Agric. Sci. Technol. 2022, 11, 43-47+51. [Google Scholar]
  116. Yang, J.R.; Li, G.Q.; Li, Z.H.; Qin, H.L. Chemical constituents from Ferula teterrima. Nat. Prod. Res. Dev. 2006, 18, 246–248. [Google Scholar]
  117. Su, H.H.; Zhan, L.L.; Ma, J.S. Extraction, component analysis of volatile oil from Foeniculi Fructus and its application in animal husbandry. Heilongjlang Anim. Sci. Vet. Med. 2022, 15, 37-40+46. [Google Scholar]
  118. Ren, B.W.; Cai, X.T.; Li, D.L. Research progress on chemical constituents and pharmacological effects of Glehnia littoralis. Light Text. Ind. Fujian Light Text Ind Fujian. 2022, 8, 9–17. [Google Scholar]
  119. Gao, B.X.; Lan, Z.Q.; Deng, J.J.; Wu, T.T.; Man, X.K.; Lu, X.M. HPLC fingerprint of Heracleum candicans roots. Chin. J. Exp. Tradit. Med. For. 2015, 21, 61–63. [Google Scholar]
  120. Du, X.; Wang, Y.P.; Qian, Z.X.; Yang, H.J.; Liu, H.H.; Zhan, Z.L. Herbal textual research on Angelicae Pubescentis Radix and Notopterygii Rhizoma et Radix in famous classical formulas. Chin. J. Exp. Tradit. Med. For. 2023, 9, 68–83. [Google Scholar]
  121. Zhao, Y.; He, X.J.; Zhang, Q.Y.; Ma, Y.H.; Miao, A.Q. Anatomical studies on medicinal part of Heracleum. J. China West Norm. Univ. (Nat. Sci.). 2004, 25, 63–67. [Google Scholar]
  122. Ma, X.; Song, P.S.; Zhu, J.R.; Zhao, J.B.; Zhang, B.C. Analysis of volatile oil from Radix Angelicae Pubescentis and Radix Heraclei in Gansu by GC-MS. Chin. J. Mod. Appl. Pharm. 2005, 22, 44–46. [Google Scholar]
  123. Zhang, C.Y.; Zhang, B.G.; Yang, X.W. GC-MS analysis of essential oil from the radix of Heracleum hemsleyanum Diels. Res. Inf. Tradit. Chin. Med. 2005, 7, 9–12. [Google Scholar]
  124. Sun, H.D. The study of the Chinese drugs of Umbelliferae Ⅴ The chemical components of Heracleumt henryi Woff. Acta Bot. Yunnancia. 1982, 3, 279–281. [Google Scholar]
  125. Feng, J.T.; Zhu, M.J.; Yu, P.R.; Li, Y.P.; Han, J.H.; Hao, H.J.; Ding, H.X.; Zhang, X. Screening on the resouses of botanical fungicides in Northwest China. J. Northwest A&F Univ. (Nat. Sci. Ed.). 2002, 30, 129-133+137. [Google Scholar]
  126. Zhang, Z.X.; Feng, J.T.; Zhang, X. GC-MS analysis of volatile oils from Heracleam moelendorffii. Appl. Chem. Ind. 2006, 35, 809-810+813. [Google Scholar]
  127. Institute of Materia Medica Chinese Academy of Medical Sciences & Peking Union Medical College. Chinese Traditional Medicine; People’s Medical Publishing House: Place People’s Medical Publishing House, 1982. [Google Scholar]
  128. Chinese Materia Madica Editorial Board, State Administration of Traditional Chinese Medicine of the People’s Republic of China. Chinese Materia Madica; Shanghai Scientific & Technical Publishers: Place Shanghai Scientific & Technical Publishers, 1999. [Google Scholar]
  129. Sun, H.D.; Lin, Z.W.; Niu, F.D. The study of the Chinese drugs of Umbelliferae Ⅰ, Study on chemical composition of Angelrca apaensis Shan, Heracleum rapula, and Heracleum scabriduum. Acta Bot. Sin. 1978, 20, 244–254. [Google Scholar]
  130. Wei, C.C.; Guan, W.J.; Hu, D.D.; Zhou, J.; Li, X. Chemical constituents from Heracleum scabridum. J. Chin. Medic. Mater. 2017, 40, 1105–1108. [Google Scholar]
  131. Lin, Z.W.; Gao, L.; Rao, G.X.; Pu, F.D.; Sun, H.D. Coumarins of Heracleum stenopterum. Acta Bot. Yunnancia. 1993, 15, 315–316. [Google Scholar]
  132. Rao, G.X.; Wu, Y.; Dai, W.S.; Pu, F.D.; Lin, Z.W.; Sun, H.D. Coumarins of Heracleum yunngningense Hand. -Mass. China J. Chin. Mater. Med. 1993, 18, 736-737+763. [Google Scholar]
  133. Dong, G.T.; Song, L.K.; Tang, H.; Wang, Y.; Wang, X.N. Determination of asiaticoside and madecassoside in Hydrocotyle. Chin. Wild Plant Res. 2012, 31, 47–50. [Google Scholar]
  134. Xiong, J.; She, J.M.; Liu, H.W.; Cao, L.Q.; Xiao, Y. Advances of chemical constituents and pharmacological effects of Hydrocotyle genus. Asia-Pac. Tradit. Med. 2019, 15, 179–183. [Google Scholar]
  135. Xu, Y.F.; Chen, Y.H.; Yang, S.P. Review of chemical constituents and pharmacological effects of Hydrocotyle genus. Fujian Sci. Tech. Trop. Crops. 2013, 38, 59–61. [Google Scholar]
  136. Central Information Station of Chinese Herbal Medicine of State Medicine Administration. Handbook of Effective Components of Plant Medicine; People’s Medical Publishing House: Place People’s Medical Publishing House, 1986. [Google Scholar]
  137. Kang, W.Y.; Zhao, C.; Mu, S.Z.; Yang, X.S.; Hao, X.S. Chemical composition analysis of volatile oil of Hydrocotyle sibthorpioides Lam. Chin. Trad. Herb. Drugs. 2003, 34, 116–117. [Google Scholar]
  138. He, X.P.; Wang, X.Y. Research progress of Tibetan materia medica Pleurospermum hookerivar. Asia-Pac. Trad. Med. 2018, 14, 22–24. [Google Scholar]
  139. Yuan, M.; Li, Y.Z.; Xu, M.; Zhao, X.H. Pharmacodynamic study on anti-inflammatory and analgesic effects of Tibetan medicine Pleurospermum hookeri var. thomsonii. Nat. Prod. Res. Dev. 2012, 24, 972–975. [Google Scholar]
  140. Zhao, L.Q. Research advancementon terpenoids in Ligusticum and their biological activity. Lishizhen Med. Mater. Med. Res. 2006, 17, 16–18. [Google Scholar]
  141. Li, T.; Wang, T.Z.; Wu, W.B. Plants of the Pleurospermum with potential medicinal value. J. Chin. Medic. Mater. 2002, 25, 12–13. [Google Scholar]
  142. Liu, Y.; Wei, H.Y.; Yao, S.H.; Zheng, X.Z. Comparison of pharmacological effects of traditional Chinese medicine Qianhu expectorant. Hunan Guiding J. TCMP. 1997, 3, 40–42. [Google Scholar]
  143. Wang, H.H.; Hu, S.F. Research in Levisticum officinale Koch. China Med. Her. 2011, 8, 11–12. [Google Scholar]
  144. Ge, X.X.; Rao, C.; Bian, M.; Cao, L. Analysis of essential oil from the roots of Libanotis buchtormensis and antibacterial activity test. J Nanjing Norm. Univ. (Eng. Technol. Ed.). 2015, 15, 67–72. [Google Scholar]
  145. Tang, X.S.; Yang, D.M.; Zhu, K.X. Analysis of essential oil from Libanotis laticalycina Shan et Sheh. by CC-MS. China J. Chin. Mater. Med. 1992, 17, 40-42+48. [Google Scholar]
  146. Wang, J.H.; Lou, Z.C. Plant origin of commercial drug Saposhnikovia divaricata. J. Tradit. Chin. Med. Bull. 1988, 13, 9-10+62. [Google Scholar]
  147. Huang, Y.Z.; Pu, F.D. Study on the chemical components of the essential oil from Ligusticum brachylobum Franch. China J. Chin. Mater. Med. 1990, 15, 38-39+63. [Google Scholar]
  148. Yunnan Institute of Materia Medica. Illustrated Handbook for Natural Medicine in Yunnan (Ⅳ); Yunnan Science and Technology Press: Place Yunnan Science and Technology Press, 2007; p. 93. [Google Scholar]
  149. Li, X.F.; Qiu, B. Studies on pharmacognosy of radix Ligusticum Brachylobum Franch. J. Guangzhou Univ. TCM. 2020, 37, 1151–1154. [Google Scholar]
  150. Zhang, X.J.; Zhang, Y.L.; Zuo, D.D. Research progress on chemical constituents and pharmacological effects of Ligusticum chuanxiong Hort. Inf. Tradit. Chin. Med. 2020, 37, 128–133. [Google Scholar]
  151. Lu, X.Y.; Sun, Q.S.; Zhang, M.N.; Zhao, J.Z. Isolation and identification of chemical constituents from rhizome and root of Ligusticumn jeholense Nakaiet Kitag. J. Shenyang Pharm. Univ. 2010, 27, 434-435+439. [Google Scholar]
  152. Zhang, M.F.; Shen, Y.Q. Study on pharmacology and meridians of Ligusticum. Shanghai Pharma. 2006, 27, 415–418. [Google Scholar]
  153. Rao, G.X.; Dai, Y.H.; Wang, L.X.; Cai, F.; Lin, Z.W.; Sun, H.D. Chemical constituents from Ligusticum pteridophyllum. Acta Bot. Yunnanica. 1991, 13, 233–236. [Google Scholar]
  154. Tang, Z. Studies on chemical constituents and pharmacology of Ligusticum sinense Oliv. Guide China Med. 2011, 9, 34–35. [Google Scholar]
  155. Wang, W.N.; Sun, Q.S.; Liang, J.; Zhang, Z.C. A pharmacognostic study of Ligusticum tenuissimum (nakai) Kitag. J. Shenyang Coll. Pharm. 1991, 8, 182–187. [Google Scholar]
  156. Tang, G.L.; Huang, F.; Gao, T.Y.; Wu, Q.M.; Yu, W.; Qiu, H.; Jiang, G.H. Simultaneous determination of five components in Notopterygium franchetii H. de Boiss. by HPLC. Pharm. Clin. Chin. Mater. Med. 2018, 9, 14–17. [Google Scholar]
  157. Zhang, L.L. Pharmacological effects and application of traditional Chinese medicine Notopterygium. China Contin. Med. Educ. 2015, 7, 191–192. [Google Scholar]
  158. Ye, H.g.; Li, C.y.; Ye, W.c.; Zeng, F.y.; Liu, F.f.; Liu, Y.y.; Wang, F.g.; Ye, Y.s.; Fu, L.; Li, J.r. Common Chinese Materia Medica, Medicinal Angiosperms of Umbelliferae. In Common Chinese Materia Medica: Volume 6, Ye, H.G., Li, C.Y., Ye, W.C., Zeng, F.Y., Eds. Springer Nature Singapore: Singapore, 2022; pp. 199–296.
  159. Guo, X.Q.; Wei, L.H.; Dai, T.T.; Wu, Q. The detection of the chemical components in Oenanthe javanica and its hypoglycemic activity. Food Mach. 2017, 33, 155-157+173. [Google Scholar]
  160. Li, Y.T.; Zhu, C.H.; Sun, F.F.; Wei, X. Modern research progress of Ostericum citriodorum. Guangdong Chem. Ind. 2020, 47, 97–100. [Google Scholar]
  161. Tian, W.Y.; Lan, F.; Li, S.P.; Luo, J.Y. Preliminary pharmacological study of Angelicae citriodora Hance. Chin. Pharmacol. Bull. 1989, 5, 249. [Google Scholar]
  162. Zhang, J.; Li, R.M.; Wei, G. Study on chemical constituents of volatile oil of Ostericum citriodorum. Chin. Trad. Herb. Drugs. 2009, 40, 1221–1222. [Google Scholar]
  163. Xue, Y.C.; Xian, Q.M.; Zhang, H.Q. Chemical constituents of the essential oil from the root of Ostericum grosseserratum (Maxim. ) Kitag. J. Plant Resour. Environ. 1995, 4, 61–63. [Google Scholar]
  164. Xue, Y.C.; Zhang, H.Q.; Wang, N.H.; Yuan, C.Q. Studies on chemical constituents of the roots of Ostericum grosseserratum (Maxim.) Kitag. China J. Chin. Mater. Med. 1992, 17, 354-356+383. [Google Scholar]
  165. Ebadollahi, A. Plant essential oils from Apiaceae family as alternatives to conventional insecticides. Ecologia Balkanica 2013, 5, 149–172. [Google Scholar]
  166. Sousa, R.M.O.F.; Cunha, A.C.; Fernandes-Ferreira, M. The potential of Apiaceae species as sources of singular phytochemicals and plant-based pesticides. Phytochemistry 2021, 187, 112714. [Google Scholar] [CrossRef] [PubMed]
  167. Wang, Y.H.; Zhao, J.C.; Weng, Q.Q.; Jin, Y.; Zhang, W.; Peng, H.S. Textual research on classical prescriptions of Saposhnikoviae Radix. Mod. Chin. Med. 2020, 22, 1331–1339. [Google Scholar]
  168. Ji, L.; Pan, J.G.; Yang, J.; Xiao, Y.Q. GC-MS analysis of essential oils from the roots of Saposhnikovia divaricata (Turcz.) Schischk, Libanotis laticalycina Shan et Sheh, Seseli yunnanense Franch. and Peucedanum dielsianum Fedde ex Wolff. China J. Chin. Mater. Med. 1999, 24, 678-680+702. [Google Scholar]
  169. Yan, Y.N.; Ding, S.F.; Guo, Y.W.; Tian, H.K.; Zuo, M.J. Study on customary medication in windbreak area Ⅰ-Pharmacokinetics and chemical constituents of Saposhnikovia divaricata. Northwest Pharm. J. 1988, 3, 31–34. [Google Scholar]
  170. Kong, L.Y.; Pei, Y.H.; Yu, R.M.; Li, X.; Zhu, Y.R. Overview of the chemical and pharmacological research of the Chinese medicine Peucedanum pareruptorum and P. decursivum. World Notes Plant Med. 1991, 6, 243–254. [Google Scholar]
  171. Li, W.; Feng, S.H.; Hu, F.D.; Chen, E.L. Goumarins from Peucedanum harry-smithiivar subglabrum. China J. Chin. Mater. Med. 2009, 34, 1231–1234. [Google Scholar]
  172. Shi, Y.R.; Kong, L.Y. Exploration of thinking and method in study of active components of Chinese medicine by taking radix Peucedani for example. Mod. Tradit. Chin. Med. Mat. -World Sci. Tech. 2005, 7, 38-46+137. [Google Scholar]
  173. Song, P.S.; Ding, Y.H.; Zhang, B.C.; Yang, J.; Jing, F.L.; Cheng, J.S.; Wang, A.P.; Song, L.; Lin, F. Investigation and identification of Peucedanum praeruptorum in Gansu. J. Chin. Medic. Mater. 1994, 17, 13-14+55. [Google Scholar]
  174. Li, L.H.; Zhang, H.B.; Yang, C.Z.; Cai, D.L. Analysis of volatile oils from different parts of Peucedanum japonicum by GC-MS. Subtrop. Plant Sci. 2015, 44, 279–283. [Google Scholar]
  175. Xu, X.; Li, H.F. Analysis of medicinal value of Peucedanum japonicum. Asia-Pac. Trad. Med. 2016, 12, 45–47. [Google Scholar]
  176. Barot, K.P.; Jain, S.V.; Kremer, L.; Singh, S.; Ghate, M.D. Recent advances and therapeutic journey of coumarins: current status and perspectives. Med. Chem. Res. 2015, 24, 2771–2798. [Google Scholar] [CrossRef]
  177. Lei, H.P.; Zou, S.Y.; Zhang, H.; Ge, F.H. Composition analysis of volatile oil from three kinds of Peucedanum. J. Chin. Medic. Mater. 2016, 39, 795–798. [Google Scholar]
  178. Huang, P.; Zheng, X.Z.; Lai, M.X.; Rao, W.Y.; Nishi, M.; Nakanishi, T. Studies on chemical constituents of Peucedanum medium Dunn var. garcile Dunn ex Shan at Sheh. China J. Chin. Mater. Med. 2000, 25, 222–224. [Google Scholar]
  179. Song, Z.Q.; Li, B.; Tian, K.Y.; Hong, L.; Wu, W.; Zhang, H.Y. Research progress on chemical constituents and pharmacological activities of Peucedanum praeruptorum Dunn. Chin. Trad. Herb. Drugs. 2021, 3, 1–16. [Google Scholar]
  180. Dai, W.S.; Rao, G.X.; Liu, Q.X.; Yang, Q.; Dai, Y.H.; Sun, H.D. Chemical constituents of Peucedanum rubricaule. J. Yunnan Coll. Tradi. Chin. Med. 1995, 18, 1–4. [Google Scholar]
  181. Rao, G.X.; Huang, H.; Sun, H.D. Terpenoids from Peucedanum rubricaule. Nat. Prod. Res. Dev. 2006, 18, 69–70. [Google Scholar]
  182. Rao, G.X.; Sun, H.D.; Lin, Z.W.; Hu, R.Y. Studies on the chemical constituents of the traditional Chinese medicine “yun qian-hu" (Peucedanum Rubricaule Shan et Shch. Acta Pharm. Sin. 1990, 26, 30–36. [Google Scholar]
  183. Yu, Z.P.; Li, J.J.; Rao, G.X.; Yu, Z.R. Brief pharmacological studied on Peucedanum Praerptorum Dunn habitually used in Southwest Arep. J. Yunnan Coll. Tradit. Chin. Med. 1995, 18, 7–11. [Google Scholar]
  184. Rao, G.X.; Liu, Q.X.; Dai, W.S.; Sun, H.D. Chemical constituents of Peucedanum turgeniifolium. Nat. Prod. Res. Dev. 1997, 9, 9–11. [Google Scholar]
  185. Wu, X.L.; Kong, L.Y.; Min, Z.D. The chemical constituents of Peucedanum wawrii (Wolff) Su root. J. Plant Resour. Environ. 2000, 9, 6–8. [Google Scholar]
  186. Abuaini, T.; Wang, Y.; Aili, S. Study on quality standards of Pimpinella anisum L. fruits. J. Med. Pharm. Chin. Minor. 2013, 8, 51–52. [Google Scholar]
  187. Benelli, G.; Pavela, R.; Iannarelli, R.; Petrelli, R.; Cappellacci, L.; Cianfaglione, K.; Afshar, F.H.; Nicoletti, M.; Canale, A.; Maggi, F. Synergized mixtures of Apiaceae essential oils and related plant-borne compounds: Larvicidal effectiveness on the filariasis vector Culex quinquefasciatus Say. Ind. Crops. Prod. 2017, 96, 186–195. [Google Scholar] [CrossRef]
  188. Chinese Materia Madica Editorial Board, State Administration of Traditional Chinese Medicine of the People’s Republic of China. Chinese Materia Madica, Uyghur Traditional Medicine; Scientific & Technical Publishers: Place Scientific & Technical Publishers, 2005; pp. 301–302. [Google Scholar]
  189. Editorial Board of Chinese Medical Encyclopedia. Chinese Medical Encyclopedia, Uyghur Traditional Medicine; Scientific & Technical Publishers: Place Scientific & Technical Publishers, 2005. [Google Scholar]
  190. Gu, Y.S.; Gu, Y.F. The science of common medicinal materials in Uygur medicine (Rudin); Xinjiang Science and Technology Health Publishing House: Place Xinjiang Science and Technology Health Publishing House, 1993; pp. 60–61. [Google Scholar]
  191. Sun, W.J.; Sheng, J.F. Concise Handbook of Natural Active Ingredients; China Medical Science Press: Place China Medical Science Press, 1996. [Google Scholar]
  192. Wei, Y.; Zhang, X.; Wei, L.; Yang, X.S. Analysis of volatile oil in herb of Pimpinella candolleana. J. Guiyang Univ. Chin. Med. 2005, 27, 56–57. [Google Scholar]
  193. Zhao, C.; Chen, H.G.; Cheng, L.; Zhou, X.; Yang, Z.B.; Zhang, Y.S. Analysis of volatile oil in herb of Pimpinella candolleana by SPME-GC-MS. China J. Chin. Mater. Med. 2007, 32, 1759–1762. [Google Scholar]
  194. Hu, L.F.; Lv, W.Y.; Zhou, L.; Li, X. Antifungal activities of five umbelliferae plant extracts against plant pathogens. Hubei Agric. Sci. 2012, 51, 3490–3491. [Google Scholar]
  195. Dong, L.S.; Zhao, Z.H. Identification of raw drugs of Chinese herb Pimpinella diversifolia. J. Guiyang Univ. Chin. Med. 1991, 13, 62–64. [Google Scholar]
  196. Dong, Q.; Li, J.; Liu, Y.F.; Yang, G.X.; Hu, Y.Y.; Jiang, Y.L.; Liu, Q. Study on the medicinal effect of extracts from Pimpinella diversifolia. China Pract. Med. 2021, 16, 197–200. [Google Scholar]
  197. Xu, X.W.; Lin, G.Y.; Lin, C.L. Study on the chemical components of essentiale oil from Zhejiang Pimpinella diversifolia. China Pharm. 2012, 21, 3–4. [Google Scholar]
  198. Cui, X.M.; Shi, H.L.; Ren, H.; Hu, J.; Meng, M.X.; Chen, J.; Meng, X.; Chen, Z.Y. Content determination of nine constituents in different medicinal parts of Pimpinella thellungiana. Chin. J. Exp. Tradit. Med. For. 2019, 25, 97–103. [Google Scholar]
  199. Huanglong county leading group of prevention and control of endemic diseases in Yan ’an region. A comprehensive analysis of 92 cases of Keshan disease treated with Pimpinella magna. Shaanxi Med. J. 1972, 34–35. [Google Scholar]
  200. Jin, Z.G.; Wang, M.S. Advances in studies of herbal Pimpinella thellugiana Wolff. J. Shangluo Univ. 2008, 22, 43–46. [Google Scholar]
  201. Liu, R.; Tai, G.; Pei, X.L.; Wang, R.; Zhang, S.R.; Pei, M.R. Determination of nine components in Yanghongshan by UPLC. Chin. J. Pharm. Anal. 2020, 40, 1097–1103. [Google Scholar]
  202. Wang, J.Q.; Zhao, X.M.; Duan, X.Z. The effect of Pimpinella thellungiana on immune function of patients with coronary heart disease. Shaanxi Med. J. 1986, 15, 58–60. [Google Scholar]
  203. Liu, Q.G.; Zhang, Z.T.; Chen, Z.G. Study on the active components of volatile oil from the seeds of Pleurospermum giraldii Diels. Chin. Trad. Herb. Drugs. 1998, 29, 516–517. [Google Scholar]
  204. Zhang, Z.T. L-carvone the principal constituent of volatile oil from Pleurospermum giraldii Diels seeds effects on the smooth musice of intestine and womb for rats. J. Shaanxi Norm. Univ. (Nat. Sci. Ed.). 2000, 28, 77–79. [Google Scholar]
  205. Zhang, Z.T.; Liu, Q.G.; He, Y.; Chen, Z.G.; Gao, Z.W. Study on the active components of volatile oil from the seeds of Pleurospermum giraldii Diels. Chin. Trad. Herb. Drugs. 1998, 29, 800–801. [Google Scholar]
  206. Revolutionary Committee of Health Bureau of Yunnan province. Chinese Herbal Medicine in Yunnan; Yunnan People’s Publishing House: Place Yunnan People’s Publishing House, 1971; pp. 98–99. [Google Scholar]
  207. Liu, M.Y.; Yu, L.F.; Yang, F.; Liu, P.H. Study on the adsorption of bile salts and cholesterol by water soluble constituents from Sanicula Astrantiifolia. J. Qujing Norm. Univ. 2016, 35, 37–41. [Google Scholar]
  208. Liu, P.H.; Yang, G.H.; Tian, X.L.; Zhang, Y.G.; Li, F.S.; Wang, F. Antioxidating effects of Inula nervosa Wall. ex DC. on the edible oils and its antimicrobial activity. Sci. Technol. Food Ind. 2011, 32, 187–189. [Google Scholar]
  209. Xu, G.M.; Wang, Z.M.; Liu, N.Z.; He, W.J.; Peng, S.; Zhou, X.J. Study on chemical constituents from ethyl acetate extraction of Sanicula lamelligera. J. Chin. Medic. Mater. 2015, 38, 1661–1664. [Google Scholar]
  210. Zhou, X.J.; Zeng, N.; Jia, M.R. Screening of effective ingredients for relieving cough and resolving phlegm in the herba Saniculae. Chin. J. Ethnomed. Ethnoph. 2005, 72, 46-49+62. [Google Scholar]
  211. Liu, B. China Checklist of Higher Plants, In the Biodiversity Committee of Chinese Academy of Sciences ed., Catalogue of Life China: 2022 Annual Checklist; Beijing, China, 2022.
  212. Karagoz, A.; Turan, K.; Arda, N.; Okatan, Y.; Kuru, A. ln vitro virucidal effect of Sanicula europaea L. extract. Turk. J. Biol. 1997, 21, 181–188. [Google Scholar] [CrossRef]
  213. Turan, K.; Kuru, A. Antiviral activity of water extract of Sanicula europaea L. leaves on the bacteria-bacteriophage system. Turk. J. Biol. 1996, 20, 225–234. [Google Scholar] [CrossRef]
  214. Hiller, K.; Linzer, B.; Pfeifer, S.; L., T.; Murphy, J. On the saponins from Sanicula europaea L. 9. On the knowledge of the contents of some Saniculoideae. Pharmazie 1968, 23, 376–387. Pharmazie.
  215. Legin, N.I.; Koliadzhyn, T.I.; Grytsyk, L.M.; Grytsyk, A.R. Investigation of the elemental composition of Sanicula Europaea L. and Astrantia Major L. Med. Clin. Chem. 2018, 20, 112–116. [Google Scholar]
  216. Matsushita, A.; Miyase, T.; Noguchi, H.; Velde, D.V. Oleanane saponins from Sanicula elata var. chinensis. J. Nat. Prod. 2004, 67, 377–383. [Google Scholar] [CrossRef] [PubMed]
  217. Chang, L.; Jing, W.G.; Cheng, X.L.; Wei, F.; Ma, S.C. Research progress on chemical constituents and pharmacological effects of Saposhnikoviae Radix and predictive analysis on quality marker (Q-Marker). Mod. Chin. Med. 2022, 24, 2026–2039. [Google Scholar]
  218. Liu, S.L.; Jiang, C.X.; Zhao, Y.; Xu, Y.H.; Wang, Z.; Zhang, L.X. Advance in study on chemical constituents of Saposhnikovia divaricate and their pharmacological effects. Chin. Trad. Herb. Drugs. 2017, 48, 2146–2152. [Google Scholar]
  219. Gui, J.S.; Wei, Q.H. Pharmacodynamic comparison between Seseli mairei and Saposhnikvia divaricata. J. Yunnan Coll. Tradit. Chin. Med. 1991, 14, 3–6. [Google Scholar]
  220. Gui, J.S.; Wei, Q.H.; Yang, S.D. Discussion on varieties of Yunnan Fangfeng. J. Yunnan Coll. Tradit. Chin. Med. 1991, 14, 23–25. [Google Scholar]
  221. Zong, Y.L.; Lin, Y.P.; Ding, Q.E.; He, H.; Rao, G.X. Studies on the chemical constituents of the aerial parts of Seselimairei. J. Chin. Medic. Mater. 2007, 30, 42–44. [Google Scholar]
  222. Lin, Y.P.; Wang, J.; Hu, C.Y.; Rao, G.X. Chemical constituents from the roots of Seseli yunnanense. J. Chin. Medic. Mater. 2017, 40, 2586–2589. [Google Scholar]
  223. Xu, Y.; Chen, N.X. Comparative identification of Ligusticum sinense and Sium suave. Heilongjiang J. Tradit. Chin. Med. 1998, 5, 47–48. [Google Scholar]
  224. Qin, N.; Su, Y.F.; Wang, Y.D.; Shi, J.G.; Yue, F.X.; Wu, Z.H.; Gao, X.M. Chemical constituents from Tongoloa silaifolia. Biochem. Syst. Ecol. 2012, 44, 380–382. [Google Scholar] [CrossRef]
  225. Qin, N.; Su, Y.F.; Wang, Y.D.; Zhang, H.; Wu, Z.H.; Gao, X.M. Chemical Constituents of Tongoloa silaifolia. Nat. Prod. Res. Dev. 2013, 25, 201–203. [Google Scholar] [CrossRef]
  226. Xu, H.N.; Mu, Y.; Zhang, Z.H.; Zhang, Z.; Zhang, D.Y.; Tan, X.Q.; Shi, X.B.; Liu, Y. Extraction and identification of volatiles from Artemisia argyi and Torilis scabra and their effects on preference of Bemisia tabaci MED ( Hemiptera: Aleyrodidae) adults. Acta Entomol. Sin. 2022, 65, 343–350. [Google Scholar]
  227. Bairwa, R.; Sodha, R.S.; Rajawat, B.S. Trachyspermum ammi. Pharmacogn. Rev. 2012, 6, 56. [Google Scholar] [CrossRef]
  228. Kaur, G.J.; Arora, D.S. Antibacterial and phytochemical screening of Anethum graveolens, Foeniculum vulgare and Trachyspermum ammi. BMC Complement. Altern. Med. 2009, 9, 30. [Google Scholar] [CrossRef]
  229. Kaur, G.J.; Arora, D.S. Bioactive potential of Anethum graveolens, Foeniculum vulgare and Trachyspermum ammi belonging to the family Umbelliferae-Current status. J. Med. Plants Res. 2010, 4, 87–94. [Google Scholar]
  230. Shankaracharya, N.B.; Nagalakshmi, S.; Naik, J.P.; Rao, L.J.M. Studies on chemical and technological aspects of ajowan (Trachyspermum ammi (L.) Syn. Carum copticum Hiern) seeds. J. Food Sci. Technol. 2000, 37, 277–281. [Google Scholar]
  231. Dong, S.T.; Zhang, X.Q.; Hu, Y.; Gong, X.M.; Yang, H.Q. Chemical constituents, quality control and pharmacology research progress of Xigui. Chin. J. Ethnomed. Ethnoph. 2018, 27, 40–42. [Google Scholar]
  232. Zhang, W.M.; Duan, Z.H.; Sun, F.; Rao, G.X. The chemical constituents from the roots of Vicatia thibetica. Nat. Prod. Res. Dev. 2004, 16, 218–219. [Google Scholar]
  233. Zhou, N.; Duan, Y.M.; Chen, Q.; Ma, X.K. Study on pharmacognosy of Xigui. J. Anhui Agric. Sci. 2007, 35, 2307+2425. [Google Scholar]
  234. Hong, Q.Y.; Zhang, J.J.; Wang, C.; Wang, L.Y.; Zhang, R.; Le, N. Discussion on the Chinese medicine properties of foreign botanical medicine Ammi visnaga L. China J. Trad. Chin. Med. Pharm. 2022, 37, 2284–2288. [Google Scholar]
  235. Ma, Q.D.; Li, G.Y.; Wang, J.H. Research progress on pharmacological activity of Uygur medicine Trachyspermum ammi fruits. J. Nongken Med. 2011, 33, 180–184. [Google Scholar]
  236. Yao, H.J.; Zhao, C.Y.; Jiang, L.Q.; Lv, H.Z. Study of Pharmacognostical and HPLC Fingerprint on Angelica acutiloba of Korean Drugs. J. Chin. Medic. Mater. 2018, 41, 1384–1390. [Google Scholar]
  237. Fang, Z.X. Annals of Tujia Medicine; The Medicine Science and Technology Press of China: Place The Medicine Science and Technology Press of China, 2007. [Google Scholar]
  238. Wei, W.L.; Zeng, R.; Gu, C.M.; Qu, Y.; Huang, L.F. Angelica sinensis in China-A review of botanical profile, ethnopharmacology, phytochemistry and chemical analysis. J. Ethnopharmacol. 2016, 190, 116–141. [Google Scholar] [CrossRef]
  239. Shan, H.Y.; Jiao, T.Y. Determination of ferulic acid in shiquan dabu capsules by HPLC. Chin. Med. Mod. Distance Educ. China. 2011, 9, 138–139. [Google Scholar]
  240. Xing, Y.C.; Li, N.; Zhou, D.; Chen, G.; Jiao, K.; Wang, W.L.; Si, Y.Y.; Hou, Y. Sesquiterpene coumarins from Ferula sinkiangensis act as neuroinflammation inhibitors. Planta Med. 2016, 83, 135–142. [Google Scholar] [CrossRef]
  241. Meng, H.; Li, G.Y.; Huang, J.; Zhang, K.; Wang, H.Y.; Wang, J.H. Sesquiterpene coumarin and sesquiterpene chromone derivatives from Ferula ferulaeoides (Steud.) Korov. Fitoterapia 2013, 86, 70–77. [Google Scholar] [CrossRef]
  242. Lin, L.; Qian, X.P.; Hu, J.; Hu, W.J.; Zhang, G.D.; XIe, L.; Yu, L.X. Experimental study of Angelica pubescens and Osthole isolated from Angelica pubescens anti-tumor activity in vitro. Mod. Oncol. 2013, 21, 1930–1931. [Google Scholar]
  243. Kokotkiewicz, A.; Luczkiewicz, M. Chapter 37 - Celery (Apium graveolens var. dulce (Mill.) Pers.) Oils Celery (Apium graveolens var. dulce (Mill.) Pers.) Oils. In Essential Oils in Food Preservation, Flavor and Safety, Preedy, V.R., Ed. Academic Press: San Diego, 2016; pp. 325–338.
  244. Mišić, D.; Zizovic, I.; Stamenić, M.; Ašanin, R.; Ristić, M.; Petrović, S.D.; Skala, D. Antimicrobial activity of celery fruit isolates and SFE process modeling. Biochem. Eng. J. 2008, 42, 148–152. [Google Scholar] [CrossRef]
  245. Yuan, C.Q. Synopsis of Chinese medicinal plants of Umbelliferae. Bull. Chin. Mater. Med. 1986, 11, 5–9. [Google Scholar]
  246. BeMiller, J.N. Polysaccharides: Occurrence, Structures, and Chemistry. In Carbohydrate Chemistry for Food Scientists (Third Edition), BeMiller, J.N., Ed. AACC International Press: 2019; pp. 75–101.
  247. Li, L.; Zhou, Y.; Zhang, L. Effect of Polysaccharide of radix sileris on enhancing macrophagocyte’s antineoplastic function. J. Beijing Univ. TCM. 1999, 22, 38–40. [Google Scholar]
  248. Zheng, Y.; Bai, L.; Zhou, Y.; Tong, R.; Zeng, M.; Li, X.; Shi, J. Polysaccharides from Chinese herbal medicine for anti-diabetes recent advances. Int. J. Biol. Macromol. 2019, 121, 1240–1253. [Google Scholar] [CrossRef]
  249. Bi, S.J.; Fu, R.J.; Li, J.J.; Chen, Y.Y.; Tang, Y.P. The bioactivities and potential clinical values of Angelica sinensis polysaccharides. Nat. Prod. Commun. 2021, 16, 1–18. [Google Scholar] [CrossRef]
  250. Dong, X.D.; Liu, Y.N.; Zhao, Y.; Liu, A.J.; Ji, H.Y.; Yu, J. Structural characterization of a water-soluble polysaccharide from Angelica dahurica and its antitumor activity in H22 tumor-bearing mice. Int. J. Biol. Macromol. 2021, 193, 219–227. [Google Scholar] [CrossRef]
  251. Wang, J.M.; Lian, P.L.; Yu, Q.; Wei, J.F.; Kang, W.Y. Purification, characterization and procoagulant activity of polysaccharides from Angelica dahurice roots. Chem. Cent. J. 2017, 11. [Google Scholar] [CrossRef]
  252. Liu, Z.Z.; Weng, H.B.; Zhang, L.J.; Pan, L.Y.; Sun, W.; Chen, H.X.; Chen, M.Y.; Zeng, T.; Zhang, Y.Y.; Chen, D.F. , et al. Bupleurum polysaccharides ameliorated renal injury in diabetic mice associated with suppression of HMGB1-TLR4 signaling. Chin. J. Nat. Med. 2019, 17, 641–649. [Google Scholar] [PubMed]
  253. Wu, J.; Zhang, Y.Y.; Guo, L.; Li, H.; Chen, D.F. Bupleurum polysaccharides attenuates lipopolysaccharide-induced inflammation via modulating toll-like receptor 4 signaling. PLoS ONE 2013, 8, e78051. [Google Scholar] [CrossRef] [PubMed]
  254. Zhang, Z.D.; Li, H.; Wan, F.; Su, X.Y.; Lu, Y.; Chen, D.F.; Zhang, Y.Y. Polysaccharides extracted from the roots of Bupleurum chinense DC. modulates macrophage functions. Chin. J. Nat. Med. 2017, 15, 889–898. [Google Scholar] [CrossRef] [PubMed]
  255. Kukula-Koch, W.A.; Widelski, J. Chapter 9 - Alkaloids. In Pharmacognosy, Badal, S., Delgoda, R., Eds. Academic Press: Boston, 2017; pp. 163–198.
  256. Ain, Q.U.; Khan, H.; Mubarak, M.S.; Pervaiz, A. Plant alkaloids as antiplatelet agent: Drugs of the future in the light of recent developments. Front. Pharmacol. 2016, 7, 292. [Google Scholar] [CrossRef]
  257. Marya; Khan, H. Anti-inflammatory potential of alkaloids as a promising therapeutic modality. Lett. Drug Des. Discovery 2016, 14, 240–249. [Google Scholar] [CrossRef]
  258. Perviz, S.; Khan, H.; Pervaiz, A. Plant alkaloids as an emerging therapeutic alternative for the treatment of depression. Front. Pharmacol. 2016, 7, 28. [Google Scholar] [CrossRef] [PubMed]
  259. Pu, Z.H.; Dai, M.; Peng, C.; Xiong, L. Research progress on material basis and pharmacological action of Ligusticum chuanxiong alkaloids. J. Funct. Foods. 2020, 31, 1020–1024. [Google Scholar]
  260. Zhou, Y.; Liu, X.; Wang, L.Y. Effects of Chuanxiong alkaloid on myocardial fibrosis in rats. J. Beihua Univ. (Nat. Sci.). 2022, 23, 200–203. [Google Scholar]
  261. Radulović, N.; Đorđević, N.; Denić, M.; Pinheiro, M.M.G.; Fernandes, P.D.; Boylan, F. A novel toxic alkaloid from poison hemlock (Conium maculatum L., Apiaceae): Identification, synthesis and antinociceptive activity. Food Chem. Toxicol. 2012, 50, 274–279. [Google Scholar] [CrossRef]
  262. Deng, Y.X.; Lu, S.F. Biosynthesis and regulation of phenylpropanoids in plants. Crit. Rev. Plant Sci. 2017, 36, 257–290. [Google Scholar] [CrossRef]
  263. Böttger, A.; Vothknecht, U.; Bolle, C.; Wolf, A. Phenylpropanoids. In Lessons on Caffeine, Cannabis & Co: Plant-derived Drugs and their Interaction with Human Receptors, Böttger, A., Vothknecht, U., Bolle, C., Wolf, A., Eds. Springer International Publishing: Cham, 2018; pp. 171–178.
  264. Spitaler, R.; Ellmerer-Müller, E.P.; Zidorn, C.; Stuppner, H. Phenylpropanoids and Polyacetylenes from Ligusticum mutellina (Apiaceae) of Tyrolean Origin. Sci. Pharm. 2002, 70, 101–109. [Google Scholar]
  265. Wang, D.D.; Liu, H.B.; Song, H.L.; Yang, W.X.; Jia, X.G.; Tian, S.G. Determination of ferulic acid content in roots and leaves of Ferula fukanensis K. M. Shen. by HPLC. J. Xinjiang Med. Univ. 2012, 35, 1139–1142. [Google Scholar]
  266. Wen, Q.; Wang, X.Y. Determination the content of ferulic acid in Pleurospermum Hoffm. by HPLC. Chin. J. Ethnomedicine Ethnopumnacy. 2018, 27, 49–51. [Google Scholar]
  267. Lu, G.H.; Chan, K.; Leung, K.; Chan, C.L.; Zhao, Z.Z.; Jiang, Z.H. Assay of free ferulic acid and total ferulic acid for quality assessment of Angelica sinensis. J. Chromatogr. A 2005, 1068, 209–219. [Google Scholar] [CrossRef]
  268. Zhang, K.x.; Shen, X.; Yang, L.; Chen, Q.; Wang, N.n.; Li, Y.m.; Song, P.s.; Jiang, M.; Bai, G.; Yang, P.r. , et al. Exploring the Q-markers of Angelica sinensis (Oliv.) Diels of anti-platelet aggregation activity based on spectrum–effect relationships. Biomed. Chromatogr. 2022, 36. [Google Scholar] [CrossRef]
  269. Hwang, H.D.; Han, J.E.; Murthy, H.N.; Kwon, H.J.; Lee, G.M.; Shin, J.H.; Park, S.Y. Establishment of bioreactor cultures for the production of chlorogenic acid and ferulic acid from adventitious roots by optimization of culture conditions in Angelica acutiloba (Siebold & Zucc.) Kitag. Plant Biotechnol. Reports 2022, 16, 173–182. [Google Scholar]
  270. Lim, E.Y.; Kim, J.G.; Lee, J.; Lee, C.; Shim, J.; Kim, Y.T. Analgesic effects of Cnidium officinale extracts on postoperative, neuropathic, and menopausal pain in rat models. Evid. Based Complement. Alternat. Med. 2019, 2019, 1–8. [Google Scholar] [CrossRef]
  271. Qiu, G.Y.; Li, Y.; Li, X.C.; Cheng, X.L.; Wei, F.; Kang, S.; Ma, S.C. Research on chemical constituents and quality control methods of Peucedani medicinal materials. Chin. Pharm. Affairs. 2019, 33, 446–459. [Google Scholar]
  272. Yuan, C.Q. Chemical classification of Umbelliferae: Coumarins. Foreign Med. Sci.: Pharm. 1980, 5, 289–294. [Google Scholar]
  273. Xing, Y.C.; Li, N.; Xue, J. Progress on chemical constituents of Ferula genus. J. Shenyang Pharm. Univ. 2012, 29, 730–741. [Google Scholar]
  274. Xie, N.; Liu, Z.R.; Zhang, M.T.; Zhang, P.; Li, D.H.; Ma, X.; Guo, Z.H.; Zheng, Q.L. Determination of 9 chemical components of coumarins in Angelica dahurica by high performance liquid chromatography and its multivariate statistical analysis. PTCA (Part B: Chem. Anal.). 2022, 58, 659–663. [Google Scholar]
  275. Fylaktakidou, K.C.; Hadjipavlou-Litina, D.J.; Litinas, K.E.; Nicolaides, D.N. Natural and synthetic coumarin derivatives with anti-Inflammatory/antioxidant activities. Curr. Pharm. Des. 2004, 10, 3813–3833. [Google Scholar] [CrossRef]
  276. Ngo, N.T.N.; Nguyen, V.T.; Vo, H.V.; Vang, O.; Duus, F.; Ho, T.-D.H.; Pham, H.D.; Nguyen, L.-H.D. Cytotoxic Coumarins from the Bark of Mammea siamensis. Chem. Pharm. Bull. 2010, 58, 1487–1491. [Google Scholar] [CrossRef]
  277. Reddy, N.S.; Mallireddigari, M.R.; Cosenza, S.; Gumireddy, K.; Bell, S.C.; Reddy, E.P.; Reddy, M.V.R. Synthesis of new coumarin 3-(N-aryl) sulfonamides and their anticancer activity. Bioorg. Med. Chem. Lett. 2004, 14, 4093–4097. [Google Scholar] [CrossRef]
  278. Sahni, T.; Sharma, S.; Verma, D.; Kaur, P. Overview of coumarins and its derivatives: Synthesis and biological activity. Lett. Org. Chem. 2021, 18, 880–902. [Google Scholar] [CrossRef]
  279. Wang, S.; Shi, Y.H.; Wang, R.; Hu, S.W.; Luo, J.; Kuang, G.; Chen, S.C. Advances in chemical compositions, analytical methods and pharmacological effects of coumarins in Peucedani Radix. Shanghai J. Tradit. Chin. Med. 2022, 56, 89–99. [Google Scholar]
  280. Ballard, C.R.; Maróstica, M.R. Chapter 10 - Health Benefits of Flavonoids Health Benefits of Flavonoids. In Bioactive Compounds, Campos, M.R.S., Ed. Woodhead Publishing: 2019; pp. 185–201.
  281. Gebhardt, Y.; Witte, S.; Forkmann, G.; Lukačin, R.; Matern, U.; Martens, S. Molecular evolution of flavonoid dioxygenases in the family Apiaceae. Phytochemistry 2005, 66, 1273–1284. [Google Scholar] [CrossRef]
  282. Kim, M.R.; Lee, J.Y.; Lee, H.H.; Aryal, D.K.; Kim, Y.G.; Kim, S.K.; Woo, E.-R.; Kang, K.W. Antioxidative effects of quercetin-glycosides isolated from the flower buds of Tussilago farfara L. Food Chem. Toxicol. 2006, 44, 1299–1307. [Google Scholar] [CrossRef]
  283. Zhang, T.T.; Zhou, J.S.; Wang, Q. HPLC analysis of flavonoids from the aerial parts of Bupleurum species. Chin. J. Nat. Med. 2010, 8, 107–113. [Google Scholar] [CrossRef]
  284. Singh, M.; Kaur, M.; Silakari, O. Flavones: An important scaffold for medicinal chemistry. Eur. J. Med. Chem. 2014, 84, 206–239. [Google Scholar] [CrossRef] [PubMed]
  285. Wang, Y.F.; Ma, C.Y.; Xiong, X.; Ding, Z.L. Study on antioxidative activity of total flavonoids from Anthriscus sylvestris in vitro and vivo. Western J. Tradit. Chin. Med. 2014, 27, 11–13. [Google Scholar]
  286. Pérez-Vizcaíno, F.; Ibarra, M.; Cogolludo, A.L.; Duarte, J.; Zaragozá-Arnáez, F.; Moreno, L.; López-López, G.; Tamargo, J. Endothelium-independent vasodilator effects of the flavonoid quercetin and its methylated metabolites in Rat conductance and resistance arteries. J. Pharmacol. Exp. Ther. 2002, 302, 66–72. [Google Scholar] [CrossRef]
  287. Yonekura-Sakakibara, K.; Saito, K. Functional genomics for plant natural product biosynthesis. Nat. Prod. Rep. 2009, 26, 1466. [Google Scholar] [CrossRef]
  288. Qin, H.Z.; Lin, S.; Deng, L.Y.; Zhu, H. Advances in pharmacological effects and mechanisms of asiaticoside. China Pharm. 2021, 32, 2683–2688. [Google Scholar]
  289. Yuan, R.L.; Zhang, Y.W.; Shen, J., Y.; Wang, D.; Chen, Q.; Wang, T.; Liu, M.Y. Research progress in the effect and mechanism of medicinal plants derived terpenoids on cholestatic liver injury. Cent. South Pharm. 2022, 20, 877–887. [Google Scholar]
  290. Zhou, X.; Ke, C.L.; Lv, Y.; Ren, C.H.; Lin, T.S.; Dong, F.; Mi, Y.J. Asiaticoside suppresses cell proliferation by inhibiting the NF-KB signaling pathway in colorectal cancer. Int. J. Mol. Med. 2020, 46, 1525–1537. [Google Scholar]
  291. Song, P.; Na, N.; Wang, Y. Effects of saikosaponin D on insulin resistance and FoxO1/PGC-1α pathway in type 2 diabetic rats. Chin. J. Immunol. 2022, 11, 1–15. [Google Scholar]
  292. Li, Y.N.; Yang, S.J.; Bai, S.Y. Studies on chemical constituents from roots of Angelica polymorpha. China J. Chin. Mat. Med. 2009, 34, 854–857. [Google Scholar]
  293. Sun, S.; Ling. Ling, X.; Kong, L.Y.; Zhang, H.Q.; He, S.A. Chromones from Angelica morri Hayata. J. China Pharm. Univ. 2003, 34, 125–127. [Google Scholar]
  294. Xue, B.Y.; Li, W.; Li, L.; XIiao, Y.Q. A pharmacodynamic research on chromone glucosides of Saposhnikovia divaricata. China J. Chin. Mater. Med. 2000, 25, 297–299. [Google Scholar]
  295. Shan, Y.; Feng, X.; Dong, Y.F.; Chang. Qi., Y. The advance on the research of chemical constituents and pharmacological activities of Bupleurum. Chin. Wild Plant Res. 2004, 23, 5-7+14. [Google Scholar]
  296. Li, M.F.; Li, X.Z.; Wei, J.H.; Zhang, Z.; Chen, S.J.; Liu, Z.H.; Xing, H. Selection of high altitude planting area of Angelica sinensis based on biomass, bioactive compounds accumulation and antioxidant capacity. Chin. Trad. Herb. Drugs. 2020, 51, 474–480. [Google Scholar]
  297. Zhang, Z.M.; Zhai, Z.X.; Guo, Y.H.; Fu, X.M.; Deng, S.J.; Bu, Y.Y.; Zhao, Z.M.; Zhao, Y.H.; Yang, C.Q.; Tu, P.F. , et al. Dynamic characteristic of dry matter accumulation and isoimperatorin in Angelica dahurica. Chin. Trad. Herb. Drugs. 2005, 36, 902–904. [Google Scholar]
  298. Yu, Y.; Wang, X.Q.; Bao, Y.X.; Zhang, Y.G.; Hou, B.S. Studies on laws of growth and development of Bupleurum chinense. J. Jilin Agric. Univ. 2003, 25, 523–527. [Google Scholar]
  299. Zhao, J.Y.; Zhang, W.Y.; Li, Y.; Gong, J.R. Elevation effect on saikosaponin content in Bupleurum chinense DC taproots and lateral roots. J. Beijing Norm. Univ. (Nat. Sci.). 2017, 53, 603–608. [Google Scholar]
  300. Guo, Q.S.; Wang, C.L.; Li, Y.S.; Du, Q.; Qin, M.J. Dynamic study on dry material accumulation and amylose content of cultivated Changium smyrnioides. China J. Chin. Mater. Med. 2007, 32, 24–26. [Google Scholar]
  301. Wang, R.H. Key points of cultivation techniques of Angelica sinensis. New Agric. 2021, 3, 45–46. [Google Scholar]
  302. Yan, Y.C.; Liao, W.; Li, X.L.; Guo, Q.; Chen, P. Experimental study on the main factors and planting scheme optimization in Angelica pubescens Maxim. cultivation. Hubei J. Tradit. Chin. Med. 2012, 34, 65–66. [Google Scholar]
  303. Wei, Z.Q.; Xiao, J.Y.; Han, F. Breeding of retained species of Angelica dahurica. Spec. Econ. Anim. Plant. 2007, 10, 36–37. [Google Scholar]
  304. Zhou, S.R.; Li, B.L. Cultivation of Glehnia littoralis. Spec. Econ. Anim. Plant. 2008, 1, 37–38. [Google Scholar]
  305. Zhou, F.M. Wu Yiluo and new compilation of materia medica. J. Zhejiang Chin. Med. Univ. 1989, 2, 37. [Google Scholar]
  306. Lee, S.H.; Lee, S.H.; Hong, C.O.; Hur, M.; Han, J.W.; Lee, W.M.; Yi, L.; Koo, S.C. Evaluation of the availability of bolting Angelica gigas Nakai. Plant Resour. Soc. Korea 2019, 32, 318–324. [Google Scholar]
  307. Xue, Z.L. Introduction and acclimatization of wild Libanotis buchtormensis. Shaanxi For. Sci. Tech. 2011, 3, 95–96. [Google Scholar]
  308. Li, M.F.; Kang, T.L.; Jin, L.; Wei, J.H. Research progress on bolting and flowering of Angelica sinensis and regulation pathways. Chin. Trad. Herb. Drugs. 2020, 51, 5894–5899. [Google Scholar]
  309. Wang, C.L. Understory planting management techniques of Anthriscus sylvestris. For. Prod. Spec. China. 2018, 3, 42–43. [Google Scholar]
  310. Chen, J.; Wang, W.L.; Sun, Y.Y.; Song, J.Z. Effects of yield and quality by mowing bolting Bupleurum chinense from different origins. Bull. Agric. Sci. Technol. 2021, 7, 218–220. [Google Scholar]
  311. Wang, C.L.; Guo, Q.S.; Cheng, B.X.; Wang, C.Y.; Zhou, Y.H. Change of chemical constituents in Changium smymioides at different ages. China J. Chin. Mater. Med. 2010, 35, 2945–2949. [Google Scholar]
  312. Jiang, G.H.; Ma, Y.Y.; Hou, J.; Jia, M.R.; Ma, L.; Fan, Q.J.; Tang, L. Investigation, collection and conservation of Ligusticum Chuanxiong germplasm resources. Chin. Trad. Herb. Drugs. 2008, 39, 601–604. [Google Scholar]
  313. Sun, P.; Tong, W.; Ye, X.; Zhang, C.; Huang, H.Y. Correlation analysis between the growth dynamics and quality of Chuanmingshen violaceum during the late cultivation period. Nat. Prod. Res. Dev. 2017, 29, 1154–1159. [Google Scholar]
  314. Zhao, Y.H.; He, G.F.; Che, S.L. High yield cultivation technology of Ligustium jeholense. Bull. Agric. Sci. Tech. 2013, 7, 215–216. [Google Scholar]
  315. Ou, C.G.; Mao, J.H.; Liu, L.J.; Li, C.J.; Ren, H.F.; Zhao, Z.W.; Zhuang, F.Y. Characterising genes associated with flowering time in carrot (Daucus carota L.) using transcriptome analysis. Plant Biol. (Stuttg) 2016, 19, 286–297. [Google Scholar] [CrossRef]
  316. Huang, Z.X.; Ceng, Y.L. Review on the technology of propagation and cultivation for Notopterygium incisum Ting ex H. T. Chang. Anhiui Agric. Sci. Bull. 2018, 24, 45–48,50. [Google Scholar]
  317. Wang, Z.W.; Zhang, Y.F.; Lu, J.; Liu, X.L.; Yang, M.H.; Chen, L. Studies on the main biological characteristics and growth and development rules of Peucedanum praeruptum. China J. Chin. Mater. Med. 2007, 32, 145–146. [Google Scholar]
  318. Li, H.Y. Cultivation techniques for Saposhnikovia divaricata. Inner Mongolia Agric. Sci. Technol. 1995, 34. [Google Scholar]
  319. Liu, S.L.; Xu, Y.H.; Wang, X.H.; Lei, F.J.; Wang, Y.F.; Zhang, L.X. Research progress on the early bolting and flowering of Saposhnikovia divaricate root. Ginseng Res. 2016, 6, 52–56. [Google Scholar]
  320. Liu, X.X.; Luo, M.M.; Li, M.F.; Wei, J.H. Depicting precise temperature and duration of vernalization and inhibiting early bolting and flowering of Angelica sinensis by freezing storage. Front Plant Sci. 2022, 13, 853444. [Google Scholar] [CrossRef]
  321. Yan, W.; Hunt, L.A. Reanalysis of vernalization data of Wheat and Carrot. Annals of Botany 1999, 84, 615–619. [Google Scholar] [CrossRef]
  322. Liu, J.H.; Guo, W.C.; Li, Y. Cultivation management, storage, and consumption of Coriander sativum. Spec. Econ. Anim. Plant. 2017, 11, 48–51. [Google Scholar]
  323. Huang, L.Q.; Jin, L. Suitable Technology for Production and Processing of Angelica Sinensis; China Pharmaceutical Science and Technology Press: Place China Pharmaceutical Science and Technology Press, 2018. [Google Scholar]
  324. Qiu, D.Y.; Lin, H.M.; Fang, Z.S.; Li, Y.D. Effects of seedlings with different root diameters on Angelica sinensis early bolting and physiological changes during the medicine formation period. Acta Prat. Sin. 2010, 19, 100–105. [Google Scholar]
  325. Wang, W.J. Analysis and control of early bolting characteristic of Angelica sinensis. J. Northwest Univ. (Nat. Sci. Ed.). 1977, 7, 32–39. [Google Scholar]
  326. Yao, L. Effect of shading during the nursery of Angelica sinensis on bolting rate and economic characters. Gansu Agric. Sci. Technol. 2005, 10, 54–55. [Google Scholar]
  327. Li, Y.D.; Liu, F.Z.; Chen, Y.; Chai, Z.X. Standardied planting technique and the main diseases and pests of Radix Angelicae sinensis. Res. Prac. Chin. Med. 2005, 19, 23–26. [Google Scholar]
  328. Yang, F.R.; Yang, H.Y.; Guo, D.Z. Preliminary study on the early bolting of Angelica dahurica and prevention methods. J. Chin. Medic. Mater. 2001, 24, 708. [Google Scholar]
  329. Pu, S.C.; Shen, M.L.; Deng, C.F.; Zhang, W.W.; Wei, Z.Q. Effects of N,P and K rates and their proportions on curtail earlier bolting of Angelica dahurica var. formosana. J. Southwest Univ. (Nat. Sci. Ed.). 2011, 33, 168–172. [Google Scholar]
  330. Yi, S.R.; Han, F.; Huang, Y.; Wei, Z.Q.; Xiao, Z.; Quan, J.; Cao, H.Q. Study on new technology of three-stage breeding of Angelica dahurica. Hunan Agric. Sci. 2011, 11, 15–16. [Google Scholar]
  331. Meng, X.C.; Cao, L.; Lou, Z.H. Preliminary study on investigation for bolting reason and inhibition of Saposhinikovia Divaricata. Spec. Wild Econ. Anim. Plant Res. 2004, 4, 18-20+23. [Google Scholar]
  332. Wang, Z.H.; Zhu, J.H.; Feng, S.X.; Wang, H.W. Effects of sowing date and eradication of reed head on bolting and yield of Saposhnikovia divaricata. Hubei Agric. Sci. 2013, 52, 4977–4979. [Google Scholar]
  333. Tong, W.S.; Huang, Q.Y.; Chang, Y. Effect of planting density on bolting, yield and effective ingredient of S. divaricata. J. Northeast Agric. Univ. 2010, 41, 73–77. [Google Scholar]
  334. Zhang, Y.M.; Yang, J.M.; Xu, W.M.; Wang, Z.G.; Yu, H.J. Study on the skill of Angelica acutiloba ConHolling boltiog and effect of the root. Ginseng Res. 2016, 4, 36–38. [Google Scholar]
  335. Chen, X.F.; Lu, J.; Ding, D.R.; Shen, M.L.; Xie, D.M.; Li, H.F. Effect of sowing time on early bolting of Angelica dahurica. China J. Chin. Mater. Med. 1999, 24, 211–212. [Google Scholar]
  336. Ding, D.R.; Lu, J.; Chen, X.F.; Shen, M.L.; Xie, D.M.; Li, H.F.; Ren, D.J. Effects of fertilizer types on early bolting and yield of Angelica dahurica. China J. Chin. Mater. Med. 1999, 24, 23–24. [Google Scholar]
  337. Jiang, Y.J.; Jiang, M.Y.; Rao, F.; Huang, W.J.; Chen, C.; Wu, W. Bioinformatics analysis on the CONSTANS-like protein family in Angelica dahurica var. formosana. Mol. Plant Breed. 2021, 19, 3923–3931. [Google Scholar]
  338. He, J.Z. Preliminary study on premature bolting mechanism and the activity of skin-whitening of Angelica dahurica. Sichuan Agricultural University, Sichuan, China, 2018.
  339. Wang, W.J.; Zhang, Z.M. Bolting characteristics and control pathways of Angelica sinensis. Acta Bot. Bor. Occ. Sin. 1982, 2, 95–104. [Google Scholar]
  340. Li, M.S. On the control bolting in the early stage of Angelica sinensis (Oliv.) diels. Acta Bot. Bor. Occ. Sin. 1983, 3, 70–76. [Google Scholar]
  341. Lin, H.M.; Qiu, D.Y.; Chen, Y. Effect of root diameter on early bolting rate and yield in seedling of Angelica sinensis. Chin. Trad. Herb. Drugs. 2007, 38, 1386–1389. [Google Scholar]
  342. Wang, W.J. Technology and principle of seedling frozen storage of Angelica sinensis. China J. Chin. Mater. Med. 1979, 3, 1–5. [Google Scholar]
  343. Zhang, E.H. A study on inhibitory effect of plant growth retardants on earlier bolting of Chinese Angelica. China J. Chin. Mater. Med. 1999, 24, 18-20+63. [Google Scholar]
  344. Li, J.; Li, M.L.; Zhu, T.T.; Zhang, X.N.; Li, M.F.; Wei, J.H. Integrated transcriptomics and metabolites at different growth stages reveals the regulation mechanism of bolting and flowering of Angelica sinensis. Plant Biol. (Stuttg.) 2021, 23, 574–582. [Google Scholar] [CrossRef]
  345. Li, M.F.; Li, J.; Wei, J.H.; Pare, P.W. Transcriptional controls for early bolting and flowering in Angelica sinensis. Plants (Basel) 2021, 10, 1931. [Google Scholar] [CrossRef]
  346. Mao, J.H.; Mao, S.M.; Zhuang, F.Y.; Ou, C.G.; Zhao, Z.W.; Bao, S.Y. Heredity and environmental regulation of premature bolting in carrot. Acta Agric. Boreali-Sin. 2013, 28, 67–72. [Google Scholar]
  347. Yang, Y.G.; Zhang, H.S.; Li, Y.L.; Wang, X.W.; Yu, J.H.; Wang, X.L. Endogenous hormone content of fleshy root in relation to early bolting in summer cultivated carrot on plateau. Acta Hortic. Sin. 2010, 37, 1102–1108. [Google Scholar]
  348. Chen, Y.H.; Zhang, Y.L.; Wang, Y.; Zhang, Y.P.; Wang, Y.; Li, J.Q.; Liu, X.P. Analysis and regulation of main factors affecting flower bud differentiation and bolting in carrot. Inner Mongolia Agric. Sci. Technol. 2002, 45+54.
  349. Zheng, C.Y.; Li, M.L.; Zhu, D.L.; Hou, L.P.; Song, H.X. Effects of sowing time in spring on the yield and quality of carrot. J. Shanxi Agric. Sci. 2018, 46, 926-927+941. [Google Scholar]
  350. Wang, B.S.; Chen, Y.M.; Lian, Y.; Zhang, Y.P.; Liu, X.R.; Yu, Y. Effects of different sowing dates on early bolting and economic traits of carrots. Vegetables 2022, 28–31. [Google Scholar]
  351. Bao, S.Y.; Mao, J.H.; Ou, C.G.; Zhuang, F.Y.; Zhao, Z.W. Acta Hortic. Sin. 2011, 38, 2522. [Google Scholar]
  352. Jian, Q.P.; Zheng, Y.; Zhao, R.Q.; Chen, Y.L.; Liu, Z.P.; Xian, Z.Q.; Wan, M.; Jia, F.M.; Wang, G.Q.; Huang, C. Effects of different sowing periods on early bolting and yield of Peucedanum praeruptorum. J. Mt. Agric. Biol. 2020, 39, 67–70. [Google Scholar]
  353. Xu, G.; Li, P.M.; Yang, Y.; Luo, S.; Luo, C.; Deng, C.F. Effects of different sowing periods on early bolting, yield and quality of Peucedantun praeruptorum. Mod. Agric. Sci. Technol. 2021, 20, 55–57. [Google Scholar]
  354. Liu, S.L.; Wang, X.H.; Gao, Y.G.; Zhao, Y.; Zhang, A.H.; Xu, Y.H.; Zhang, L.X. Transcriptomic analysis identifies differentially expressed genes (DEGs) associated with bolting and flowering in Saposhnikovia divaricata. Chin. J. Nat. Med. 2018, 16, 446–455. [Google Scholar] [CrossRef]
  355. Sun, H.M. Cultivation and propagation of Bupleurum chinense DC. Fore. Pharm. 1981, 2, 39–40. [Google Scholar]
  356. Li, M.; Zhang, Q.F.; Pu, G.B.; Liu, Y.Y.; Liu, Q.; Bu, X.; Zhang, Y.Q. Cloning and spatio-temporal expression analysis of flowering genes in Bupleurum chinense DC. Acta Pharm. Sin. 2021, 56, 1188–1196. [Google Scholar]
  357. Chen, Y.Y.; Hu, S.Q.; Tao, S.; Yuan, C.; Xiong, M.; Peng, F.; Zhang, C. Research progress on key technology of Ligusticum chuanxiong cultivation. J. Chin. Medic. Mater. 2018, 41, 1236–1240. [Google Scholar]
  358. Zhao, H.Y. Research progress on key techniques of Ligusticum chuanxiong cultivation. Farm. Consult. 2020, 1, 50. [Google Scholar]
  359. S, *!!! REPLACE !!!*. Song, T. Transcriptome sequencing and analysis of rhizome and leaf in Ligusticum chuanxiong hort. 2015.
  360. Feng, X.H.; Luo, X.G.; Wang, Y.; Li, J.; Liu, X.F. Study on the cultivation technology and field management of Ligusticum sinenses. Rural Sci. Technol. 2016, 11, 14–15. [Google Scholar]
  361. Zhao, W.; Yang, X.; Li, J.N.; Yu, Y. Study on the influence on the vegetative characterg the root production and quality of Ligusticum jeholense by flowers buds pruning. Chin. Wild Plant Res. 2007, 26, 46–48. [Google Scholar]
  362. Yin, H.F.; Jin, X.J. Effect of controlling bolting on yield and quality from root of Notopterygium forbesii. J. Gansu Agric. Univ. 2009, 44, 77–80. [Google Scholar]
  363. Jing, R.Q.; Hu, Z.H. Effect of early bolting on the structure of medicinal parts of Angelica sinensis. Acta Bot. Bor. Occ. Sin. 1981, 1, 55–61. [Google Scholar]
  364. Ma, Y.Y.; Zhong, S.H.; Jia, M.R.; Xiong, Y.; Jiang, G.H.; Tang, S.W. Comparasion of macroscopic and microscopic characteristics of Chuan Bai zhi and Gong Bai zhi. Lishizhen Med. Mater. Med. Res. 2005, 16, 833–834. [Google Scholar]
  365. Yang, Z.l.; Qian, S.m.; Scheid, R.N.; Lu, L.; Chen, X.s.; Liu, R.; Du, X.; Lv, X.c.; Boersma, M.D.; Scalf, M. , et al. EBS is a bivalent histone reader that regulates floral phase transition in Arabidopsis. Nat. Genet. 2018, 50, 1247–1253. [Google Scholar] [CrossRef]
  366. Xu, L.; Wang, Y.; Dong, J.h.; Zhang, W.; Tang, M.j.; Zhang, W.l.; Wang, K.; Chen, Y.l.; Zhang, X.l.; He, Q. , et al. A chromosome-level genome assembly of radish (Raphanus sativus L.) reveals insights into genome adaptation and differential bolting regulation. Plant Biotechnol. J. 2023, 1, 1–15. [Google Scholar]
  367. Song, C.; Li, X.l.; Jia, B.; Liu, L.; Wei, P.p.; Manzoor, M.A.; Wang, F.; Li, B.Y.; Wang, G.l.; Chen, C.w. , et al. Comparative transcriptomics unveil the crucial genes involved in coumarin biosynthesis in Peucedanum praeruptorum Dunn. Front Plant Sci. 2022, 13, 1–14. [Google Scholar]
  368. Bohnert, H.J.; Nguyen, H.; Lewis, N.G. Bioengineering and Molecular Biology of Plant Pathways; Pergamon: The United Kingdom, 2008. [Google Scholar]
Figure 1. A tour of Apiaceae medicinal plants (AMPs).
Figure 1. A tour of Apiaceae medicinal plants (AMPs).
Preprints 72645 g001
Figure 2. Traditional use of the 228 AMPs.
Figure 2. Traditional use of the 228 AMPs.
Preprints 72645 g002
Figure 3. Modern pharmacological uses of the 228 AMPs.
Figure 3. Modern pharmacological uses of the 228 AMPs.
Preprints 72645 g003
Figure 4. Core structures of five different bioactive compounds identified from the 228 AMPs.
Figure 4. Core structures of five different bioactive compounds identified from the 228 AMPs.
Preprints 72645 g004
Figure 5. Structures of 18 quality markers from the 22 AMPs in Pharmacopoeia of the People’s Republic of China (2020).
Figure 5. Structures of 18 quality markers from the 22 AMPs in Pharmacopoeia of the People’s Republic of China (2020).
Preprints 72645 g005
Figure 6. Cluster of the 38 rhizomatous AMPs affected by the bolting and flowering. The red color shows that the BF significantly affects the yield and quality; the yellow color shows that the BF differently affects the yield while the rhizomes or roots can be used as medicine to some extent; and the green color shows that the BF has no significant effect on the yield and quality. Different lower case letters a: Angelica, b: Ferula, c: Libanotis, d: Ligusticum, e: Heracleum, f: Notopterygium, g: Bupleurum, h: Changium, i: Peucedanum, j: Saposhnikovia, k: Glehnia, l: Cicuta, m: Daucus, n: Levisticum, o: Anthriscus, p: Chuanminshen, and q: Pimpinella.
Figure 6. Cluster of the 38 rhizomatous AMPs affected by the bolting and flowering. The red color shows that the BF significantly affects the yield and quality; the yellow color shows that the BF differently affects the yield while the rhizomes or roots can be used as medicine to some extent; and the green color shows that the BF has no significant effect on the yield and quality. Different lower case letters a: Angelica, b: Ferula, c: Libanotis, d: Ligusticum, e: Heracleum, f: Notopterygium, g: Bupleurum, h: Changium, i: Peucedanum, j: Saposhnikovia, k: Glehnia, l: Cicuta, m: Daucus, n: Levisticum, o: Anthriscus, p: Chuanminshen, and q: Pimpinella.
Preprints 72645 g006
Figure 7. Approach to control the BF of AMPs.
Figure 7. Approach to control the BF of AMPs.
Preprints 72645 g007
Figure 8. Schematic representation of biosynthetic pathways of lignins. Abbreviations: PAL, phenylalanine ammonia lyase; C4H, cinnamate 4-hydroxylase; 4CL, 4-coumarate-CoA ligase; HCT, hydroxycinnamoyl shikimate/quinate transferase; C3H, p-coumarate 3-hydroxylase; CCOMT, caffeoyl-CoA 3-O-methyltransferase; CCR, cinnamoyl-CoA reductases; CAD, cinnamyl alcohol dehydrogenases; LACs, laccases; F5H, ferulate 5-hydroxylase; COMT, caffeic acid 3-O-methyltransferase. The green color shows the common phenylpropanoid pathway of phenylpropanoids, and the red color shows the lignin biosynthetic sub-pathway.
Figure 8. Schematic representation of biosynthetic pathways of lignins. Abbreviations: PAL, phenylalanine ammonia lyase; C4H, cinnamate 4-hydroxylase; 4CL, 4-coumarate-CoA ligase; HCT, hydroxycinnamoyl shikimate/quinate transferase; C3H, p-coumarate 3-hydroxylase; CCOMT, caffeoyl-CoA 3-O-methyltransferase; CCR, cinnamoyl-CoA reductases; CAD, cinnamyl alcohol dehydrogenases; LACs, laccases; F5H, ferulate 5-hydroxylase; COMT, caffeic acid 3-O-methyltransferase. The green color shows the common phenylpropanoid pathway of phenylpropanoids, and the red color shows the lignin biosynthetic sub-pathway.
Preprints 72645 g008
Table 1. The list of the 228 AMPs.
Table 1. The list of the 228 AMPs.
No. Plant species Parts of plant used Traditional use Modern pharmacological use Main chemical constituents References
1 Aegopodium alpestre Ledeb. Stems and leaves Dispelling wind, relieving pain, and treatment of influenza Treatment of rheumatic diseases, obesity and hypotensive Apiole, undecane, and limonene [19,20,21]
2 Ammi majus L. Fruits Treatment of vitiligo \ Furanocoumarins [16]
3 Anethum graveolens L. Fruits, leaves or whole plant Treatment of bladder inflammation, liver diseases, and insomnia Antibacterial, antifungal, antioxidant Alkaloid, terpenoids, and flavonoids [22]
4 Angelica acutiloba (Siebold & Zucc.) Kitag. Roots Treatment of menoxenia and anemia Hemogenic, analgesic, and sedative activities Ferulic acid, ligustilide, and angelicide [23]
5 Angelica amurensis Schischk. Roots \ \ α-pinene, limonene, and sabinene [1,24]
6 Angelica anomala Avé-Lall. Roots Dispelling wind, eliminating dampness, and relieving pain Antioxidant, anti-inflammatory, and antitumor Isoimperatorin, umbelliferone, and adenosine [16,25,26,27]
7 Angelica apaensis R. H. Shan & C. C. Yuan Roots Relieving pain, relieving cough and asthma Bacteriostat, anti-inflammatory Oxypeucedanin, isoimperatorin, and oxypeucedanin hydrate [19,28]
8 **Angelica biserrata (R. H. Shan & C. C. Yuan) C. C. Yuan & R. H. Shan Roots Dispelling wind, eliminating dampness, and relieving pain Antitumor, anti-inflammatory, and antioxidant Coumarins osthole, columbianadin, and volatile oils [29]
9 Angelica cartilaginomarginata var. Foliosa C. C. Yuan & R. H. Shan Roots \ \ \ [17]
10 **Angelica dahurica (Fisch. Ex Hoffm.) Benth. & Hook. F. Ex Franch. & Sav. Roots Treatment of acne, erythema, and headache Antiinflammatory, anti-mutagenic, and antitumor Scopoletin, and psoralen [18,30,31,32,33]
11 **Angelica dahurica cv. Hangbaizhi Roots Treatment of headache, toothache, abscess, and furunculosis Estrogenic, cytotoxic, and anti-inflammatory isoimperatorin, imperatorin, and phellopterin [18,34,35]
12 Angelica dahurica var. Formosana (H. Boissieu) Yen Roots \ Anti-staphylococca Falcarindiol [33,34]
13 **Angelica decursiva (Miq.) Franch. & Sav. Roots A remedy for thick phlegm, asthma, and upper respiratory tract infections Antioxidant and anti-inflammatory potential Decursin, decursidin, and nodakenetin [36]
14 Angelica gigas Nakai Roots Treatment of dysmenorrhea, amenorrhea, and menopausal Anti-platelet effects Decursin, and decursinol angelate [37,38]
15 Angelica laxifoliata Diels Roots Dispelling wind, Dispelling wind, and relieving pain Treatment of wind-damp pain, aching lumbus and knees Angelicin, β-sitosterol, and laxifolin [16,26,39]
16 Angelica megaphylla Diels Roots Same as Angelica sinensis Same as A. Sinensis Ferulic acid, ligustilide, and angelol [40,41]
17 Angelica morii Hayata Roots and leaves Treatment of deficiency-cold in spleen and stomach, cold cough, and toothache Used for diarrhea caused by deficiency of spleen and for cough caused by weak-ness and chill Imperatorin, isoimperatorin, and phellopterin [42,43,44]
18 Angelica nitida H. Wolff Roots Nourishing the blood, regulating menstrual disorder, and relieving pain \ Isoimperatorin, imperatorin, and cnidilin [45]
19 Angelica polymorpha Maxim. Roots Dispelling wind and relieving pain Treatment of stomachache Coumarins, sesquiterpenoids, and alkaloid [19,46,47]
20 **Angelica sinensis (Oliv.) Diels Roots Nourishing the blood, regulating menstrual disorder, and relieving pain Cardio-cerebrovascular, anti-inflammatory, and antioxidant Ferulic acid, alkylphthalides, and polysaccharides [18,48,49]
21 Angelica sinensis var. Wilsonii Roots Same as Angelica sinensis, relieving pain Same as Angelica sinensis Isoimperatorin, coumarin, and oxypeucedanin [50]
22 Angelica sylvestris L. Roots Relieves rheumatism, sweating, and detoxification \ Cnidilide, sedanenolide, and ligustilide [19]
23 Angelica tsinlingensis K. T. Fu Roots \ \ \ [1]
24 Angelica valida Diels Roots \ \ \ [1]
25 Anthriscus nemorosa (M. Bieb.) Spreng. Roots, whole plant, and leaves Same as Peucedanum praeruptorum Same as Peucedanum praeruptorum \ [51]
26 Anthriscus sylvestris (L.) Hoffm. Roots and leaves Invigorating spleen and replenishing qi and expelling phlegm Antitumor, antioxidation, and antisenity Phenylpropanoids, flavonoids, and steroidal [19,52]
27 Apium graveolens L. Whole plant, roots, and rhizome Dispelling wind, eliminating dampness, and detoxification Hypertension, hyperlipidemia, and dysuria Organic acids, apigenin, and volatile oils [19,53,54]
28 Archangelica brevicaulisf Roots Same as Angelica biserrata Same as Angelica biserrata Osthol, imperatorin, and archangelicin [16,55]
29 Bupleurum angustissimum (Franch.) Kitag. Roots \ \ Saikosaponins (a, c, and d), β -terpinene, and β -thujene [56]
30 Bupleurum aureum Fisch. Roots \ \ Saikosaponins (a, c, and d) [1,57]
31 Bupleurum bicaule Helm Roots Same as Bupleurum scorzonerifolium Same as Bupleurum scorzonerifolium Saikosaponin d, prosaikogenin G, and prosaikogenin F [16,58,59]
32 Bupleurum candollei Wall. Ex DC. Whole plant Diminish inflammati and detoxify, dispelling wind, and relieving convulsion \ Saikosaponin and flavonoids [16,56]
33 Bupleurum chaishoui R. H. Shan & M. L. Sheh Roots and rhizome Same as Bupleurum Same as Bupleurum Saikosaponins (a, c, and d) [60]
34 **Bupleurum chinense DC. Roots Treatment of chronic hepatitis, kidney syndrome, and inflammatory diseases Anti-allergic, analgesic, and anti-inflammation Saikosaponins (a, c, and d) [18,61,62]
35 Bupleurum chinense DC. F. Octoradiatum (Bunge) Shan et Sheh Roots Same as Bupleurum Anti-allergic, analgesic, and anti-inflammation Saikosaponins (a, c, and d) [63,64]
36 Bupleurum chinense DC. F. Vanheurckii (Muell. -Arg.) Shan et Y. Li Roots Same as Bupleurum Anti-allergic, analgesic, and anti-inflammation Saikosaponins (a, c, and d) [63,64]
37 Bupleurum commelynoideum var. Flaviflorum R. H. Shan & Yin Li Roots, rhizome and whole plant Antipyretic-analgesic effect, choleretic, and hepatoprotection Treating or relieving inflammatory bowel disease Saikosaponins (a, c, and d), β-pinene, and perillen [65,66]
38 Bupleurum densiflorum Rupr. Roots \ \ \ [63]
39 Bupleurum dielsianum H. Wolff Roots \ \ \ [63]
40 Bupleurum euphorbioides Nakai Roots \ \ Saikosaponins, perillen, and undecanal [56]
41 Bupleurum exaltatum M. Bieb. Roots \ \ \ [64]
42 Bupleurum falcatum L. Roots \ Treatment of colds and upper respiratory tract infections Saikosaponins (a, c, and d) [64,67,68]
43 Bupleurum gansuense S. L. Pan et Hsu Roots \ \ \ [56]
44 Bupleurum hamiltonii N. P. Balakr. Roots or whole plant Antipyretic-analgesic effect, treatment of chill, and fever alternation Treatment of stomach pain, dysuria, and cough Kaerophyllin, isokaerophyllin, and ethyl caffeic acid [69]
45 Bupleurum hamiltonii var. Hamiltonii / Bupleurum tenue Roots or whole plant Same as Bupleurum hamiltonii N. P. Balakr. Same as Bupleurum hamiltonii N. P. Balakr. Same as Bupleurum hamiltonii N. P. Balakr. [70]
46 Bupleurum hamiltonii var. Humile (Franch.) R. H. Shan & M. L. Sheh Roots \ \ \ [64]
47 Bupleurum huizei S. L. Pan sp. Nov. Roots \ \ \ [64]
48 Bupleurum kaoi T. S. Liu, C. Y. Chao & T. I. Chuang Roots \ Treatment of influenza and fever Saikosaponin a and saikosaponin c [64]
49 Bupleurum komarovianum Lincz. Roots Same as Bupleurum chinense Same as Bupleurum chinense Saikosaponins (a, c, and d) and volatile oils (1-caprylene, limonene, and thymol) [71,72]
50 Bupleurum krylovianum Schischk. Ex Krylov Roots \ \ Saikosaponins (a, c, and d) [56,57]
51 Bupleurum kunmingense Yin Li & S. L. Pan Roots \ Immunomodulatory Saikosaponins (a, c, and d), cyclohexanone, and 2- methyldodecane [56]
52 Bupleurum longicaule var. Amplexicaule C. Y. Wu Roots \ \ Saikosaponins (a, c, and d) [64]
53 Bupleurum longicaule var. Franchetii H. Boissieu Roots or whole plant \ \ Saikosaponins (a, c, and d), cyclohexanone, and myrcene [56]
54 Bupleurum longicaule var. Giraldii H. Wolff Roots \ \ Saikosaponins (a, c, and d), narcissin, and rutin [56]
55 Bupleurum longiradiatum Turcz. Roots Treatment of gout and inflammatory illness Anti-inflammatory and/or antimicrobial Thymol, butylidene phthalide and 5-indolol [73]
56 Bupleurum luxiense Yin Li & S. L. Pan Roots \ \ Saikosaponins (a, c, and d), n-heptaldehyde, and octanal [56]
57 Bupleurum malconense R. H. Shan & Yin Li Whole plant Hepatoprotection and antipyretic effect Acute toxicity Saikosaponins (a, c, and d), rutin, and quercetin [74,75,76]
58 Bupleurum marginatum var. Marginatum Whole plant Hepatoprotection and antipyretic effect Anti-allergic, analgesic, and anti-inflammatory Saikosaponins (a, c, and d), rutin, and quercetin [74,75,77]
59 Bupleurum marginatum var. Stenophyllum (H. Wolff) R. H. Shan & Yin Li Whole plant \ \ Saikosaponins (a, c, and d), chikusaikoside I, II, and 2- methylcyclopentanone [56]
60 Bupleurum marginatum Wall. Ex DC. Whole plant and roots Hepatoprotection and antipyretic effect Anti-allergic, analgesic, and anti-inflammatory Saikosaponins (a, c, and d), rutin, and quercetin [74,75,77]
61 Bupleurum microcephalum Diels Whole plant and roots Hepatoprotection and antipyretic effect Anti-allergic, analgesic, and anti-inflammatory Saikosaponins (a, c, and d), rutin, and quercetin [74,75]
62 Bupleurum petiolulatum var. tenerum R. H. Shan & Yin Li Whole plant Antipyretic-analgesic effect Anti-inflammatory \ [63,78]
63 Bupleurum polyclonum Yin Li & S. L. Pan Roots \ Anticancer Saikosaponins (a, c, and d), 4’-O-saikosaponin-a, and fenchane [56]
64 Bupleurum rockii H. Wolff Roots \ \ Saikosaponins (a, c, and d), thymol, and β-guaiene [56]
65 Bupleurum scorzonerifolium f. Longiradiatum Roots Same as Bupleurum Same as Bupleurum Same as Bupleurum [19]
66 Bupleurum scorzonerifolium f. Pauciflorum Roots Same as Bupleurum Same as Bupleurum Same as Bupleurum [19]
67 **Bupleurum scorzonerifolium Willd. Roots Antipyresis, relieve liver depression and menstrual disorder Same as Bupleurum chinense Rutin, quercetin, and kaempferol [18,19]
68 Bupleurum sibiricum var. Jeholense (Nakai) Y. C. Chu ex R. H. Shan & Yin Li Roots \ \ \ [1]
69 Bupleurum sibiricum Vest Roots Same as Bupleurum Same as Bupleurum Saikosaponin a, rutin, and quercetin [16,79,80]
70 Bupleurum sichuanense S. L. Pan et Hsu. Roots \ \ Saikosaponins (a, c, and d) [56]
71 Bupleurum smithii H. Wolff Roots Antipyretic-analgesic effect Anti-inflammatory, immunomodulatory, and anti-hepatic injury Saponins, volatile oils, and lignans [81]
72 Bupleurum smithii var. Parvifolium R. H. Shan & Yin Li Roots Relieve liver depression and activate the yang-energy Anti-inflammatory, immunomodulatory, and antitumor falcarinol, saponins, and flavonoids [82]
73 Bupleurum thianschanicum Freyn Roots \ \ Saikosaponins (a, c, and d) [57]
74 Bupleurum triradiatum Adams ex Hoffm. Roots \ \ \ [1]
75 Bupleurum wenchuanense R. H. Shan & Yin Li Roots Same as Bupleurum Same as Bupleurum Quercetin-3-O-α-L-rhamnoside, quercetin, and rutin [16,75]
76 Bupleurum yinchowense R. H. Shan & Yin Li Roots Antipyresis, relieve liver depression, and activate the yang-energy Same as Bupleurum Saikosaponins (a, c, and d) [16,65,83,84]
77 Carum buriaticum Turcz. Roots and fruits \ \ \ [5]
78 Carum carvi L. Roots, fruits, and leaves Dispelling wind and eliminating dampness, invigorate the stomach, and treatment of heart disease Anti-bacterial, antioxidant, and antitumor Carvone, limonene, and dihydrocarvone [19,85,86]
79 *Centella asiatica (L.) Urb. Whole plant Clearing heat, promoting diuresis, and toxicity Anti-bacterial, anti-depression and neuroprotection Asiaticoside, madecassoside, and elemene [18,87]
80 **Changium smyrnioides H. Wolff Roots Strengthening with tonics, moistening lung melt phlegm, and calm the liver Immunomodulatory, relieve fatigue, and enhance adaptability Cetylic acid, succinic acid, and imperatorin [18,88]
81 Chuanminshen violaceum M. L. Sheh & R. H. Shan Roots Moistening lung melt phlegm, harmonize the stomach, and engender liquid Antioxidant, enhancing immunity, and antimutation Polysaccharides, coumarins, and flavonoids [89,90,91]
82 Cicuta virosa L. Roots and rhizome Expelling phlegm and detoxification Treatment of osteomyelitis, gout, and rheumatism P-cymene, cicutoxine, and L-limonene [17,92]
83 *Cnidium monnieri (L.) Spreng. Fruits Dispelling wind, relieving convulsion, and Impotence Antibacterial, antiviral, and antimutagenesis Osthole, limonene, and cnidimoside A [18,93]
84 Cnidium officinale Roots Same as Cnidium monnieri Same as Cnidium monnieri \ [1]
85 Conioselinum acuminatum (Franch.) Lavrova Roots \ \ Sabinene, α-pinene, and aromadendrene [11]
86 Conioselinum anthriscoidesFuxiong Roots \ \ β-bergamotene [11]
87 Conioselinum tenuisectum (H. Boissieu) Pimenov & Kljuykov Roots \ \ \ [94]
88 Conioselinum vaginatum (Spreng.) Thell. Roots Dispelling wind, eliminating dampness, and relieving pain Treatment of common cold due to wind-cold and gastro spasm Diligustilide, daucosterol, and palmitic acid [19,95]
89 Conium maculatum L. Whole plant Relieving pain and relieving muscular spasm Treatment of cancer Coniine, N-methyl-coniine, conhydrine 2-(1-hydroxypropyl)-piperidine [16,96,97]
90 Coriandrum sativum L. Whole plant, fruits, and stems Invigorate the stomach and promoting eruption Antibacterial, antifungal, and antioxidant Petroselinic acid, linoleic acid, and oleic acid [19,98]
91 Cryptotaenia japonica Hassk. Whole plant Treatment of weakness, urinary closure, and swelling Antioxidant, protect liver, and anticancer Friedelin, stigmasterol, and apigenin [19,99,100]
92 Cuminum cyminum L. Fruits Treatment of indigestion and stomach cold abdominal pain Antibacterial, antioxidant, and radical-scavenging properties α-pinene, 1,8-cineole, and linalool [19,101]
93 Cyclorhiza peucedanifolia (Franch.) Constance Fruits Enriching the blood, activating blood, and regulating menstrual disorder \ \ [102]
94 Daucus carota L. Fruits Treatment of ascariasis, enterobiasis, and tapeworm disease Insecticide, anti-bacterial, and anticancer α-pinene, isophorone oxide, and and quercetrin [18,103]
95 Daucus carotavar. Carota Fruits Treatment of ascariasis, enterobiasis, and tapeworm disease Insecticide, anti-bacterial, and anticancer α-pinene, β-bisabolene , and luteolin [18,103]
96 Daucus carota var. Sativus Hoffm. Roots and basal leaves Strengthening spleen, treatment of dyspepsia, and chronic dysentery Enhancing immunity, anticancer, and prevents aging Carotene, (1R)-α-pinene, and β-carotene [19,104]
97 Eriocycla albescens (Franch.) H. Wolff Roots \ \ \ [1]
98 Eryngium foetidum L. Whole plant Diuresis, treatment of dropsy, and snakebite Bacteriostat, diminish inflammati, and detumescence Lanolin alcohol, carotene, and n-nonyl aldehyde [19,105]
99 Ferula bungeana Kitag. Whole plant and seeds Heat-clearing and detoxifying, relieving pain and expelling phlegm, and arresting coughing Treatment of cold, bronchopneumonia, and pulmonary tuberculosis Anisole, d-fenchone, and limonen [19,106]
100 Ferula caspica M. Bieb. Roots and resin Eliminating stagnated food, relieving dyspepsia, and insecticide Toxicity effect Umbelliprenin, farnesyl alcohol, and umbelliferone [107]
101 Ferula conocaula Korovin Resin, roots, and rhizome Eliminating stagnated food, insecticide, treatment of abdominal mass, and a lump in the abdomen Anticancer and treatment of influenza Umbelliprenin, fezelol, and feterin [107]
102 Ferula feruloides (Steud.) Korovin Roots and resin Treatment of chilliness, and pain of the heart and abdomen Insecticidal, bacteriostat and antitumor α-pinene, farnesene and toluene [108,109]
103 **Ferula fukanensis K. M. Shen Resin Eliminating stagnated food, relieving dyspepsia and insecticide Treatment of stomach disease, rheumatism and joint pain Ferulic acid, guaiol and ethyl-p-hydroxybenzoate [18,19,110,111,112]
104 Ferula jaeschkeana Vatke Resin of overground part Eliminating stagnated food, insecticide, treatment of tumour, wound, and peptic ulcer Antifertility Jaeschkeanadiol, α-pinene and β-pinene [107]
105 Ferula krylovii Korovin Resin Eliminating stagnated food and insecticide \ fekrynol, ferukrin and fekrynol acetate [107]
106 Ferula lehmannii Boiss. Resin Detoxification, deodorize, and insecticide Treatment of gastropathy, rheumatism and arthralgia Lehmannolone, sinkianone, and lehmannolone A [16,113]
107 Ferula moschata (Reinsch) Koso-Pol. Roots Sedative, spasmolysis, and treatment of hysteria Suppress the replication of human immunodeficiency virus in H9 lymphocytes and suppress the production of cytokine fezelol, fesumtuorin A and fesumtuorin B [107]
108 Ferula olivacea (Diels) H. Wolff ex Hand.-Mazz. Resin Wind-heat dispersing, expelling phlegm, and arresting coughing \ \ [16]
109 **Ferula sinkiangensis K. M. Shen Resin Eliminating stagnated food, detoxification, and insecticide Antioxidant, antitumor, and antiviral Ferulic acid, fekrynol, and lehmannolone [16,18,114,115]
110 Ferula songarica Pall. Ex Schult. Resin and whole plant Eliminating stagnated food and insecticide \ 2,4-dihydroxylacetophenone, 3,3′, 4,4′-biphenyltetracarboxylic acid, and Δ3-carene [116]
111 Ferula teterrima Kar. & Kir. Resin Eliminating stagnated food, and insecticide Treatment of malaria and dysentery Feterin, badrakemin, and badrakemin acetate [116]
112 *Foeniculum vulgare Mill. Fruits, roots, stems, leaves, and whole plant Dispelling wind, relieving pain, and harmonize the stomach Bacteriostat, anti-inflammatory, and antianxiety Trans-anethole, estragole, and anisaldehyde [18,19,117]
113 **Glehnia littoralis F. Schmidt ex Miq. Roots Heat-clearing and detoxifying, diminish inflammation, and expelling phlegm and arresting coughing Anti-inflammatory, bacteriostat, and antitumor Phenyllactic acid, catechol, and quercetin [18,118]
114 Hansenia oviformis (R. H. Shan) Pimenov & Kljuykov Rhizome, roots, and leaves Treatment of rheumatic arthralgia, cold due to wind-cold, and headache \ \ [16,102]
115 Heracleum barmanicum Kurz Roots Treatment of cold abdominalgia \ \ [16]
116 Heracleum candicans Wall. Ex DC. Roots Dispelling wind, eliminating dampness, and relieving pain Treatment of cold headache Bergapten, heraclenin, and imperatorin [19,119]
117 Heracleum dissectifolium K. T. Fu Roots Dispelling wind, eliminating dampness, and relieving pain \ \ [16]
118 Heracleum fargesii H. Boissieu Roots \ \ \ [17]
119 Heracleum franchetii M. Hiroe Roots and rhizome \ \ \ [120,121]
120 Heracleum hemsleyanum Roots and rhizome Dispelling wind, eliminating dampness, and relieving pain Antioxidant, anti-inflammatory, and antitumor β-pinene, α-pinene, and (1S)-6,6-dimethyl-2-methylene-bicyclo[3.1.1] heptane [26,27,122,123]
121 Heracleum hemsleyanum Diels Roots and rhizome Dispelling wind, eliminating dampness, and relieving pain Antioxidant, anti-inflammatory, and antitumor Osthole, columbianadin, and columbianetin [26,27]
122 Heracleum henryi H. Wolff Roots Clearing and activating the channels and collaterals, relieving pain, and scattered stasis \ Turgeniifolin B, turgeniifolin C, and bergapten [124]
123 Heracleum millefolium var. Millefolium Roots and rhizome Detumescence, disintegrate masse, and treatment of leprosy \ \ [102,120,121]
124 Heracleum moellendorffii Hance Roots and rhizome Clearing and activating the channels and collaterals, relieving pain, and scattered stasis Bacteriostat β-pinene, α-pinene, and pentadecane [122,124,125,126]
125 Heracleum oreocharis H. Wolff Roots \ \ \ [121]
126 Heracleum rapula Franch. Roots Clearing and activating the channels and collaterals, relieving pain, and scattered stasis Bacteriostat, treatment of asthma, and chronic bronchitis Ostholce, marmesin, and imperatorin [19,124,127]
127 Heracleum scabridum Franch. Roots, rhizome, and fruits Treatment of common cold due to wind-cold, headache, and cough asthma \ Heraclenol, oxypeucedanin-hydrate, and byakangelicin [128,129,130]
128 Heracleum souliei H. Boissieu Roots \ \ Bergapten [119,121]
129 Heracleum stenopterum Diels Roots Treatment of cold and rheumatism \ Bergapten, isopimpinellin, and sphondin [16,131]
130 Heracleum tiliifolium H. Wolff Roots Dispelling wind, eliminating dampness, and relieving pain \ \ [16]
131 Heracleum vicinum H. Boissieu Roots Same as Notopterygium incisum \ \ [120,121]
132 Heracleum wenchuanense F. T. Pu & X. J. He Roots \ \ \ [121]
133 Heracleum wolongense F. T. Pu & X. J. He Roots \ \ \ [1,121]
134 Heracleum yungningense Hand.-Mazz. Roots and rhizome Treatment of waist and knee pain, limb spasm, and leucoderma \ Pimpinellin, angelicin, and isobergapten [26,132]
135 Hydrocotyle himalaica P. K. Mukh. Whole plant Heat-clearing, detoxifying, and eliminating dampness \ Asiaticoside, madecassoside, and quercetin [133,134]
136 Hydrocotyle hookeri subsp. Chinensis (Dunn ex R. H. Shan & S. L. Liou) M. F. Watson & M. L. Sheh Whole plant Relieving pain, diuresis, and removing dampness Antiviral, antitumor, and anti-bacterial Flavonoids, triterpenes, and volatile oils [16,128,134]
137 Hydrocotyle nepalensis Hook. Whole plant Clearing heat and promoting diuresis, dissolving stasis, and hemostasis and detoxicate Antiviral, antitumor, and anti-bacterial Flavonoids, triterpenes, and volatile oils [16,134]
138 Hydrocotyle sibthorpioides Lam. Whole plant Heat-clearing, diuresis, and detumescence Anti-ulcer, antilipemic, and antiviral Quercetin, isorhamnetin, and asiaticoside [134,135]
139 Hydrocotyle sibthorpioides var. batrachium (Hance) Hand.-Mazz. Ex R. H. Shan Whole plant Heat-clearing and detoxifying, eliminating dampness, and diuresis Anti-ulcer, spasmolysis, and anti-inflammatory Benzene propane nitrile, phytol, and caryophyllene oxide [16,136,137]
140 Hydrocotyle wilfordii Maxim. Whole plant As Hydrocotyle nepalensis Hook. As Hydrocotyle nepalensis Hook. Asiaticoside, madecassoside, and quercetin [133,134]
141 Hymenidium chloroleucum (Diels) Pimenov & Kljuykov Roots or whole plant Regulating flow of qi, invigorating stomach, and activating blood Anti-inflammatory, analgesia, and nutritious function Nobiletin, falcarindiol, and isoliquiritingenin [19,138,139]
142 Hymenidium davidii (Franch.) Pimenov & Kljuykov Roots \ \ \ [140]
143 Hymenidium delavayi (Franch.) Pimenov & Kljuykov Roots \ \ \ [1,6]
144 Hymenidium lindleyanum (Klotzsch) Pimenov & Kljuykov Roots Treatment of hypertensive, coronary heart disease, and altitude stress \ Bergapten, isoimperatorin, and oxypeucedanin [141]
145 Kitagawia formosana (Hayata) Pimenov Roots \ \ \ [1]
146 Kitagawia macilenta (Franch.) Pimenov Roots Expelling phlegm \ \ [142]
147 Kitagawia terebinthacea (Fisch. Ex Trevir.) Pimenov Roots Cleaning heat and dispelling wind, alm the adverse-rising energy, and expelling phlegm Treatment of cold and cough, bronchitis, and cough during pregnancy Isoepoxybuterixin [19]
148 Levisticum officinale W. D. J. Koch Roots Diuresis, invigorate the stomach, and expelling phlegm Inhibition of rhythmic uterine contractions, Scavenging oxygen free radicals, and anti- lipid peroxidation Ligustilide, α-phellandrene, and β-phellandrene [19,143]
149 Libanotis buchtormensis (Fisch.) DC. Roots Divergent wind chill, dispel wind-damp, and relieving pain Bacteriostat, treatment of common cold due to wind-cold, generalized pain, and cough Falcarinone, isoimperatorin, and xanthotoxin [19,144]
150 Libanotis iliensis (Lipsky) Korovin Roots Expel wind-cold pathogens, thermolysis, and relieving pain Treatment of common cold due to wind-cold and rheumatic arthritis Archangelin and iliensin [19]
151 Libanotis lancifolia K. T. Fu Roots Divergent wind chill, dispel wind-damp, and relieving pain Bacteriostat, treatment of common cold due to wind-cold, generalized pain, and cough Falcarinone, isoimperatorin, and xanthotoxin [19,144]
152 Libanotis laticalycina R. H. Shan & M. L. Sheh Roots Dispelling wind, antispasmodic, and relieving pain Analgesia, sedation, and anti-inflammatory Octanal, hexanal, and 2-pentylfuran [16,145,146]
153 Libanotis seseloides (Fisch. & C. A. Mey. Ex Turcz.) Turcz. Roots Eliminating dampness, activating spleen, and promote blood circulation Treatment of damobstruction, dysentery, and sore Edultin [19]
154 Libanotis sibirica (L.) C. A. Mey. Roots \ \ \ [1]
155 Libanotis spodotrichoma K. T. Fu Roots Divergent wind chill, dispel wind-damp, and relieving pain Bacteriostat, treatment of common cold due to wind-cold, generalized pain, and cough Falcarinone, isoimperatorin, and xanthotoxin [19,144]
156 Ligusticopsis brachyloba (Franch.) Leute Roots Sudation, relieving pain, and dispelling wind Treatment of headache dizziness, arthralgia, and tetanus α-pinene, β-pinene, and sabinene [147,148,149]
157 Ligusticopsis daucoides (Franch.) Lavrova & Kljuykov Roots \ \ \ [1,94]
158 Ligusticopsis likiangensis (H. Wolff) Lavrova & Kljuykov Roots \ \ \ [1,94]
159 **Ligusticum chuanxiong Hort. Roots, rhizome, stems, and leaves Activating blood, relieving pain, and Dispelling wind Anti-inflammatory, antioxidant, and antitumor Abietene, tetramethylpyrazine, and glucose [18,19,150]
160 **Ligusticum jeholense Nakai et Kitag. Roots and rhizome Dispelling wind, dispersing cold, and eliminating dampness Anti-inflammatory, sedation, and anti-ulcer Ferulic acid, isoferulic acid, and daucosterol [18,19,151,152]
161 Ligusticum pteridophyllum Franch. Roots Dispelling wind, relieving pain, and eliminating dampness Treatment of cold due to wind-cold and migraine Asaricin, β-sitosterol, and daucosterol [26,153]
162 **Ligusticum sinense Oliv. Roots, rhizome, and tuber Expel wind-cold pathogens, eliminating dampness, and relieving pain Anti-inflammatory, central inhibitory, and anti-thrombotic effect 3-butylphthalide, opthalonide, and neopthalonide [18,154]
163 Ligusticum tenuissimum (Nakai) Kitagawa Roots and rhizome Same as ligusticum sinense Oliv. Divergent wind chill, treatment of wind-cold headache, and diarrhoea. Analgesia and sedation Ferulic acid [19,94,155]
164 Meeboldia delavayi (Franch.) W. Gou & X. J. He Roots Treatment of cold, fever, headache \ \ [16]
165 Nothosmyrnium japonicum var. Japonicum Roots \ Sedation and analgesia \ [16]
166 Nothosmyrnium japonicum var. Sutchuensis H. Boissieu Roots \ Sedation and analgesia \ [16]
167 **Notopterygium franchetii H. De Boiss. Roots and rhizome Divergent wind chill, dispelling wind, and eliminating dampness Anti-inflammatory, analgesia, and antiviral Nodakenin, ferulic acid, and bergamot lactone [18,156,157]
168 **Notopterygium incisum Ting ex H. T. Chang Roots and rhizome Divergent wind chill, dispelling wind, and eliminating dampness Anti-inflammatory, analgesia, and antiviral Nodakenin, notopterol, and isoimperatorin [18,157]
169 Oenanthe benghalensis Benth. & Hook. Roots and whole plant Same as Oenanthe javanica (Blume) DC. Same as Oenanthe javanica (Blume) DC. \ [17,158]
170 Oenanthe javanica (Blume) DC. Roots, stems and whole plant Heat-clearing, detoxification, and removing liver-fire Enhancing immunity, antiarrhythmic, and hypoglycemic Phytic acid, γ-terpinene, and caryophyllene [19,159]
171 Oenanthe linearis subsp. Rivularis (Dunn) C. Y. Wu & F. T. Pu Roots and whole plant Same as Oenanthe javanica (Blume) DC. Same as Oenanthe javanica (Blume) DC. \ [17]
172 Osmorhiza aristata var. Laxa (Royle) Constance & R. H. Shan Roots Divergent wind chill, sudation, and relieving pain \ \ [16]
173 Ostericum citriodorum (Hance) C. C. Yuan & R. H. Shan Roots and whole plant Activating blood, dissolving stasis, and dispelling wind Expectorant, anti-inflammatory, and bacteriostat Isoapiole, panaxynol, and myristicin [19,160,161,162]
174 Ostericum grosseserratum (Maxim.) Kitag. Roots Activating spleen, dispersing cold, and invigorating spleen and replenishing qi \ Octanal, β-pinene, and myristic acid [16,163,164]
175 Ostericum sieboldii (Miq.) Nakai Roots \ \ \ [165,166,167]
176 Peucedanum dielsianum Fedde ex H. Wolff Roots and rhizome Relieving pain, dispelling wind, and eliminating dampness \ Isoimperatorin, Phellopterin, and 9-octadecenoic acid [19,168,169]
177 Peucedanum dissolutum (Diels) H. Wolff Roots \ \ \ [1]
178 Peucedanum harry-smithii var. Subglabrum Roots Same as Peucedanum praeruptorum, alleviate asthma, reducing phlegm, and heatelimination Treatment of bronchitis, hypertensive, and coronary heart disease Psoralen, bergapten, and xanthotoxin [170,171,172,173]
179 Peucedanum japonicum Thunb. Roots Clearing heat, relieving cough, and diuresis Antipyresis, analgesia, and anti-inflammatory Peucedanol, umbelliferone, and β-pinene [19,174,175]
180 Peucedanum ledebourielloides K. T. Fu Roots \ \ \ [1,167]
181 Peucedanum longshengense R. H. Shan & M. L. Sheh Roots \ \ \ [1]
182 Peucedanum mashanense R. H. Shan & M. L. Sheh Roots Expelling phlegm \ \ [142]
183 Peucedanum medicum Dunn Roots Expelling phlegm, alleviating asthma and cough, and arresting convulsion Anticoagulation, antioxidant, and antibacterial 2-methoxy-4-vinylphenol, p-menthan-1-ol, and cis-α-bisabolene [19,176,177]
184 Peucedanum medicum var. Gracile Dunn ex R. H. Shan & M. L. Sheh Roots and rhizome Expelling phlegm, alleviating asthma and cough, and arresting convulsion Anticoagulation, antioxidant, and antibacterial Isoimperatorin, phellorerin, and bergapten [19,176,178]
185 Peucedanum medicum var. Medicum Roots and rhizome Expelling phlegm, alleviating asthma and cough, and arresting convulsion Anticoagulation, antioxidant, and antibacterial 2-methoxy-4-vinylphenol, p-menthan-1-ol, and cis-α-bisabolene [19,176,177]
186 **Peucedanum praeruptorum Dunn Roots Divergent wind, clearing heat, and reducing phlegm Anticoagulation, antioxidant, and anticancer Praeruptorin A, praeruptorin B, and scopoletin [18,179]
187 Peucedanum shanianum F. L. Chen & Y. F. Deng Roots Relieving asthma, expelling phlegm, and spasmolysis Anti-inflammatory, antiallergic, and anti-ulcer Sinodielides A, deltoin, and (+)-pareruptorin A [180,181,182,183]
188 Peucedanum turgeniifolium H. Wolff / Peucedanum pulchrum Roots and whole plant Expelling phlegm, antibechic, and dispersing wind-heat Smooth muscle spasmolysis Turgenifolin A, turgenifolin B, and bergapten [19,183,184]
189 Peucedanum wawrae (H. Wolff) S. W. Su ex M. L. Sheh Roots Antibechic and expelling phlegm Analgesia, sedation, and anti-inflammatory Peucedanocoumarin, d-laserpitin, and bergapten [16,167,185]
190 Peucedanum wulongense R. H. Shan & M. L. Sheh Roots \ \ \ [1]
191 Phlojodicarpus sibiricus (Steph. Ex Spreng.) Koso-Pol. Roots \ \ \ [1]
192 Physospermopsis alepidioides (H. Wolff & Hand.-Mazz.) R. H. Shan Roots \ \ \ [1]
193 Physospermopsis delavayi (Franch.) H. Wolff Roots \ \ \ [1]
194 Pimpinella anisum L. Fruits Warming meridian and diuresis Treatment of paralysis, facial paralysis, and migraine Anisaldehyde, anisole, and (E)-anethole [186,187,188,189,190]
195 Pimpinella candolleana Wight & Arn. Roots or whole plant Warming spleen and stomach for dispelling cold, relieving pain, and dispelling wind Relieving muscular spasm, antiviral, and antibacterial α-zingiberene, pregeijerene, and β-elemene [19,191,192,193]
196 Pimpinella coriacea (Franch.) H. Boissieu Whole plant Warming spleen and stomach for dispelling cold, dispelling wind and eliminating dampness, and activating blood \ \ [194]
197 Pimpinella diversifolia DC. Whole plant Expelling phlegm, activating blood, relieving pain, and removing toxicity for detumescence Anti-inflammatory, antitumor, and antituberculous 1H-benzocycloheptene, sesquiphellandrene, and β-chamigrene [195,196,197]
198 Pimpinella diversifolia var. Diversifolia Roots or whole plant Invigorating stomach, dispersing accumulations, and antidiarrheic Anti-inflammatory, antitumor, and antituberculous 1H-benzocycloheptene, sesquiphellandrene, and β-chamigrene [19,195,196,197]
199 Pimpinella thellungiana H. Wolff Roots or whole plant Warming spleen and stomach for dispelling cold, benefiting qi and nourishing blood, and coordinating yin and yang Hypotensive, hypolipidemic, and modulates, and improves cellular immunity Protocatechuic acid, gallic acid and neochlorogenic acid [198,199,200,201,202]
200 Pleurospermopsis bicolor (Franch.) Jing Zhou & J. Wei Whole plant Warming spleen and stomach for dispelling cold, benefiting qi and nourishing blood, and coordinating yin and yang Hypotensive, antilipemic, and modulates and improves cellular immun antimicrobial ity Chlorogenic acid, isochlorogenic acid A, and apigenin-7-O-β-D-glucuronopyranoside [198,200,201]
201 Pleurospermum aromaticum W. W. Sm. Whole plant \ \ \ [1]
202 Pleurospermum giraldii Diels Whole plant and seeds Warming spleen, digesting food, and checking vaginal discharge Inhibition of smooth muscle contraction and release intestinal smooth muscle spasm Carvone, n-triactanol, and γ-sitosterol [19,203,204,205]
203 Pleurospermum rivulorum (Diels) K. T. Fu & Y. C. Ho Roots or whole plant Tonifying the kidney \ \ [1,102]
204 Pternopetalum leptophyllum (Dunn) Hand.-Mazz. Whole plant \ \ \ [16]
205 Pternopetalum vulgare var. Vulgare Roots or whole plant Treatment of lumbago \ \ [19]
206 Sanicula astrantiifolia H. Wolff ex Kretschmer Whole plant Tonifying the kidney and lung, treating tuberculosis, and kidney vacuity lumbar pain Antioxidant, antibacterial, and bacteriostat Total flavonoids, rutin, and polysaccharides [206,207,208]
207 Sanicula caerulescens Franch. Whole plant Dispelling wind, melting phlegm, and promoting blood circulation for regulating menstruation Expectorant, antibechic, and anti-inflammatory Angelicin, isoferulaldehyde, and 12-hydroxybakuchiol [19,209,210]
208 Sanicula chinensis Bunge Whole plant Detoxification, hemostasis, and treatment of throat pain Antiviral \ [128,211,212,213]
209 Sanicula elata Buch.-Ham. Ex D. Don Whole plant Same as Sanicula lamelligera Antiviral Oleanane saponins, saponins, and microelement [211,212,213,214,215,216]
210 Sanicula lamelligera Hance Whole plant Dispelling wind, melting phlegm, and promoting blood circulation for regulating menstruation Expectorant, antibechic, and anti-inflammatory Angelicin, isoferulaldehyde, and 12-hydroxybakuchiol [19,209,210]
211 Sanicula orthacantha S. Moore Roots or whole plant Heat-clearing and detoxifying, treatment of traumatic injury \ \ [16]
212 Sanicula orthacantha var. Brevispina H. Boissieu Whole plant Heat-clearing and detoxifying, treatment of traumatic injury \ \ [16]
213 **Saposhnikovia divaricata (Turcz.) Schischk. Roots Dispelling wind to relieve superficies, removing dampness to relieve pain, and arrest convulsio Analgesia, sedation, and anti-inflammatory Prim-o-glucosylcimifugin, 5-O-methylvisamitol glycoside, and cimifugin [18,217,218]
214 Selinum cryptotaenium H. Boissieu Roots \ \ \ [1]
215 Semenovia montana Kamelin & V. M. Vinogr. Roots \ \ \ [121]
216 Seseli delavayi Franch. Roots Dispelling wind, removing dampness, and relieving pain \ \ [19]
217 Seseli mairei var. Mairei Roots and rhizome Dispelling wind, removing dampness, and relieving pain Antipyretic, analgesia, and anti-inflammatory Sphondin, bergapten and isopimpinellin [19,219,220,221]
218 Seseli yunnanense Franch. Roots and rhizome Dispelling wind, removing dampness, and relieving pain Antipyretic, analgesia, and anti-inflammatory Falcarindiol, falcarinol, and glycerol monolinoleate [19,219,220,222]
219 Seselopsis tianschanica Schischk. Roots Treatment of fall injury, anemia, and other diseases Treatment of nasopharynx cancer \ [16]
220 Sium suave Walter Whole plant Dispersing cold, relieving headache, and decreasing blood pressure \ \ [16,223]
221 Spuriopimpinella arguta (Diels) X. J. He & Z. X. Wang Roots and whole plant \ \ \ [194]
222 Tongoloa silaifolia (H. Boissieu) H. Wolff Roots Stopping bleeding, relieving pain, and activating blood Treatment of traumatic injury, trauma bleeding, and rheumatic pain Suberosin, crenulatin, and isoimperatorin [19,224,225]
223 Tongoloa stewardii H. Wolff Roots \ \ \ [1]
224 Torilis japonica (Houtt.) DC. Fruits and roots Lumbricide ascaricide, and external antiphlogistic agent \ Essential oil [19]
225 Torilis scabra (Thunb.) DC. Fruits or whole plant Activating blood, insecticide, and antidiarrheal Bacteriostat Cyclohexene, 6,6-dimethyl-bicyclo [3.1.1] heptane-2-carboxaldehyde, and endo-borneol [19,194,226]
226 Trachyspermum ammi (L.) Sprague. Fruits Dispersing cold, relieving pain, and treatment of indigestion Antibacterial, antimicrobial, and antifungal thymol, ρ-cymene, and β-pinene [19,187,227] [228,229,230]
227 Vicatia thibetica H. Boissieu Roots Dispelling wind, eliminating dampness, and dispelling cold Anti-fatigue, antioxidant, and enhancing immunity Umbelliferone, bergapten, and ferulic acid [231,232,233]
228 Visnaga daucoides Gaertn. Fruits Treatment of coronary artery disease, such as panhandling coronary thrombosis Treatment of renal colic, angina pectoris, and urinary calculi Khellin, visnagin, and khellol glycoside [16,234]
Note: “*” means the plant reported in Pharmacopoeia of the People’s Republic of China (2020), “**” means the plant roots used as medicine reported in Pharmacopoeia of the People’s Republic of China (2020), the same below.
Table 2. Quality markers in the 22 AMPs recorded in the Pharmacopoeia of the People’s Republic of China (2020).
Table 2. Quality markers in the 22 AMPs recorded in the Pharmacopoeia of the People’s Republic of China (2020).
No. /No. in Table 1 Plant species Quality markers Classification Biosynthetic pathway
1/8 Angelica biserrata Osthole (1) and columbianadin (2) Coumarins Phenylpropanoids
2/10 Angelica dahurica Imperatorin (3) and isoimperatorin (4) Coumarins Phenylpropanoids
3/11 Angelica dahurica cv. Hangbaizhi (3) and (4) Coumarins Phenylpropanoids
4/13 Angelica decursiva Nodakenin (5) Coumarins Phenylpropanoids
5/20 Angelica sinensis Ferulic acid (6) and ligustilide (15) Propenyl benzenes and phthalides Phenylpropanoids and phthalides
6/34 Bupleurum chinense Saikosaponin a (11) and saikosaponin d (12) Triterpenes Terpenes
7/67 Bupleurum scorzonerifolium (11) and (12) Triterpenes Terpenes
8/79 Changium asiatica Asiaticoside (13) and madecassoside (14) Triterpenes Terpenes
9/80 Changium smyrnioides
10/83 Changium monnieri (1) Coumarins Phenylpropanoids
11/94 Daucus carota
12/102 Ferula fukanensis
13/109 Ferula sinkiangensis
14/112 Foeniculum vulgare Trans-anethole (7) Phenylpropene Phenylpropanoids
15/113 Glehnia littoralis
16/159 Ligusticum chuanxiong (6) and levistilide A (16) Phenylpropanoids and phthalide Phenylpropanoids and phthalides
17/160 Ligusticum jeholense (6) Phenylpropanoids Phenylpropanoids
18/162 Ligusticum sinense (6) Phenylpropanoids Phenylpropanoids
19/167 Notopterygium franchetii (4), (5), and notopterol (8) Coumarins Phenylpropanoids
20/168 Notopterygium incisum (4), (5), and (8) Coumarins Phenylpropanoids
21/186 Peucedanum praeruptorum Praeruptorin A (9) and praeruptorin B (10) Coumarins Phenylpropanoids
22/213 Saposhnikovia divaricata Prim-O-glucosylcimifugin (17) and 5-O-methylvisammioside (18) Chromones Chromones
Note: The “–” indicates there are no specific quality markers recorded in the Pharmacopoeia of the People’s Republic of China (2020).
Table 3. Classification of the 38 rhizomatousAMPs affected by the BF.
Table 3. Classification of the 38 rhizomatousAMPs affected by the BF.
No. /No. in Table 1 Plant species Classes References No. /No. in Table 1 Plant species Classes References
1/4 Angelica acutiloba (Siebold & Zucc.) Kitag. (1) [301] 20/109 *Ferula sinkiangensis K. M. Shen (3) [19]
2/8 **Angelica biserrata (R. H. Shan & C. C. Yuan) C. C. Yuan & R. H. Shan (1) [302] 21/111 Ferula teterrima Kar. & Kir. (3) [19]
3/10 **Angelica dahurica (Fisch. ex Hoffm.) Benth. & Hook. f. ex Franch. & Sav. (1) [303] 22/113 **Glehnia littoralis F. Schmidt ex Miq. (2) [304]
4/11 **Angelica dahurica cv. Hangbaizhi (1) [303] 23/121 Heracleum hemsleyanum Diels (1) [302]
5/13 **Angelica decursiva (Miq.) Franch. & Sav. (1) [305] 24/126 Heracleum rapula Franch. (1) [19]
6/14 Angelica gigas Nakai (2) [306] 25/148 Levisticum officinale W. D. J. Koch (3) [19]
7/19 Angelica polymorpha Maxim. (1) [19] 26/149 Libanotis buchtormensis (Fisch.) DC (3) [307]
8/20 **Angelica sinensis (Oliv.) Diels (1) [308] 27/150 Libanotis iliensis (Lipsky) Korovin (1) [19]
9/26 Anthriscus sylvestris (L.) Hoffm. (3) [309] 28/151 Libanotis lancifolia K. T. Fu (3) [19,307]
10/34 **Bupleurum chinense DC. (2) [310] 29/153 Libanotis seseloides (Fisch. & C. A. Mey. ex Turcz.) Turcz. (1) [19]
11/67 **Bupleurum scorzonerifolium Willd. (2) [310] 30/155 Libanotis spodotrichoma K. T. Fu (3) [19,307]
12/80 **Changium smyrnioides H. Wolff (2) [311] 31/159 **Ligusticum chuanxiong Hort. (2) [312]
13/81 Chuanminshen violaceum M. L. Sheh & R. H. Shan (2) [313] 32/160 **Ligusticum jeholense Nakai et Kitag. (2) [314]
14/82 Cicuta virosa L. (3) [19] 33/162 **Ligusticum sinense Oliv. (2) [314]
15/96 Daucus carota var. sativus Hoffm. (1) [315] 34/167 **Notopterygium franchetii H. de Boiss. (2) [316]
16/102 Ferula feruloides (Steud.) Korovin (3) [19] 35/168 **Notopterygium incisum Ting ex H. T. Chang (2) [316]
17/103 Ferula fukanensis K. M. Shen (3) [19] 36/186 **Peucedanum praeruptorum Dunn (1) [317]
18/106 Ferula lehmannii Boiss. (3) [19] 37/195 Pimpinella candolleana Wight & Arn. (3) [19]
19/108 Ferula olivacea (Diels) H. Wolff ex Hand.-Mazz. (3) [19] 38/213 **Saposhnikovia divaricata (Turcz.) Schischk. (1) [318,319]
Note: (1) the BF significantly affects the yield and quality, and the rhizomes or roots are absolutely useless for clinical effects; (2) the BF differently affects the yield, while the rhizomes or roots can be used as medicine to some extent; and (3) the BF has no significant effect on the yield and quality, and their rhizomes or roots are used as medicine without doubtedly, the same below.
Table 4. Approach to inhibit BF of 25 AMPs have been reported.
Table 4. Approach to inhibit BF of 25 AMPs have been reported.
Classes No. /No. in Table 1 Plant species Measure Ⅰ
(Seeding)
Measure Ⅱ
(Cultivation)
Measure Ⅲ
(Abiotic)
Measure Ⅳ
(Molecular biology)
(1) 1/4 Angelica acutiloba (Siebold & Zucc.) Kitag. Seedling diameter [334] Density of planted seedlings [334] Paclobutrazol concentration [334] \
(1) 2/8 **Angelica biserrate (R. H. Shan & C. C. Yuan) C. C. Yuan & R. H. Shan Seedling size and root length [302] \ \ \
(1) 3/10 **Angelica dahurica (Fisch. ex Hoffm.) Benth. & Hook. f. ex Franch. & Sav. Seed quality and seed maturity degree [303,328] Soil selection should avoid continuous cropping and fertile sticky soil, density of planted seedlings, and seeding time [328,330,335] Rational application of fertilizer, and appropriate N, P, and K fertilizer [303,328,336] Seven types of reproductive conversion genes, and adconstans-like gene [337,338]
(1) 4/11 **Angelica dahurica cv. Hangbaizhi Seed quality and seed maturity degree [303,328] Soil selection should avoid continuous cropping and fertile sticky soil, density of planted seedlings, and seeding time [328,330,335] Rational application of fertilizer, and appropriate N, P, and K fertilizer [303,328,336] Seven types of reproductive conversion gene, and adconstans-like gene [337,338]
(1) 5/13 **Angelica decursiva (Miq.) Franch. & Sav. \ \ \ \
(1) 6/19 Angelica polymorpha Maxim. \ \ \ \
(1) 7/20 **Angelica sinensis (Oliv.) Diels Seed maturity degree, seeding age, seeding weight, root diameter, and excellent variety [323,325,339,340,341] Short-day, storage temperature, and reasonable planting and cultivation [308,339,342] Plant growth retardant [343] Four pathways of genes for regulating early bolting and flowering [344,345]
(1) 8/96 Daucus carota var. Sativus Hoffm. Endogenous hormone content and different cultivars [346,347] Temperature, short-day, and seeding time [346,348,349,350] \ Two major genes: Bol1-1 and Bol1-2 [351]
(1) 9/121 Heracleum hemsleyanum Diels \ \ \ \
(1) 10/126 Heracleum rapula Franch. \ \ \ \
(1) 11/150 Libanotis iliensis (Lipsky) Korovin \ \ \ \
(1) 12/153 Libanotis seseloides (Fisch. & C. A. Mey. ex Turcz.) Turcz. \ \ \ \
(1) 13/186 **Peucedanum praeruptorum Dunn \ Compact planting and seeding time [352,353] \ \
(1) 14/213 **Saposhnikovia divaricata (Turcz.) Schischk. \ Density of planted seedlings [333] \ Differentially expressed genes associated with bolting and flowering during early flowering, flower bud differentiation, and late flowering [354]
(2) 15/14 Angelica gigas Nakai \ \ \ \
(2) 16/34 **Bupleurum chinense DC. \ Cut the flowers [310] Temperature [355] Flowering gene (bcsvp, bcpaf1, bcco and bcft) [356]
(2) 17/67 **Bupleurum scorzonerifolium Willd. \ \ \ \
(2) 18/80 Changium smyrnioides H. Wolff \ Cut the flowers [311] \ \
(2) 19/81 Chuanminshen violaceum M. L. Sheh & R. H. Shan \ \ \ \
(2) 20/113 **Glehnia littoralis F. Schmidt ex Miq. \ Cut the flowers [304] \ \
(2) 21/159 **Ligusticum chuanxiong Hort. Asexual reproduction and tissue cultur [312,357] Cut the bolted stem [358] \ Transcriptome original data by Illumina sequencing technology [359]
(2) 22/160 **Ligusticum jeholense Nakai et Kitag. \ Cut the flower [360,361] \ \
(2) 23/162 **Ligusticum sinense Oliv. \ Cut the flower [360,361] \ \
(2) 24/167 **Notopterygium franchetii H. de Boiss. \ Cut the flower [362] \ \
(2) 25/168 **Notopterygium incisum Ting ex H. T. Chang \ Cut the flower [316] \ \
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated