Submitted:
31 December 2022
Posted:
04 January 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Calcitonin Gene-Related Peptide Function in Migraine and Neuropathic Pain
2.1. Migraine
2.2. Neuropathic Pain
3. Kynurenine Function in Migraine and Neuropathic Pain
3.1. Migraine
3.2. Neuropathic Pain
4. Glial Function in Migraine and Neuropathic Pain
4.1. Migraine
4.2. Neuropathic Pain
5. Cytokine Function in Migraine and Neuropathic Pain
5.1. Migraine
5.2. Neuropathic Pain
6. Transient Ion Channel Function in Migraine and Neuropathic Pain
6.1. Migraine
6.2. Neuropathic Pain
7. Endocannabinoid Function in Migraine and Neuropathic Pain in Humans
7.1. Migraine
7.2. Neuropathic Pain
8. Conclusion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
| 2-AG | 2-arachidonoylglycerol |
| AMPA | α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid |
| AMT | anandamide membrane transporter |
| CBR | cannabinoid receptor |
| CGRP | calcitonin gene-related peptide |
| CM | chronic migraine |
| CNS | central nervous system |
| CRPS | complex regional pain syndrome |
| CSF | cerebrospinal fluid |
| EM | episodic migraine |
| FAAH | fatty acid amide hydrolase |
| FHM | familial hemiplegic migraine |
| HIV | human immunodeficiency virus |
| IL | interleukin |
| KYN | Kynurenines |
| KYNA | kynurenic acid |
| L-KYN | L-kynurenine |
| M0 | migraine without aura |
| MA | migraine with aura |
| mAbs | monoclonal antibodies |
| MAGL | monoacylglycerol lipase |
| MAPK | mitogen-activated protein kinase |
| mRNA | messenger ribonucleic acid |
| nd | no data available |
| NMDA | glutamatergic N-methyl-D-aspartate |
| NP | neuropathic pain |
| NTG | nitroglycerine |
| PDN | painful diabetic neuropathy |
| PEA | palmitoylethanolamide |
| PET | positron emission tomography |
| PHN | postherpetic neuralgia |
| RCT | randomized controlled trial |
| TCC | trigemino-cevical complex |
| TNF-alpha | tumor necrosis factor alpha |
| Trp | tryptophan |
| TRP | transient receptor potential |
| TRPA-1 | transient receptor potential ankyrin 1 |
| TRPM-8 | transient receptor potential melastatin 8 |
| TRPV-1 | transient receptor potential vanilloid 1 |
| TSPO | translocator protein |
References
- Headache Classification Committee of the International Headache Society (Ihs) the International Classification of Headache Disorders, 3rd Edition. Cephalalgia: an international journal of headache 2018, 38, 1–211. [CrossRef] [PubMed]
- Jensen TS, Baron R, Haanpaa M, Kalso E, Loeser JD, Rice ASC, et al. A New Definition of Neuropathic Pain. Pain 2011, 152, 2204–2205. [Google Scholar] [CrossRef] [PubMed]
- Treede RD, Rief W, Barke A, Aziz Q, Bennett MI, Benoliel R, et al. Chronic Pain as a Symptom or a Disease: The Iasp Classification of Chronic Pain for the International Classification of Diseases (Icd-11). Pain 2019, 160, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Scholz J, Finnerup NB, Attal N, Aziz Q, Baron R, Bennett MI, et al. The Iasp Classification of Chronic Pain for Icd-11: Chronic Neuropathic Pain. Pain 2019, 160, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Tajti J, Szok D, Nyari A, Vecsei L. Cgrp and Cgrp-Receptor as Targets of Migraine Therapy: Brain Prize-2021. CNS & neurological disorders drug targets 2021. [CrossRef]
- Vecsei L, Majlath Z, Balog A, Tajti J. Drug Targets of Migraine and Neuropathy: Treatment of Hyperexcitability. CNS & neurological disorders drug targets 2015, 14, 664–676. [Google Scholar] [CrossRef] [PubMed]
- Vecsei L, Szalardy L, Fulop F, Toldi J. Kynurenines in the Cns: Recent Advances and New Questions. Nature reviews Drug discovery 2013, 12, 64–82. [Google Scholar] [CrossRef] [PubMed]
- Spekker E, Tanaka M, Szabo A, Vecsei L. Neurogenic Inflammation: The Participant in Migraine and Recent Advancements in Translational Research. Biomedicines 2021, 10. [Google Scholar] [CrossRef] [PubMed]
- Ji A, Xu J. Neuropathic Pain: Biomolecular Intervention and Imaging Via Targeting Microglia Activation. Biomolecules 2021, 11. [Google Scholar] [CrossRef]
- Kowalska M, Prendecki M, Piekut T, Kozubski W, Dorszewska J. Migraine: Calcium Channels and Glia. International journal of molecular sciences 2021, 22. [Google Scholar] [CrossRef]
- Duarte RA, Dahmer S, Sanguinetti SY, Forde G, Duarte DP, Kobak LF. Medical Cannabis for Headache Pain: A Primer for Clinicians. Current pain and headache reports 2021, 25, 64. [Google Scholar] [CrossRef] [PubMed]
- Longo R, Oudshoorn A, Befus D. Cannabis for Chronic Pain: A Rapid Systematic Review of Randomized Control Trials. Pain management nursing: official journal of the American Society of Pain Management Nurses 2021, 22, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Iannone LF, De Logu F, Geppetti P, De Cesaris F. The Role of Trp Ion Channels in Migraine and Headache. Neuroscience letters 2022, 768, 136380. [Google Scholar] [CrossRef] [PubMed]
- Hall OM, Broussard A, Range T, Carroll Turpin MA, Ellis S, Lim VM, et al. Novel Agents in Neuropathic Pain, the Role of Capsaicin: Pharmacology, Efficacy, Side Effects, Different Preparations. Current pain and headache reports 2020, 24, 53. [Google Scholar] [CrossRef] [PubMed]
- Conti P, D'Ovidio C, Conti C, Gallenga CE, Lauritano D, Caraffa A, et al. Progression in Migraine: Role of Mast Cells and Pro-Inflammatory and Anti-Inflammatory Cytokines. European journal of pharmacology 2019, 844, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Amara SG, Jonas V, Rosenfeld MG, Ong ES, Evans RM. Alternative RNA processing in calcitonin gene expression generates mRNAs encoding different polypeptide products. Nature 1982, 298, 240–244. [Google Scholar] [CrossRef]
- Edvinsson L, Haanes KA, Warfvinge K, Krause DN. Cgrp as the Target of New Migraine Therapies - Successful Translation from Bench to Clinic. Nature reviews Neurology 2018, 14, 338–350. [Google Scholar] [CrossRef] [PubMed]
- Kang SA, Govindarajan R. Anti-Calcitonin Gene-Related Peptide Monoclonal Antibodies for Neuropathic Pain in Patients with Migraine Headache. Muscle & nerve 2021, 63, 563–567. [Google Scholar] [CrossRef] [PubMed]
- Jovanovic F, Candido KD, Knezevic NN. The Role of the Kynurenine Signaling Pathway in Different Chronic Pain Conditions and Potential Use of Therapeutic Agents. International journal of molecular sciences 2020, 21. [Google Scholar] [CrossRef]
- Yilmaz N, Karaali K, Ozdem S, Turkay M, Unal A, Dora B. Elevated S100b and Neuron Specific Enolase Levels in Patients with Migraine-without Aura: Evidence for Neurodegeneration? Cellular and molecular neurobiology 2011, 31, 579–585. [Google Scholar] [CrossRef]
- Baka P, Escolano-Lozano F, Birklein F. Systemic Inflammatory Biomarkers in Painful Diabetic Neuropathy. Journal of diabetes and its complications 2021, 35, 108017. [Google Scholar] [CrossRef] [PubMed]
- Benemei S, Fusi C, Trevisan G, Geppetti P. The Trpa1 Channel in Migraine Mechanism and Treatment. British journal of pharmacology 2014, 171, 2552–2567. [Google Scholar] [CrossRef] [PubMed]
- Derry S, Rice AS, Cole P, Tan T, Moore RA. Topical Capsaicin (High Concentration) for Chronic Neuropathic Pain in Adults. The Cochrane database of systematic reviews 2017, 1, CD007393. [Google Scholar] [CrossRef]
- Wilkerson JL, Bilbrey JA, Felix JS, Makriyannis A, McMahon LR. Untapped Endocannabinoid Pharmacological Targets: Pipe Dream or Pipeline? Pharmacology, biochemistry, and behavior 2021, 206, 173192. [Google Scholar] [CrossRef]
- Goadsby PJ, Edvinsson L, Ekman R. Vasoactive Peptide Release in the Extracerebral Circulation of Humans During Migraine Headache. Annals of neurology 1990, 28, 183–187. [Google Scholar] [CrossRef] [PubMed]
- Tuka B, Helyes Z, Markovics A, Bagoly T, Szolcsanyi J, Szabo N, et al. Alterations in Pacap-38-Like Immunoreactivity in the Plasma During Ictal and Interictal Periods of Migraine Patients. Cephalalgia: an international journal of headache 2013, 33, 1085–1095. [Google Scholar] [CrossRef]
- Tajti J, Uddman R, Moller S, Sundler F, Edvinsson L. Messenger Molecules and Receptor Mrna in the Human Trigeminal Ganglion. Journal of the autonomic nervous system 1999, 76, 176–183. [Google Scholar] [CrossRef]
- Eftekhari S, Salvatore CA, Calamari A, Kane SA, Tajti J, Edvinsson L. Differential Distribution of Calcitonin Gene-Related Peptide and Its Receptor Components in the Human Trigeminal Ganglion. Neuroscience 2010, 169, 683–696. [Google Scholar] [CrossRef]
- Moskowitz MA, Reinhard JF, Jr. , Romero J, Melamed E, Pettibone DJ. Neurotransmitters and the Fifth Cranial Nerve: Is There a Relation to the Headache Phase of Migraine? Lancet 1979, 2, 883–885. [Google Scholar] [CrossRef]
- Liu-Chen LY, Mayberg MR, Moskowitz MA. Immunohistochemical Evidence for a Substance P-Containing Trigeminovascular Pathway to Pial Arteries in Cats. Brain research 1983, 268, 162–166. [Google Scholar] [CrossRef]
- Buzzi MG, Moskowitz MA. The Trigemino-Vascular System and Migraine. Pathologie-biologie 1992, 40, 313–317. [Google Scholar]
- Ho TW, Edvinsson L, Goadsby PJ. Cgrp and Its Receptors Provide New Insights into Migraine Pathophysiology. Nature reviews Neurology 2010, 6, 573–582. [Google Scholar] [CrossRef] [PubMed]
- Bigal ME, Ashina S, Burstein R, Reed ML, Buse D, Serrano D, et al. Prevalence and Characteristics of Allodynia in Headache Sufferers: A Population Study. Neurology 2008, 70, 1525–1533. [Google Scholar] [CrossRef]
- Lassen LH, Haderslev PA, Jacobsen VB, Iversen HK, Sperling B, Olesen J. Cgrp May Play a Causative Role in Migraine. Cephalalgia: an international journal of headache 2002, 22, 54–61. [Google Scholar] [CrossRef]
- Negro A, Martelletti P. Gepants for the Treatment of Migraine. Expert opinion on investigational drugs 2019, 28, 555–567. [Google Scholar] [CrossRef]
- Eigenbrodt AK, Ashina H, Khan S, Diener HC, Mitsikostas DD, Sinclair AJ, et al. Diagnosis and Management of Migraine in Ten Steps. Nature reviews Neurology 2021, 17, 501–514. [Google Scholar] [CrossRef]
- Ferrari MD, Goadsby PJ, Burstein R, Kurth T, Ayata C, Charles A, et al. Migraine. Nature reviews Disease primers 2022, 8, 2. [Google Scholar] [CrossRef]
- Edvinsson, L. Role of Cgrp in Migraine. Handbook of experimental pharmacology 2019, 255, 121–130. [Google Scholar] [CrossRef]
- Ashina M, Buse DC, Ashina H, Pozo-Rosich P, Peres MFP, Lee MJ, et al. Migraine: Integrated Approaches to Clinical Management and Emerging Treatments. Lancet 2021, 397, 1505–1518. [Google Scholar] [CrossRef]
- Gklinos P, Mitsikostas DD. The Role of Galcanezumab in Migraine Prevention: Existing Data and Future Directions. Pharmaceuticals 2021, 14. [Google Scholar] [CrossRef]
- Edvinsson, L. Cgrp and Migraine: From Bench to Bedside. Revue neurologique 2021, 177, 785–790. [Google Scholar] [CrossRef] [PubMed]
- Gibson SJ, Polak JM, Bloom SR, Sabate IM, Mulderry PM, Ghatei MA, et al. Calcitonin Gene-Related Peptide Immunoreactivity in the Spinal Cord of Man and of Eight Other Species. The Journal of neuroscience 1984, 4, 3101–3111. [Google Scholar] [CrossRef] [PubMed]
- Schou WS, Ashina S, Amin FM, Goadsby PJ, Ashina M. Calcitonin Gene-Related Peptide and Pain: A Systematic Review. The journal of headache and pain 2017, 18, 34. [Google Scholar] [CrossRef]
- Hou Q, Barr T, Gee L, Vickers J, Wymer J, Borsani E, et al. Keratinocyte Expression of Calcitonin Gene-Related Peptide Beta: Implications for Neuropathic and Inflammatory Pain Mechanisms. Pain 2011, 152, 2036–2051. [Google Scholar] [CrossRef] [PubMed]
- Nicholas M, Vlaeyen JWS, Rief W, Barke A, Aziz Q, Benoliel R, et al. The Iasp Classification of Chronic Pain for Icd-11: Chronic Primary Pain. Pain 2019, 160, 28–37. [Google Scholar] [CrossRef]
- Birklein F, Schmelz M, Schifter S, Weber M. The Important Role of Neuropeptides in Complex Regional Pain Syndrome. Neurology 2001, 57, 2179–2184. [Google Scholar] [CrossRef]
- Lindqvist A, Rivero-Melian C, Turan I, Fried K. Neuropeptide- and Tyrosine Hydroxylase-Immunoreactive Nerve Fibers in Painful Morton's Neuromas. Muscle & nerve 2000, 23, 1214–1218. [Google Scholar] [CrossRef]
- Tajti J, Szok D, Nagy-Grocz G, Tuka B, Petrovics-Balog A, Toldi J, et al. Kynurenines and Pacap in Migraine: Medicinal Chemistry and Pathogenetic Aspects. Current medicinal chemistry 2017, 24, 1332–1349. [Google Scholar] [CrossRef] [PubMed]
- Bohar Z, Pardutz A, Vecsei L. Tryptophan Catabolites and Migraine. Current pharmaceutical design 2016, 22, 1013–1021. [Google Scholar] [CrossRef]
- Woolf CJ, Thompson SWN. The Induction and Maintenance of Central Sensitization Is Dependent on N-Methyl-D-Aspartic Acid Receptor Activation; Implications for the Treatment of Post-Injury Pain Hypersensitivity States. Pain 1991, 44, 293–299. [Google Scholar] [CrossRef]
- Ferrari MD, Odink J, Bos KD, Malessy MJ, Bruyn GW. Neuroexcitatory Plasma Amino Acids Are Elevated in Migraine. Neurology 1990, 40, 1582–1586. [Google Scholar] [CrossRef] [PubMed]
- D'Andrea G, Cananzi AR, Joseph R, Morra M, Zamberlan F, Ferro Milone F, et al. Platelet Glycine, Glutamate and Aspartate in Primary Headache. Cephalalgia: an international journal of headache 1991, 11, 197–200. [Google Scholar] [CrossRef] [PubMed]
- Martinez F, Castillo J, Rodriguez JR, Leira R, Noya M. Neuroexcitatory Amino Acid Levels in Plasma and Cerebrospinal Fluid During Migraine Attacks. Cephalalgia: an international journal of headache 1993, 13, 89–93. [Google Scholar] [CrossRef] [PubMed]
- Rajda C, Tajti J, Komoroczy R, Seres E, Klivenyi P, Vecsei L. Amino Acids in the Saliva of Patients with Migraine. Headache 1999, 39, 644–649. [Google Scholar] [CrossRef] [PubMed]
- Peres MF, Zukerman E, Senne Soares CA, Alonso EO, Santos BF, Faulhaber MH. Cerebrospinal Fluid Glutamate Levels in Chronic Migraine. Cephalalgia: an international journal of headache 2004, 24, 735–739. [Google Scholar] [CrossRef] [PubMed]
- Prescot A, Becerra L, Pendse G, Tully S, Jensen E, Hargreaves R, et al. Excitatory Neurotransmitters in Brain Regions in Interictal Migraine Patients. Molecular pain 2009, 5, 34. [Google Scholar] [CrossRef] [PubMed]
- Gollion, C. Cortical Excitability in Migraine: Contributions of Magnetic Resonance Imaging. Revue neurologique 2021, 177, 809–815. [Google Scholar] [CrossRef] [PubMed]
- Peek AL, Rebbeck T, Puts NA, Watson J, Aguila MR, Leaver AM. Brain Gaba and Glutamate Levels across Pain Conditions: A Systematic Literature Review and Meta-Analysis of 1h-Mrs Studies Using the Mrs-Q Quality Assessment Tool. NeuroImage 2020, 210, 116532. [Google Scholar] [CrossRef] [PubMed]
- Gecse K, Dobos D, Aranyi CS, Galambos A, Baksa D, Kocsel N, et al. Association of Plasma Tryptophan Concentration with Periaqueductal Gray Matter Functional Connectivity in Migraine Patients. Scientific reports 2022, 12, 739. [Google Scholar] [CrossRef]
- Weiller C, May A, Limmroth V, Juptner M, Kaube H, Schayck RV, et al. Brain Stem Activation in Spontaneous Human Migraine Attacks. Nature medicine 1995, 1, 658–660. [Google Scholar] [CrossRef]
- Tajti J, Uddman R, Edvinsson L. Neuropeptide Localization in the "Migraine Generator" Region of the Human Brainstem. Cephalalgia: an international journal of headache 2001, 21, 96–101. [Google Scholar] [CrossRef]
- Weir GA, Cader MZ. New Directions in Migraine. BMC medicine 2011, 9, 116. [Google Scholar] [CrossRef]
- Ophoff RA, Terwindt GM, Vergouwe MN, van Eijk R, Oefner PJ, Hoffman SM, et al. Familial Hemiplegic Migraine and Episodic Ataxia Type-2 Are Caused by Mutations in the Ca2+ Channel Gene Cacnl1a4. Cell 1996, 87, 543–552. [Google Scholar] [CrossRef]
- De Fusco M, Marconi R, Silvestri L, Atorino L, Rampoldi L, Morgante L, et al. Haploinsufficiency of Atp1a2 Encoding the Na+/K+ Pump Alpha2 Subunit Associated with Familial Hemiplegic Migraine Type 2. Nature genetics 2003, 33, 192–196. [Google Scholar] [CrossRef]
- Dichgans M, Freilinger T, Eckstein G, Babini E, Lorenz-Depiereux B, Biskup S, et al. Mutation in the Neuronal Voltage-Gated Sodium Channel Scn1a in Familial Hemiplegic Migraine. Lancet 2005, 366, 371–377. [Google Scholar] [CrossRef]
- Curto M, Lionetto L, Negro A, Capi M, Fazio F, Giamberardino MA, et al. Altered Kynurenine Pathway Metabolites in Serum of Chronic Migraine Patients. The journal of headache and pain 2015, 17, 47. [Google Scholar] [CrossRef]
- Tuka B, Nyari A, Cseh EK, Kortesi T, Vereb D, Tomosi F, et al. Clinical Relevance of Depressed Kynurenine Pathway in Episodic Migraine Patients: Potential Prognostic Markers in the Peripheral Plasma During the Interictal Period. The journal of headache and pain 2021, 22, 60. [Google Scholar] [CrossRef]
- Al-Karagholi MA, Hansen JM, Abou-Kassem D, Hansted AK, Ubhayasekera K, Bergquist J, et al. Phase 1 Study to Access Safety, Tolerability, Pharmacokinetics, and Pharmacodynamics of Kynurenine in Healthy Volunteers. Pharmacology research & perspectives 2021, 9, e00741. [Google Scholar] [CrossRef]
- Jensen TS, Finnerup NB. Allodynia and Hyperalgesia in Neuropathic Pain: Clinical Manifestations and Mechanisms. The Lancet Neurology 2014, 13, 924–935. [Google Scholar] [CrossRef]
- Wallace MS, Lam V, Schettler J. Ngx426, an Oral Ampa-Kainate Antagonist, Is Effective in Human Capsaicin-Induced Pain and Hyperalgesia. Pain medicine 2012, 13, 1601–1610. [Google Scholar] [CrossRef]
- Chappell AS, Iyengar S, Lobo ED, Prucka WR. Results from Clinical Trials of a Selective Ionotropic Glutamate Receptor 5 (Iglur5) Antagonist, Ly5454694 Tosylate, in 2 Chronic Pain Conditions. Pain 2014, 155, 1140–1149. [Google Scholar] [CrossRef]
- Wallace M, White A, Grako KA, Lane R, Cato AJ, Snodgrass HR. Randomized, Double-Blind, Placebo-Controlled, Dose-Escalation Study: Investigation of the Safety, Pharmacokinetics, and Antihyperalgesic Activity of L-4-Chlorokynurenine in Healthy Volunteers. Scandinavian journal of pain 2017, 17, 243–251. [Google Scholar] [CrossRef]
- Alexander GM, Reichenberger E, Peterlin BL, Perreault MJ, Grothusen JR, Schwartzman RJ. Plasma Amino Acids Changes in Complex Regional Pain Syndrome. Pain research and treatment 2013, 2013, 742407. [Google Scholar] [CrossRef]
- Barjandi G, Louca Jounger S, Lofgren M, Bileviciute-Ljungar I, Kosek E, Ernberg M. Plasma Tryptophan and Kynurenine in Females with Temporomandibular Disorders and Fibromyalgia-an Exploratory Pilot Study. Journal of oral rehabilitation 2020, 47, 150–157. [Google Scholar] [CrossRef]
- Csati A, Tajti J, Tuka B, Edvinsson L, Warfvinge K. Calcitonin Gene-Related Peptide and Its Receptor Components in the Human Sphenopalatine Ganglion -- Interaction with the Sensory System. Brain research 2012, 1435, 29–39. [Google Scholar] [CrossRef]
- Edvinsson L, Haanes KA, Warfvinge K. Does Inflammation Have a Role in Migraine? Nature reviews Neurology 2019, 15, 483–490. [Google Scholar] [CrossRef]
- Teepker M, Munk K, Mylius V, Haag A, Moller JC, Oertel WH, et al. Serum Concentrations of S100b and Nse in Migraine. Headache 2009, 49, 245–252. [Google Scholar] [CrossRef]
- Celikbilek A, Sabah S, Tanik N, Ak H, Atalay T, Yilmaz N. Is Serum S100b Protein an Useful Biomarker in Migraine? Neurological sciences: official journal of the Italian Neurological Society and of the Italian Society of Clinical Neurophysiology 2014, 35, 1197–1201. [Google Scholar] [CrossRef]
- Kwok YH, Swift JE, Gazerani P, Rolan P. A Double-Blind, Randomized, Placebo-Controlled Pilot Trial to Determine the Efficacy and Safety of Ibudilast, a Potential Glial Attenuator, in Chronic Migraine. Journal of pain research 2016, 9, 899–907. [Google Scholar] [CrossRef]
- Riesco N, Cernuda-Morollon E, Martinez-Camblor P, Perez-Pereda S, Pascual J. Peripheral, Interictal Serum S100b Levels Are Not Increased in Chronic Migraine Patients. Headache 2020, 60, 1705–1711. [Google Scholar] [CrossRef]
- Gonen M, Ozdogan S, Balgetir F, Demir CF, Aytac E, Mungen B. S100b and Neuron-Specific Enolase Levels in Episodic and Chronic Migraine. Acta neurologica Scandinavica 2021, 143, 298–302. [Google Scholar] [CrossRef] [PubMed]
- Coull JA, Boudreau D, Bachand K, Prescott SA, Nault F, Sik A, et al. Trans-Synaptic Shift in Anion Gradient in Spinal Lamina I Neurons as a Mechanism of Neuropathic Pain. Nature 2003, 424, 938–942. [Google Scholar] [CrossRef]
- Coull JA, Beggs S, Boudreau D, Boivin D, Tsuda M, Inoue K, et al. Bdnf from Microglia Causes the Shift in Neuronal Anion Gradient Underlying Neuropathic Pain. Nature 2005, 438, 1017–1021. [Google Scholar] [CrossRef] [PubMed]
- Trang T, Beggs S, Salter MW. Brain-Derived Neurotrophic Factor from Microglia: A Molecular Substrate for Neuropathic Pain. Neuron glia biology 2011, 7, 99–108. [Google Scholar] [CrossRef] [PubMed]
- Tsuda, M. Microglia in the Spinal Cord and Neuropathic Pain. Journal of diabetes investigation 2016, 7, 17–26. [Google Scholar] [CrossRef] [PubMed]
- Suter, MR. Microglial Role in the Development of Chronic Pain. Current opinion in anaesthesiology 2016, 29, 584–589. [Google Scholar] [CrossRef] [PubMed]
- Haight ES, Forman TE, Cordonnier SA, James ML, Tawfik VL. Microglial Modulation as a Target for Chronic Pain: From the Bench to the Bedside and Back. Anesthesia and analgesia 2019, 128, 737–746. [Google Scholar] [CrossRef] [PubMed]
- Ji RR, Berta T, Nedergaard M. Glia and Pain: Is Chronic Pain a Gliopathy? Pain 2013, 154 (Suppl 1), S10–S28. [Google Scholar] [CrossRef] [PubMed]
- Block, L. Glial Dysfunction and Persistent Neuropathic Postsurgical Pain. Scandinavian journal of pain 2016, 10, 74–81. [Google Scholar] [CrossRef]
- Banati RB, Cagnin A, Brooks DJ, Gunn RN, Myers R, Jones T, et al. Long-Term Trans-Synaptic Glial Responses in the Human Thalamus after Peripheral Nerve Injury. Neuroreport 2001, 12, 3439–3442. [Google Scholar] [CrossRef]
- Green JM, Sundman MH, Chou YH. Opioid-Induced Microglia Reactivity Modulates Opioid Reward, Analgesia, and Behavior. Neuroscience and biobehavioral reviews 2022, 135, 104544. [Google Scholar] [CrossRef] [PubMed]
- Machelska H, Celik MO. Opioid Receptors in Immune and Glial Cells-Implications for Pain Control. Frontiers in immunology 2020, 11, 300. [Google Scholar] [CrossRef] [PubMed]
- Maarrawi J, Peyron R, Mertens P, Costes N, Magnin M, Sindou M, et al. Motor Cortex Stimulation for Pain Control Induces Changes in the Endogenous Opioid System. Neurology 2007, 69, 827–834. [Google Scholar] [CrossRef]
- Loggia ML, Chonde DB, Akeju O, Arabasz G, Catana C, Edwards RR, et al. Evidence for Brain Glial Activation in Chronic Pain Patients. Brain: a journal of neurology 2015, 138, 604–615. [Google Scholar] [CrossRef] [PubMed]
- Anand P, Shenoy R, Palmer JE, Baines AJ, Lai RY, Robertson J, et al. Clinical Trial of the P38 Map Kinase Inhibitor Dilmapimod in Neuropathic Pain Following Nerve Injury. European journal of pain 2011, 15, 1040–1048. [Google Scholar] [CrossRef] [PubMed]
- Landry RP, Jacobs VL, Romero-Sandoval EA, DeLeo JA. Propentofylline, a Cns Glial Modulator Does Not Decrease Pain in Post-Herpetic Neuralgia Patients: In Vitro Evidence for Differential Responses in Human and Rodent Microglia and Macrophages. Experimental neurology 2012, 234, 340–350. [Google Scholar] [CrossRef] [PubMed]
- Ostenfeld T, Krishen A, Lai RY, Bullman J, Green J, Anand P, et al. A Randomized, Placebo-Controlled Trial of the Analgesic Efficacy and Safety of the P38 Map Kinase Inhibitor, Losmapimod, in Patients with Neuropathic Pain from Lumbosacral Radiculopathy. The Clinical journal of pain 2015, 31, 283–293. [Google Scholar] [CrossRef] [PubMed]
- Syngle A, Verma I, Krishan P, Garg N, Syngle V. Minocycline Improves Peripheral and Autonomic Neuropathy in Type 2 Diabetes: Mind Study. Neurological sciences 2014, 35, 1067–1073. [Google Scholar] [CrossRef] [PubMed]
- Sumitani M, Ueda H, Hozumi J, Inoue R, Kogure T, Yamada Y. Minocycline Does Not Decrease Intensity of Neuropathic Pain Intensity, but Does Improve Its Affective Dimension. Journal of pain & palliative care pharmacotherapy 2016, 30, 31–35. [Google Scholar] [CrossRef]
- Spriggs DR, Sherman ML, Michie H, Arthur KA, Imamura K, Wilmore D, et al. Recombinant Human Tumor Necrosis Factor Administered as a 24-Hour Intravenous Infusion. A Phase I and Pharmacologic Study. Journal of the National Cancer Institute 1988, 80, 1039–1044. [Google Scholar] [CrossRef]
- Chapman PB, Lester TJ, Casper ES, Gabrilove JL, Wong GY, Kempin SJ, et al. Clinical Pharmacology of Recombinant Human Tumor Necrosis Factor in Patients with Advanced Cancer. Journal of clinical oncology 1987, 5, 1942–1951. [Google Scholar] [CrossRef] [PubMed]
- Schiller JH, Storer BE, Witt PL, Alberti D, Tombes MB, Arzoomanian R, et al. Biological and Clinical Effects of Intravenous Tumor Necrosis Factor-Alpha Administered Three Times Weekly. Cancer research 1991, 51, 1651–1658. [Google Scholar]
- Smith, RS. The Cytokine Theory of Headache. Medical hypotheses 1992, 39, 168–174. [Google Scholar] [CrossRef]
- van Hilten JJ, Ferrari MD, Van der Meer JW, Gijsman HJ, Looij BJ, Jr. Plasma Interleukin-1, Tumour Necrosis Factor and Hypothalamic-Pituitary-Adrenal Axis Responses During Migraine Attacks. Cephalalgia 1991, 11, 65–67. [Google Scholar] [CrossRef]
- Mueller L, Gupta AK, Stein TP. Deficiency of Tumor Necrosis Factor Alpha in a Subclass of Menstrual Migraineurs. Headache 2001, 41, 129–137. [Google Scholar] [CrossRef]
- Empl M, Sostak P, Riedel M, Schwarz M, Muller N, Forderreuther S, et al. Decreased Stnf-Ri in Migraine Patients? Cephalalgia: an international journal of headache 2003, 23, 55–58. [Google Scholar] [CrossRef] [PubMed]
- Perini F, D'Andrea G, Galloni E, Pignatelli F, Billo G, Alba S, et al. Plasma Cytokine Levels in Migraineurs and Controls. Headache 2005, 45, 926–931. [Google Scholar] [CrossRef] [PubMed]
- Sarchielli P, Alberti A, Baldi A, Coppola F, Rossi C, Pierguidi L, et al. Proinflammatory Cytokines, Adhesion Molecules, and Lymphocyte Integrin Expression in the Internal Jugular Blood of Migraine Patients without Aura Assessed Ictally. Headache 2006, 46, 200–207. [Google Scholar] [CrossRef]
- Fidan I, Yuksel S, Ymir T, Irkec C, Aksakal FN. The Importance of Cytokines, Chemokines and Nitric Oxide in Pathophysiology of Migraine. Journal of neuroimmunology 2006, 171, 184–188. [Google Scholar] [CrossRef]
- Tanure MT, Gomez RS, Hurtado RC, Teixeira AL, Domingues RB. Increased Serum Levels of Brain-Derived Neurotropic Factor During Migraine Attacks: A Pilot Study. The journal of headache and pain 2010, 11, 427–430. [Google Scholar] [CrossRef]
- Uzar E, Evliyaoglu O, Yucel Y, Ugur Cevik M, Acar A, Guzel I, et al. Serum Cytokine and Pro-Brain Natriuretic Peptide (Bnp) Levels in Patients with Migraine. European review for medical and pharmacological sciences 2011, 15, 1111–1116. [Google Scholar]
- Wang F, He Q, Ren Z, Li F, Chen W, Lin X, et al. Association of Serum Levels of Intercellular Adhesion Molecule-1 and Interleukin-6 with Migraine. Neurological sciences 2015, 36, 535–540. [Google Scholar] [CrossRef] [PubMed]
- Yucel M, Kotan D, Gurol Ciftci G, Ciftci IH, Cikriklar HI. Serum Levels of Endocan, Claudin-5 and Cytokines in Migraine. European review for medical and pharmacological sciences 2016, 20, 930–936. [Google Scholar]
- Bostrom A, Scheele D, Stoffel-Wagner B, Honig F, Chaudhry SR, Muhammad S, et al. Saliva Molecular Inflammatory Profiling in Female Migraine Patients Responsive to Adjunctive Cervical Non-Invasive Vagus Nerve Stimulation: The Moxy Study. Journal of translational medicine 2019, 17, 53. [Google Scholar] [CrossRef] [PubMed]
- Togha M, Razeghi Jahromi S, Ghorbani Z, Ghaemi A, Rafiee P. Evaluation of Inflammatory State in Migraineurs: A Case-Control Study. Iranian journal of allergy, asthma, and immunology 2020, 19, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Bougea A, Spantideas N, Galanis P, Katsika P, Boufidou F, Voskou P, et al. Salivary Inflammatory Markers in Tension Type Headache and Migraine: The Salhead Cohort Study. Neurological sciences 2020, 41, 877–884. [Google Scholar] [CrossRef]
- Donder A, Cafer V, Yilmaz A, Aslanhan H, Arikanoglu A. Investigation of Serum Vaspin, Visfatin, Chemerin and Il-18 Levels in Migraine Patients. Arquivos de neuro-psiquiatria 2021, 79, 789–794. [Google Scholar] [CrossRef] [PubMed]
- Bo SH, Davidsen EM, Gulbrandsen P, Dietrichs E, Bovim G, Stovner LJ, et al. Cerebrospinal Fluid Cytokine Levels in Migraine, Tension-Type Headache and Cervicogenic Headache. Cephalalgia 2009, 29, 365–372. [Google Scholar] [CrossRef]
- Yilmaz IA, Ozge A, Erdal ME, Edgunlu TG, Cakmak SE, Yalin OO. Cytokine Polymorphism in Patients with Migraine: Some Suggestive Clues of Migraine and Inflammation. Pain medicine 2010, 11, 492–497. [Google Scholar] [CrossRef]
- Schurks M, Rist PM, Zee RY, Chasman DI, Kurth T. Tumour Necrosis Factor Gene Polymorphisms and Migraine: A Systematic Review and Meta-Analysis. Cephalalgia 2011, 31, 1381–1404. [Google Scholar] [CrossRef]
- Liu R, Ma M, Cui M, Dong Z, Wang X, Zhang W, et al. Effects of Tumor Necrosis Factor-Beta (Tnf-Beta) 252a>G Polymorphism on the Development of Migraine: A Meta-Analysis. PloS one 2014, 9, e100189. [Google Scholar] [CrossRef] [PubMed]
- Abdolahi M, Tafakhori A, Togha M, Okhovat AA, Siassi F, Eshraghian MR, et al. The Synergistic Effects of Omega-3 Fatty Acids and Nano-Curcumin Supplementation on Tumor Necrosis Factor (Tnf)-Alpha Gene Expression and Serum Level in Migraine Patients. Immunogenetics 2017, 69, 371–378. [Google Scholar] [CrossRef] [PubMed]
- Abdolahi M, Sarraf P, Javanbakht MH, Honarvar NM, Hatami M, Soveyd N, et al. A Novel Combination of Omega-3 Fatty Acids and Nano-Curcumin Modulates Interleukin-6 Gene Expression and High Sensitivity C-Reactive Protein Serum Levels in Patients with Migraine: A Randomized Clinical Trial Study. CNS & neurological disorders drug targets 2018, 17, 430–438. [Google Scholar] [CrossRef] [PubMed]
- Ramezani M, Komaki A, Eftekharian MM, Mazdeh M, Ghafouri-Fard S. Over-Expression of Il-6 Coding Gene in the Peripheral Blood of Migraine with Aura Patients. Human antibodies 2021, 29, 203–207. [Google Scholar] [CrossRef]
- Taheri M, Nicknafs F, Hesami O, Javadi A, Arsang-Jang S, Sayad A, et al. Differential Expression of Cytokine-Coding Genes among Migraine Patients with and without Aura and Normal Subjects. Journal of molecular neuroscience 2021, 71, 1197–1204. [Google Scholar] [CrossRef]
- Hamad N, Alzoubi KH, Swedan SF, Khabour OF, El-Salem K. Association between Tumor Necrosis Factor Alpha and Lymphotoxin Alpha Gene Polymorphisms and Migraine Occurrence among Jordanians. Neurological sciences 2021, 42, 3625–3630. [Google Scholar] [CrossRef] [PubMed]
- Geng C, Yang Z, Xu P, Zhang H. Aberrations in Peripheral Inflammatory Cytokine Levels in Migraine: A Systematic Review and Meta-Analysis. Journal of clinical neuroscience 2022, 98, 213–218. [Google Scholar] [CrossRef] [PubMed]
- Uceyler N, Kafke W, Riediger N, He L, Necula G, Toyka KV, et al. Elevated Proinflammatory Cytokine Expression in Affected Skin in Small Fiber Neuropathy. Neurology 2010, 74, 1806–1813. [Google Scholar] [CrossRef]
- Leung L, Cahill CM. Tnf-Alpha and Neuropathic Pain--a Review. Journal of neuroinflammation 2010, 7, 27. [Google Scholar] [CrossRef]
- Cohen SP, Mao J. Neuropathic Pain: Mechanisms and Their Clinical Implications. BMJ 2014, 348, f7656. [Google Scholar] [CrossRef]
- Sommer C, Leinders M, Uceyler N. Inflammation in the Pathophysiology of Neuropathic Pain. Pain 2018, 159, 595–602. [Google Scholar] [CrossRef] [PubMed]
- Empl M, Renaud S, Erne B, Fuhr P, Straube A, Schaeren-Wiemers N, et al. Tnf-Alpha Expression in Painful and Nonpainful Neuropathies. Neurology 2001, 56, 1371–1377. [Google Scholar] [CrossRef] [PubMed]
- Uceyler N, Rogausch JP, Toyka KV, Sommer C. Differential Expression of Cytokines in Painful and Painless Neuropathies. Neurology 2007, 69, 42–49. [Google Scholar] [CrossRef] [PubMed]
- Doupis J, Lyons TE, Wu S, Gnardellis C, Dinh T, Veves A. Microvascular Reactivity and Inflammatory Cytokines in Painful and Painless Peripheral Diabetic Neuropathy. The Journal of clinical endocrinology and metabolism 2009, 94, 2157–2163. [Google Scholar] [CrossRef] [PubMed]
- Purwata, TE. High Tnf-Alpha Plasma Levels and Macrophages Inos and Tnf-Alpha Expression as Risk Factors for Painful Diabetic Neuropathy. Journal of pain research 2011, 4, 169–175. [Google Scholar] [CrossRef] [PubMed]
- Ohtori S, Miyagi M, Eguchi Y, Inoue G, Orita S, Ochiai N, et al. Epidural Administration of Spinal Nerves with the Tumor Necrosis Factor-Alpha Inhibitor, Etanercept, Compared with Dexamethasone for Treatment of Sciatica in Patients with Lumbar Spinal Stenosis: A Prospective Randomized Study. Spine 2012, 37, 439–444. [Google Scholar] [CrossRef] [PubMed]
- Ohtori S, Miyagi M, Eguchi Y, Inoue G, Orita S, Ochiai N, et al. Efficacy of Epidural Administration of Anti-Interleukin-6 Receptor Antibody onto Spinal Nerve for Treatment of Sciatica. European spine journal 2012, 21, 2079–2084. [Google Scholar] [CrossRef]
- Ostenfeld T, Krishen A, Lai RY, Bullman J, Baines AJ, Green J, et al. Analgesic Efficacy and Safety of the Novel P38 Map Kinase Inhibitor, Losmapimod, in Patients with Neuropathic Pain Following Peripheral Nerve Injury: A Double-Blind, Placebo-Controlled Study. European journal of pain 2013, 17, 844–857. [Google Scholar] [CrossRef] [PubMed]
- Uceyler N, Riediger N, Kafke W, Sommer C. Differential Gene Expression of Cytokines and Neurotrophic Factors in Nerve and Skin of Patients with Peripheral Neuropathies. Journal of neurology 2015, 262, 203–212. [Google Scholar] [CrossRef]
- Herder C, Bongaerts BW, Rathmann W, Heier M, Kowall B, Koenig W, et al. Differential Association between Biomarkers of Subclinical Inflammation and Painful Polyneuropathy: Results from the Kora F4 Study. Diabetes care 2015, 38, 91–96. [Google Scholar] [CrossRef]
- Allison DJ, Thomas A, Beaudry K, Ditor DS. Targeting Inflammation as a Treatment Modality for Neuropathic Pain in Spinal Cord Injury: A Randomized Clinical Trial. Journal of neuroinflammation 2016, 13, 152. [Google Scholar] [CrossRef] [PubMed]
- Ziegler D, Strom A, Bonhof GJ, Kannenberg JM, Heier M, Rathmann W, et al. Deficits in Systemic Biomarkers of Neuroinflammation and Growth Factors Promoting Nerve Regeneration in Patients with Type 2 Diabetes and Polyneuropathy. BMJ open diabetes research & care 2019, 7, e000752. [Google Scholar] [CrossRef] [PubMed]
- Saxena AK, Bhardwaj N, Chilkoti GT, Malik A, Thakur GK, Bajaj M, et al. Modulation of Mrna Expression of Il-6 and Mtorc1 and Efficacy and Feasibility of an Integrated Approach Encompassing Cognitive Behavioral Therapy Along with Pregabalin for Management of Neuropathic Pain in Postherpetic Neuralgia: A Pilot Study. Pain medicine 2021, 22, 2276–2282. [Google Scholar] [CrossRef] [PubMed]
- Benemei S, De Cesaris F, Fusi C, Rossi E, Lupi C, Geppetti P. Trpa1 and Other Trp Channels in Migraine. The journal of headache and pain 2013, 14, 71. [Google Scholar] [CrossRef] [PubMed]
- Benemei S, Dussor G. Trp Channels and Migraine: Recent Developments and New Therapeutic Opportunities. Pharmaceuticals 2019, 12. [Google Scholar] [CrossRef] [PubMed]
- Diamond S, Freitag F, Phillips SB, Bernstein JE, Saper JR. Intranasal Civamide for the Acute Treatment of Migraine Headache. Cephalalgia: an international journal of headache 2000, 20, 597–602. [Google Scholar] [CrossRef] [PubMed]
- Fusco BM, Barzoi G, Agro F. Repeated Intranasal Capsaicin Applications to Treat Chronic Migraine. British journal of anaesthesia 2003, 90, 812. [Google Scholar] [CrossRef] [PubMed]
- Cianchetti, C. Capsaicin Jelly against Migraine Pain. International journal of clinical practice 2010, 64, 457–459. [Google Scholar] [CrossRef]
- Borhani Haghighi A, Motazedian S, Rezaii R, Mohammadi F, Salarian L, Pourmokhtari M, et al. Cutaneous Application of Menthol 10% Solution as an Abortive Treatment of Migraine without Aura: A Randomised, Double-Blind, Placebo-Controlled, Crossed-over Study. International journal of clinical practice 2010, 64, 451–456. [Google Scholar] [CrossRef] [PubMed]
- Del Fiacco M, Quartu M, Boi M, Serra MP, Melis T, Boccaletti R, et al. Trpv1, Cgrp and Sp in Scalp Arteries of Patients Suffering from Chronic Migraine. Journal of neurology, neurosurgery, and psychiatry 2015, 86, 393–397. [Google Scholar] [CrossRef]
- Yakubova A, Davidyuk Y, Tohka J, Khayrutdinova O, Kudryavtsev I, Nurkhametova D, et al. Searching for Predictors of Migraine Chronification: A Pilot Study of 1911a>G Polymorphism of Trpv1 Gene in Episodic Versus Chronic Migraine. Journal of molecular neuroscience : MN 2021, 71, 618–624. [Google Scholar] [CrossRef] [PubMed]
- Carreno O, Corominas R, Fernandez-Morales J, Camina M, Sobrido MJ, Fernandez-Fernandez JM, et al. Snp Variants within the Vanilloid Trpv1 and Trpv3 Receptor Genes Are Associated with Migraine in the Spanish Population. American journal of medical genetics Part B, Neuropsychiatric genetics 2012, 159B, 94–103. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Carvajal A, Gonzalez-Muniz R, Fernandez-Ballester G, Ferrer-Montiel A. Investigational Drugs in Early Phase Clinical Trials Targeting Thermotransient Receptor Potential (Thermotrp) Channels. Expert opinion on investigational drugs 2020, 29, 1209–1222. [Google Scholar] [CrossRef] [PubMed]
- Basso L, Altier C. Transient Receptor Potential Channels in Neuropathic Pain. Current opinion in pharmacology 2017, 32, 9–15. [Google Scholar] [CrossRef]
- Julius, D. Trp Channels and Pain. Annual review of cell and developmental biology 2013, 29, 355–384. [Google Scholar] [CrossRef] [PubMed]
- Jancso G, Kiraly E, Jancso-Gabor A. Pharmacologically Induced Selective Degeneration of Chemosensitive Primary Sensory Neurones. Nature 1977, 270, 741–743. [Google Scholar] [CrossRef]
- Jancso N, Jancso-Gabor A, Szolcsanyi J. Direct Evidence for Neurogenic Inflammation and Its Prevention by Denervation and by Pretreatment with Capsaicin. British journal of pharmacology and chemotherapy 1967, 31, 138–151. [Google Scholar] [CrossRef] [PubMed]
- Bonezzi C, Costantini A, Cruccu G, Fornasari DMM, Guardamagna V, Palmieri V, et al. Capsaicin 8% Dermal Patch in Clinical Practice: An Expert Opinion. Expert opinion on pharmacotherapy 2020, 21, 1377–1387. [Google Scholar] [CrossRef] [PubMed]
- Giaccari LG, Aurilio C, Coppolino F, Pace MC, Passsavanti MB, Pota V, et al. Capsaicin 8% Patch and Chronic Postsurgical Neuropathic Pain. Journal of personalized medicine 2021, 11. [Google Scholar] [CrossRef]
- Goncalves D, Rebelo V, Barbosa P, Gomes A. 8% Capsaicin Patch in Treatment of Peripheral Neuropathic Pain. Pain physician 2020, 23, E541–E548. [Google Scholar]
- Privitera R, Anand P. Capsaicin 8% Patch Qutenza and Other Current Treatments for Neuropathic Pain in Chemotherapy-Induced Peripheral Neuropathy (Cipn). Current opinion in supportive and palliative care 2021, 15, 125–131. [Google Scholar] [CrossRef] [PubMed]
- Brindisi M, Borrelli G, Brogi S, Grillo A, Maramai S, Paolino M, et al. Development of Potent Inhibitors of Fatty Acid Amide Hydrolase Useful for the Treatment of Neuropathic Pain. ChemMedChem 2018, 13, 2090–2103. [Google Scholar] [CrossRef]
- Greco R, Demartini C, Zanaboni AM, Francavilla M, De Icco R, Ahmad L, et al. The Endocannabinoid System and Related Lipids as Potential Targets for the Treatment of Migraine-Related Pain. Headache. [CrossRef]
- Russo, EB. Clinical Endocannabinoid Deficiency Reconsidered: Current Research Supports the Theory in Migraine, Fibromyalgia, Irritable Bowel, and Other Treatment-Resistant Syndromes. Cannabis and cannabinoid research 2016, 1, 154–165. [Google Scholar] [CrossRef] [PubMed]
- Cupini LM, Bari M, Battista N, Argiro G, Finazzi-Agro A, Calabresi P, et al. Biochemical Changes in Endocannabinoid System Are Expressed in Platelets of Female but Not Male Migraineurs. Cephalalgia 2006, 26, 277–281. [Google Scholar] [CrossRef] [PubMed]
- Sarchielli P, Pini LA, Coppola F, Rossi C, Baldi A, Mancini ML, et al. Endocannabinoids in Chronic Migraine: Csf Findings Suggest a System Failure. Neuropsychopharmacology 2007, 32, 1384–1390. [Google Scholar] [CrossRef] [PubMed]
- Cupini LM, Costa C, Sarchielli P, Bari M, Battista N, Eusebi P, et al. Degradation of Endocannabinoids in Chronic Migraine and Medication Overuse Headache. Neurobiology of disease 2008, 30, 186–189. [Google Scholar] [CrossRef]
- Rossi C, Pini LA, Cupini ML, Calabresi P, Sarchielli P. Endocannabinoids in Platelets of Chronic Migraine Patients and Medication-Overuse Headache Patients: Relation with Serotonin Levels. European journal of clinical pharmacology 2008, 64, 1–8. [Google Scholar] [CrossRef]
- Van der Schueren BJ, Van Laere K, Gerard N, Bormans G, De Hoon JN. Interictal Type 1 Cannabinoid Receptor Binding Is Increased in Female Migraine Patients. Headache 2012, 52, 433–440. [Google Scholar] [CrossRef] [PubMed]
- Perrotta A, Arce-Leal N, Tassorelli C, Gasperi V, Sances G, Blandini F, et al. Acute Reduction of Anandamide-Hydrolase (Faah) Activity Is Coupled with a Reduction of Nociceptive Pathways Facilitation in Medication-Overuse Headache Subjects after Withdrawal Treatment. Headache 2012, 52, 1350–1361. [Google Scholar] [CrossRef] [PubMed]
- Gouveia-Figueira S, Goldin K, Hashemian SA, Lindberg A, Persson M, Nording ML, et al. Plasma Levels of the Endocannabinoid Anandamide, Related N-Acylethanolamines and Linoleic Acid-Derived Oxylipins in Patients with Migraine. Prostaglandins, leukotrienes, and essential fatty acids 2017, 120, 15–24. [Google Scholar] [CrossRef]
- Juhasz G, Lazary J, Chase D, Pegg E, Downey D, Toth ZG, et al. Variations in the Cannabinoid Receptor 1 Gene Predispose to Migraine. Neuroscience letters 2009, 461, 116–120. [Google Scholar] [CrossRef] [PubMed]
- Juhasz G, Csepany E, Magyar M, Edes AE, Eszlari N, Hullam G, et al. Variants in the Cnr1 Gene Predispose to Headache with Nausea in the Presence of Life Stress. Genes, brain, and behavior 2017, 16, 384–393. [Google Scholar] [CrossRef] [PubMed]
- Oliveira AB, Ribeiro RT, Mello MT, Tufik S, Peres MFP. Anandamide Is Related to Clinical and Cardiorespiratory Benefits of Aerobic Exercise Training in Migraine Patients: A Randomized Controlled Clinical Trial. Cannabis and cannabinoid research 2019, 4, 275–284. [Google Scholar] [CrossRef] [PubMed]
- Greco R, Demartini C, Zanaboni AM, Tumelero E, Icco R, Sances G, et al. Peripheral Changes of Endocannabinoid System Components in Episodic and Chronic Migraine Patients: A Pilot Study. Cephalalgia 2021, 41, 185–196. [Google Scholar] [CrossRef] [PubMed]
- De Icco R, Greco R, Demartini C, Vergobbi P, Zanaboni A, Tumelero E, et al. Spinal Nociceptive Sensitization and Plasma Palmitoylethanolamide Levels During Experimentally Induced Migraine Attacks. Pain 2021, 162, 2376–2385. [Google Scholar] [CrossRef] [PubMed]
- Keimpema E, Di Marzo V, Harkany T. Biological Basis of Cannabinoid Medicines. Science 2021, 374, 1449–1450. [Google Scholar] [CrossRef] [PubMed]
- Maldonado R, Banos JE, Cabanero D. The Endocannabinoid System and Neuropathic Pain. Pain 2016, 157 (Suppl 1), S23–S32. [Google Scholar] [CrossRef] [PubMed]
- Conigliaro R, Drago V, Foster PS, Schievano C, Di Marzo V. Use of Palmitoylethanolamide in the Entrapment Neuropathy of the Median in the Wrist. Minerva medica 2011, 102, 141–147. [Google Scholar]
- Andresen SR, Bing J, Hansen RM, Biering-Sorensen F, Johannesen IL, Hagen EM, et al. Ultramicronized Palmitoylethanolamide in Spinal Cord Injury Neuropathic Pain: A Randomized, Double-Blind, Placebo-Controlled Trial. Pain 2016, 157, 2097–2103. [Google Scholar] [CrossRef]
| Migraine | ref. | ||||||
|---|---|---|---|---|---|---|---|
| EM | CM | ||||||
| M0 | MA | ||||||
| Ictally | Interictally | Ictally | Interictally | Ictally | Interictally | ||
| ↑(plasma from external jugular vein) | nd | nd | nd | nd | nd | [25] | |
| ↑(plasma from cubital vein) | nd | nd | nd | nd | nd | [26] | |
| Neuropathic pain | ref. | ||||||
| Peripheral NP | Central NP | ||||||
| ↑(nerve fibers) painful neuroma | nd | [47] | |||||
| ↑(serum) CRPS | nd | [46] | |||||
| ↑(keratinocyta) PHN | nd | [44] | |||||
| Migraine | ref. | |||||
|---|---|---|---|---|---|---|
| EM | CM | |||||
| M0 | MA | |||||
| Ictally | Interictally | Ictally | Interictally | |||
| ↑glutamic acid (plasma) | ↑glutamic acid (plasma) | ↑glutamic acid (plasma) | ↑glutamic acid (plasma) | nd | [51] | |
| nd | nd | ↑glutamic acid (platelet) | ↑glutamic acid (platelet) | nd | [52] | |
| ↓glutamic acid (plasma) | nd | ↓glutamic (plasma) | nd | nd | [53] | |
| ↑glutamic acid (CSF) | nd | ↑glutamic acid (CSF) | nd | nd | [53] | |
| nd | ↑glutamic acid (saliva) | nd | nd | nd | [54] | |
| nd | nd | nd | nd | ↑glutamic acid (CSF) | [55] | |
| nd | nd | nd | nd | ↓KYNA (serum) | [66] | |
| nd | ↓L-KYN, KYNA, anthranilic acid, picolinic acid, 5-hydroxy-indoleaceticacid (plasma) | nd | nd | nd | [67] | |
| Neuropathic pain | ref. | |||||
| Peripheral NP | Central NP | |||||
| ↑L-glutamate (plasma) in CRPS ↓L-TRP (plasma) in CRPS ↑the KYN/TRP ratio |
nd | [73] | ||||
| negative correlation (TRP serum level and pain intensity) in temporomandibular disorders myalgia positive correlation the KYN/TRP ratio and pain intensity) in temporomandibular disorders myalgia |
nd | [74] | ||||
| Migraine | ref. | |||||
|---|---|---|---|---|---|---|
| EM | CM | |||||
| M0 | MA | |||||
| Ictally | Interictally | Ictally | Interictally | |||
| ↑S100B (serum) | ↑S100B (serum) | nd | nd | nd | [77] | |
| ↑S100B (serum) | ↑S100B (serum) | nd | nd | nd | [20] | |
| nd | ↓S100B (serum) | nd | ↓S100B (serum) | nd | [78] | |
| nd | ↑S100B (serum) | nd | nd | ↑S100B (serum) | [80] | |
| nd | ↑S100B (serum) | nd | nd | ↑S100B (serum) | [81] | |
| Neuropathic pain | ref. | |||||
| Peripheral NP | Central NP | |||||
| activated glial cells (PET): in thalamus, anterior and posterior central gyrus, paracentral lobule |
nd | [90] [9] |
||||
| Migraine | ref. | |||||
|---|---|---|---|---|---|---|
| EM | CM | |||||
| M0 | MA | |||||
| Ictally | Interictally | Ictally | Interictally | |||
| =IL-1, TNF (plasma) | =IL-1, TNF (plasma) | =IL-1, TNF (plasma) | =IL-1, TNF (plasma) | nd | [104] | |
| ↑IL-6 (urine) =IL-1beta (urine) ↓TNFalpha (urine) |
↑IL-6 (urine) =IL-1beta (urine) ↓TNFalpha (urine) |
nd | nd | nd | [105] | |
| nd | =TNFalpha, IL-6 (serum) | nd | =TNFalpha, IL-6 (serum) | nd | [106] | |
| nd | ↑TNFalpha, IL-1beta, IL-10 (plasma) | nd | nd | nd | [106] | |
| ↑TNFalpha (serum) | nd | nd | nd | nd | [108] | |
| ↑IL-10, IL-6 (serum) | nd | nd | nd | nd | [109] | |
| ↑IL-1 receptor antagonist (CSF) | nd | ↑IL-1 receptor antagonist (CSF) | nd | nd | [108] | |
| =TNFalpha (serum) | nd | nd | nd | nd | [110] | |
| ↑IL-1beta, IL-6 (serum) ↑Il-10 (serum) |
nd | nd | nd | nd | [111] | |
| ↑IL-6 (serum) | nd | ↑IL-6 (serum) | nd | nd | [112] | |
| ↑TNFalpha , IL-1beta, IL-6 (serum) | nd | nd | nd | nd | [113] | |
| nd | ↓IL-6 (mRNA and serum) | nd | nd | nd | [114] | |
| nd | nd | nd | nd | ↑TNFalpha, L-6 (serum) | [115] | |
| nd | ↑IL-1beta (saliva) | nd | nd | nd | [116] | |
| ↑IL-18 (serum) | ↑IL-18 (serum) | ↑IL-18 (serum) | ↑IL-18 (serum) | nd | [117] | |
| nd | nd | nd | ↑IL-6 (mRNA) | nd | [124] | |
| nd | ↑IL-4, IL-18, TGFbeta, TNFalpha (mRNA) =IL-1beta, IL-17, IL-2 (mRNA) |
nd | ↑IL-4, IL-18, TGFbeta, TNFalpha (mRNA) =IL-1beta, IL-17, IL-2 (mRNA) |
nd | [125] | |
| Neuropathic pain | ref. | |||||
| Peripheral NP | Central NP | |||||
| ↑TNFalpha expression (Schwann cells) | nd | [132] | ||||
| ↑IL-2, TNFalpha (mRNA, plasma) ↓IL-4, IL-10 (mRNA, plasma) |
nd | [133] | ||||
| ↑TNFalpha (serum) in PDN | nd | [134] | ||||
| ↑TNFalpha (plasma) in PDN | nd | [135] | ||||
| ↑IL-6 (serum) in painful DSPN | nd | [140] | ||||
| ↑TNF-alpha, IL-1beta (mRNA) ↓IL-10 (mRNA) =IL-4 (mRNA) (in NP after peripheral nerve lesion) |
nd | [16] | ||||
| Migraine | ref. | |||||
|---|---|---|---|---|---|---|
| EM | CM | |||||
| M0 | MA | |||||
| Ictally | Interictally | Ictally | Interictally | |||
| nd | nd | nd | nd | ↑TRPV-1-like immunoreactive nerve fibers density in the wall of scalp arteries | [150] | |
| Neuropathic pain | ref. | |||||
| Peripheral NP | Central NP | |||||
| ↓pain intensity after 8% capsaicin patch treatment (in post-herpetic neuralgia, chronic postsurgical NP, post-traumatic NP, PDN, HIV-associated NP, painful radiculopathy, trigeminal neuralgia, chemotherapy-induced NP) |
nd | [23] [159] [160] [161] |
||||
| Migraine | ref. | |||||
|---|---|---|---|---|---|---|
| EM | CM | |||||
| M0 | MA | |||||
| Ictally | Interictally | Ictally | Interictally | |||
| nd | ↑FAAH and AMT (platelet) (only in female patients) | nd | nd | nd | [165] | |
| nd | nd | nd | nd | ↓anandamide (CSF) ↑PEA (CSF) |
[166] | |
| nd | nd | nd | nd | ↓AMT and FAAH (platelet) | [167] | |
| nd | nd | nd | nd | ↓anandamide and 2-AG | [168] | |
| nd | =anandamide (plasma) | nd | =anandamide (plasma) | nd | [171] | |
| Neuropathic pain | ref. | |||||
| Peripheral NP | Central NP | |||||
| nd | =mean pain intensity after ultramicronized sublingually PEA treatment (NP associated with spinal cord injury) |
[180] | ||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
