Preprint
Article

The Guided Ultrasonic Wave Oscillation Phase Relation Between the Surfaces of Plate-Like Structures of Different Material Settings

Altmetrics

Downloads

113

Views

39

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

18 December 2022

Posted:

22 December 2022

You are already at the latest version

Alerts
Abstract
Lamb waves occur in thin-walled structures in two wave modes, the symmetric and antisymmetric mode. Their oscillation on the structures‘ surfaces is either in phase (symmetric) or shifted by a phase angle of π (antisymmetric). In this work, a method is developed to compare the surfaces‘ oscillation phase relation. It is based on the evaluation of time signals regarding the instantaneous phase angle using the continuous wavelet transformation and as a comparative method the short-time Fourier transformation. For this purpose, numerical simulations utilizing the finite element method provide time signals from the top and bottom surface of different thin-walled structures. They differ with respect to their material settings and laminate configurations. The numerically obtained time signals are evaluated by the developed methods. The occurring oscillation phase differences on the top and bottom surface are studied and both methods are compared. Subsequently, the oscillation phase is evaluated experimentally for the wave propagation in a fiber metal laminate. It is shown that the method based on the continuous wavelet transformation is suitable for the evaluation of oscillation phase relations in time signals. Additionally, it is proven that fiber metal laminates show only two phase relations which indicates the occurrence of Lamb waves.
Keywords: 
Subject: Engineering  -   Mechanical Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated