Preprint
Article

Novel Speech Recognition Systems Applied to Forensics within Child Exploitation: Wav2vec2.0 vs. Whisper

Altmetrics

Downloads

1450

Views

167

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

21 December 2022

Posted:

22 December 2022

You are already at the latest version

Alerts
Abstract
The growth in online child exploitation material is a significant challenge for European Law Enforcement Agencies (LEAs). One of the most important sources of such online information corresponds to audio material that needs to be analyzed to find evidence in a timely and practical manner. That is why LEAs require a next-generation AI-powered platform to process audio data from online sources. We propose the use of speech recognition and keyword spotting to transcribe audiovisual data and to detect the presence of keywords related to child abuse. The considered models are based on two of the most accurate neural-based architectures to date: Wav2vec2.0 and Whisper. The systems are tested under an extensive set of scenarios in different languages. Additionally, keeping in mind that obtaining data from LEAs is very sensitive, we explore the use of federated learning to have more robust systems for the addressed application, while maintaining the privacy of the data to LEAs. The considered models achieved a word error rate between 11% and 25%, depending on the language. In addition, the systems are able to recognize a set of spotted words with true positives rates between 82% and 98%, depending on the language. Finally, federated learning strategies show that they can maintain and even improve the performance of the systems when compared to centralized trained models. The proposed systems sit the basis for an AI-powered platform for automatic analysis of audio in the context of forensic applications within child abuse. The use of federated learning is also promising for the addressed scenario, where data privacy is an important issue to be managed.
Keywords: 
Subject: Engineering  -   Electrical and Electronic Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated