Submitted:
19 January 2023
Posted:
31 January 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Concept and principle of optical encoding model

3. SVM- based decoding method for image recognition and classification
| Algorithm 1 Pseudocode for decoding processing using SVM–ECOC model |
|
4. Case Study
5. Results
6. Conclusion
Author Contributions
Conflicts of Interest
Appendix A. Support Vector Machine Algorithm

| Type of SVM | Kernel | Description |
| Base function (Gaussian) | Learning of one class, where represents the width of the kernel | |
| Linear | Learning of two classes | |
| Polynomial | is the polynomial degree | |
| Sigmoid | The kernel is determined by specific and |
References
- Lian, Y.; Qi, X.; Wang, Y.; Bai, Z.; Wang, Y.; Lu, Z. OAM beam generation in space and its applications: A review. Optics and Lasers in Engineering 2022, 151, 106923. [Google Scholar] [CrossRef]
- Zhao, J.; Chremmos, I.D.; Song, D.; Christodoulides, D.N.; Efremidis, N.K.; Chen, Z. Curved singular beams for three-dimensional particle manipulation. Scientific reports 2015, 5, 1–6. [Google Scholar] [CrossRef]
- Liu, K.; Cheng, Y.; Gao, Y.; Li, X.; Qin, Y.; Wang, H. Super-resolution radar imaging based on experimental OAM beams. Applied Physics Letters 2017, 110, 164102. [Google Scholar] [CrossRef]
- Wang, J.; Liu, K.; Cheng, Y.; Wang, H. Vortex SAR imaging method based on OAM beams design. IEEE Sensors Journal 2019, 19, 11873–11879. [Google Scholar] [CrossRef]
- Wang, J. Twisted optical communications using orbital angular momentum. Science China Physics, Mechanics & Astronomy 2019, 62, 1–21. [Google Scholar]
- Trichili, A.; Rosales-Guzmán, C.; Dudley, A.; Ndagano, B.; Ben Salem, A.; Zghal, M.; Forbes, A. Optical communication beyond orbital angular momentum. Scientific reports 2016, 6, 1–6. [Google Scholar] [CrossRef]
- Gong, L.; Zhao, Q.; Zhang, H.; Hu, X.Y.; Huang, K.; Yang, J.M.; Li, Y.M. Optical orbital-angular-momentum-multiplexed data transmission under high scattering. Light: Science & Applications 2019, 8, 1–11. [Google Scholar]
- Zhao, Q.; Yu, P.P.; Liu, Y.F.; Wang, Z.Q.; Li, Y.M.; Gong, L. Light field imaging through a single multimode fiber for OAM-multiplexed data transmission. Applied Physics Letters 2020, 116, 181101. [Google Scholar] [CrossRef]
- Kai, C.; Feng, Z.; Dedo, M.I.; Huang, P.; Guo, K.; Shen, F.; Gao, J.; Guo, Z. The performances of different OAM encoding systems. Optics Communications 2019, 430, 151–157. [Google Scholar] [CrossRef]
- Willner, A.E.; Pang, K.; Song, H.; Zou, K.; Zhou, H. Orbital angular momentum of light for communications. Applied Physics Reviews 2021, 8, 041312. [Google Scholar] [CrossRef]
- Fang, X.; Ren, H.; Gu, M. Orbital angular momentum holography for high-security encryption. Nature Photonics 2020, 14, 102–108. [Google Scholar] [CrossRef]
- Xiao, Q.; Ma, Q.; Yan, T.; Wu, L.W.; Liu, C.; Wang, Z.X.; Wan, X.; Cheng, Q.; Cui, T.J. Orbital-angular-momentum-encrypted holography based on coding information metasurface. Advanced Optical Materials 2021, 9, 2002155. [Google Scholar] [CrossRef]
- Fu, S.; Zhai, Y.; Zhou, H.; Zhang, J.; Wang, T.; Yin, C.; Gao, C. Demonstration of free-space one-to-many multicasting link from orbital angular momentum encoding. Optics Letters 2019, 44, 4753–4756. [Google Scholar] [CrossRef]
- Willner, A.J.; Ren, Y.; Xie, G.; Zhao, Z.; Cao, Y.; Li, L.; Ahmed, N.; Wang, Z.; Yan, Y.; Liao, P.; et al. Experimental demonstration of 20 Gbit/s data encoding and 2 ns channel hopping using orbital angular momentum modes. Optics Letters 2015, 40, 5810–5813. [Google Scholar] [CrossRef]
- Li, S.; Xu, Z.; Liu, J.; Zhou, N.; Zhao, Y.; Zhu, L.; Xia, F.; Wang, J. Experimental demonstration of free-space optical communications using orbital angular momentum (OAM array encoding/decoding. In Proceedings of the 2015 Conference on Lasers and Electro-Optics (CLEO). IEEE; 2015; pp. 1–2. [Google Scholar]
- Trichili, A.; Salem, A.B.; Dudley, A.; Zghal, M.; Forbes, A. Encoding information using Laguerre Gaussian modes over free space turbulence media. Optics letters 2016, 41, 3086–3089. [Google Scholar] [CrossRef]
- Wang, J.; Yang, J.Y.; Fazal, I.M.; Ahmed, N.; Yan, Y.; Huang, H.; Ren, Y.; Yue, Y.; Dolinar, S.; Tur, M.; et al. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nature photonics 2012, 6, 488–496. [Google Scholar] [CrossRef]
- Zhou, H.; Sain, B.; Wang, Y.; Schlickriede, C.; Zhao, R.; Zhang, X.; Wei, Q.; Li, X.; Huang, L.; Zentgraf, T. Polarization-encrypted orbital angular momentum multiplexed metasurface holography. ACS nano 2020, 14, 5553–5559. [Google Scholar] [CrossRef]
- Bolduc, E.; Bent, N.; Santamato, E.; Karimi, E.; Boyd, R.W. Exact solution to simultaneous intensity and phase encryption with a single phase-only hologram. Optics letters 2013, 38, 3546–3549. [Google Scholar] [CrossRef]
- Willner, A.E.; Song, H.; Liu, C.; Zhang, R.; Pang, K.; Zhou, H.; Hu, N.; Song, H.; Su, X.; Zhao, Z. Causes and mitigation of modal crosstalk in OAM multiplexed optical communication links. In Structured Light for Optical Communication; Elsevier, 2021; pp. 259–289. [Google Scholar]
- Ouyang, X.; Xu, Y.; Xian, M.; Feng, Z.; Zhu, L.; Cao, Y.; Lan, S.; Guan, B.O.; Qiu, C.W.; Gu, M.; et al. Synthetic helical dichroism for six-dimensional optical orbital angular momentum multiplexing. Nature photonics 2021, 15, 901–907. [Google Scholar] [CrossRef]
- Zhu, F.; Jiang, J.; Li, Y.; Zhou, C.; Tang, L.; Lai, Z. Index Modulation of OAM-UCA with LDPC Transmission. In Proceedings of the 2021 IEEE 21st International Conference on Communication Technology (ICCT). IEEE; 2021; pp. 1300–1303. [Google Scholar]
- Li, Y.; Zhang, Z. Image information transfer with petal-like beam lattices encoding/decoding. Optics Communications 2022, 510, 127931. [Google Scholar] [CrossRef]
- Du, J.; Li, S.; Zhao, Y.; Xu, Z.; Zhu, L.; Zhou, P.; Liu, J.; Wang, J. Demonstration of M-ary encoding/decoding using visible-light Bessel beams carrying orbital angular momentum (OAM) for free-space obstruction-free optical communications. In Proceedings of the Optical Fiber Communication Conference. Optica Publishing Group; 2015; pp. M2F–4. [Google Scholar]
- Fujita, H.; Sato, M. Encoding orbital angular momentum of light in magnets. Physical Review B 2017, 96, 060407. [Google Scholar] [CrossRef]
- Zhao, N.; Li, X.; Li, G.; Kahn, J.M. Capacity limits of spatially multiplexed free-space communication. Nature photonics 2015, 9, 822–826. [Google Scholar] [CrossRef]
- Chen, M.; Dholakia, K.; Mazilu, M. Is there an optimal basis to maximise optical information transfer? Scientific reports 2016, 6, 1–8. [Google Scholar] [CrossRef]
- Trichili, A.; Park, K.H.; Zghal, M.; Ooi, B.S.; Alouini, M.S. Communicating using spatial mode multiplexing: Potentials, challenges, and perspectives. IEEE Communications Surveys & Tutorials 2019, 21, 3175–3203. [Google Scholar]
- Bartkiewicz, K.; Gneiting, C.; Černoch, A.; Jiráková, K.; Lemr, K.; Nori, F. Experimental kernel-based quantum machine learning in finite feature space. Scientific Reports 2020, 10, 1–9. [Google Scholar] [CrossRef]
- Zhou, J.; Huang, B.; Yan, Z.; Bünzli, J.C.G. Emerging role of machine learning in light-matter interaction. Light: Science & Applications 2019, 8, 1–7. [Google Scholar]
- Neary, P.L.; Watnik, A.T.; Judd, K.P.; Lindle, J.R.; Flann, N.S. Machine learning-based signal degradation models for attenuated underwater optical communication OAM beams. Optics Communications 2020, 474, 126058. [Google Scholar] [CrossRef]
- Kirchner, T.; Gröhl, J.; Maier-Hein, L. Context encoding enables machine learning-based quantitative photoacoustics. Journal of biomedical optics 2018, 23, 056008. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Chen, X.; Chen, W. Deep learning based attack on phase-truncated optical encoding. In Proceedings of the 2020 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO). IEEE; 2020; pp. 1–4. [Google Scholar]
- Doster, T.; Watnik, A.T. Laguerre–Gauss and Bessel–Gauss beams propagation through turbulence: analysis of channel efficiency. Applied Optics 2016, 55, 10239–10246. [Google Scholar] [CrossRef]
- Paufler, W.; Böning, B.; Fritzsche, S. High harmonic generation with Laguerre–Gaussian beams. Journal of Optics 2019, 21, 094001. [Google Scholar] [CrossRef]
- Litvin, I.A.; Burger, L.; Forbes, A. Angular self-reconstruction of petal-like beams. Optics Letters 2013, 38, 3363–3365. [Google Scholar] [CrossRef]
- Guo, Z.; Wang, Z.; Dedo, M.I.; Guo, K. The orbital angular momentum encoding system with radial indices of Laguerre–Gaussian beam. IEEE Photonics Journal 2018, 10, 1–11. [Google Scholar] [CrossRef]
- Zheng, G.; Qian, Z.; Yang, Q.; Wei, C.; Xie, L.; Zhu, Y.; Li, Y. The combination approach of SVM and ECOC for powerful identification and classification of transcription factor. BMC bioinformatics 2008, 9, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Zhang, D.; Chen, S.; Xue, H. Joint binary classifier learning for ECOC-based multi-class classification. IEEE Transactions on Pattern Analysis and Machine Intelligence 2015, 38, 2335–2341. [Google Scholar] [CrossRef]
- Binh, L.N. Noises in optical communications and photonic systems; CRC Press LLC, 2016. [Google Scholar]
- Kareem, F.Q.; Zeebaree, S.; Dino, H.I.; Sadeeq, M.; Rashid, Z.N.; Hasan, D.A.; Sharif, K.H. A survey of optical fiber communications: challenges and processing time influences. Asian Journal of Research in Computer Science, 2021; 48–58. [Google Scholar]
- Sheng, M.; Jiang, P.; Hu, Q.; Su, Q.; Xie, X.x. End-to-end average BER analysis for multihop free-space optical communications with pointing errors. Journal of Optics 2013, 15, 055408. [Google Scholar] [CrossRef]
- Freude, W.; Schmogrow, R.; Nebendahl, B.; Winter, M.; Josten, A.; Hillerkuss, D.; Koenig, S.; Meyer, J.; Dreschmann, M.; Huebner, M.; et al. Quality metrics for optical signals: Eye diagram, Q-factor, OSNR, EVM and BER. In Proceedings of the 2012 14th International Conference on Transparent Optical Networks (ICTON). IEEE; 2012; pp. 1–4. [Google Scholar]
- Hayal, M.R.; Yousif, B.B.; Azim, M.A. Performance enhancement of DWDM-FSO optical fiber communication systems based on hybrid modulation techniques under atmospheric turbulence channel. In Proceedings of the Photonics. MDPI; 2021; Vol. 8, p. 464. [Google Scholar]
- Hernández, J.A.; Martín, I.; Camarillo, P.; de Arcaute, G.M.R. Applications of Machine Learning Techniques for What-if Analysis and Network Overload Detection. In Proceedings of the 2022 18th International Conference on the Design of Reliable Communication Networks (DRCN). IEEE; 2022; pp. 1–7. [Google Scholar]
- Zhang, L.; Li, X.; Tang, Y.; Xin, J.; Huang, S. A survey on QoT prediction using machine learning in optical networks. Optical Fiber Technology 2022, 68, 102804. [Google Scholar] [CrossRef]
- Walsh, D.; Moodie, D.; Mauchline, I.; Conner, S.; Johnstone, W.; Culshaw, B. Practical bit error rate measurements on fibre optic communications links in student teaching laboratories. In Proceedings of the 9th International Conference on Education and Training in Optics and Photonics (ETOP), Marseille, France, 2005., Paper ETOP021.
- Balsells, J.M.G.; López-González, F.J.; Jurado-Navas, A.; Castillo-Vázquez, M.; Notario, A.P. General closed-form bit-error rate expressions for coded M-distributed atmospheric optical communications. Optics Letters 2015, 40, 2937–2940. [Google Scholar] [CrossRef]
- Keiser, G. Fiber Optic Communications. Springer, 2021. [Google Scholar]
- Cervantes, J.; Garcia-Lamont, F.; Rodriguez, L.; López, A.; Castilla, J.R.; Trueba, A. PSO-based method for SVM classification on skewed data sets. Neurocomputing 2017, 228, 187–197. [Google Scholar] [CrossRef]



Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
