Preprint
Article

The Natal Giant Cycad (Encephalartos natalensis) Associated Nutrient-cycling Microbes and Enzymes Contribute to Soil Nutrient Inputs and Persistence in Nutrient-poor Disturbed Savanna Woodland Ecosystems

Altmetrics

Downloads

237

Views

169

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

18 January 2023

Posted:

19 January 2023

You are already at the latest version

Alerts
Abstract
Encephalartos spp. establish symbioses with nitrogen (N)-fixing bacteria that contribute to soil nutrition and improve plant growth. Despite the Encephalartos mutualistic symbioses with N-fixing bacteria, the identity of other bacteria and their contribution to soil fertility and eco-system functioning are not well understood. This limited information presents a challenge in developing comprehensive conservation and management strategies for these cycad species. Therefore, this study identified the nutrient cycling bacteria in Encephalartos natalensis coral-loid roots, rhizosphere, and non-rhizosphere soils. Additionally, the soil characteristics and soil enzyme activities of the rhizosphere and non-rhizosphere soils were assayed. The coral-loid roots, rhizosphere, and non-rhizosphere soils of E. natalensis were collected from a popu-lation of >500 E. natalensis in a disturbed savanna woodland at Edendale in KwaZulu-Natal (South Africa) for nutrient analysis, bacterial identification, and enzyme activity assays. Nu-trient cycling bacteria such as Lysinibacillus xylanilyticus; Paraburkholderia sabiae, and Novo-sphingobium barchaimii were identified in the coralloid roots, rhizosphere, and non-rhizosphere soils of E. natalensis. Phosphorus (P) cycling (alkaline and acid phosphatase) and N cycling (β-(D)-Glucosaminidase and nitrate reductase) enzyme activities showed a pos-itive correlation with the P and N concentrations in the rhizosphere and non-rhizosphere soils of E. natalensis. Nutrient cycling bacteria identified in E. natalensis coralloid roots, rhizo-sphere, and non-rhizosphere soils and associated enzymes assayed may contribute to soil nu-trient inputs of E. natalensis plants growing in acidic and nutrient-poor savanna woodland ecosystems.
Keywords: 
Subject: Biology and Life Sciences  -   Plant Sciences
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated