Preprint
Article

Absolutely Summing Morphisms between Hilbert C*-Modules and Modular Pietsch Factorization Problem

Altmetrics

Downloads

170

Views

103

Comments

0

This version is not peer-reviewed

Submitted:

06 February 2023

Posted:

08 February 2023

You are already at the latest version

Alerts
Abstract
Motivated from the theory of Hilbert-Schmidt morphisms between Hilbert C*-modules over commutative C*-algebras by Stern and van Suijlekom [J. Funct. Anal., 2021], we introduce the notion of p-absolutely summing morphisms between Hilbert C*-modules over commutative C*-algebras. We show that an adjointable morphism between Hilbert C*-modules over monotone closed commutative C*-algebra is 2-absolutely summing if and only if it is Hilbert-Schmidt. We formulate version of Pietsch factorization problem for p-absolutely summing morphisms and solve partially.
Keywords: 
Subject: Computer Science and Mathematics  -   Analysis

MSC:  47B10; 47L20; 46L08; 46L05; 42C15

1. Introduction

In his Resume, A. Grothendieck studied 1-absolutely and 2-absolutely summing operators between Banach spaces [1] (also see [2]). In 1967, for each 1≤ p < , A. Pietsch introduced the notion of p-absolutely summing operators which became an area around the end of 20 century [3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20]. In 1979, Tomczak-Jaegermann studied p-summing operators by fixing by fixing number of points [21]. In 1970, Kwapien defined the notion of 0-summing operators [22]. In 2003, Farmer and Johnson introduced the notion of Lipschitz p-summing operators between metric spaces [23] (also see [24,25,26,27]).
Definition 1. 
[7,28] Let X and Y be Banach spaces, X * be the dual of X and 1 p < . A bounded linear operator T : X Y is said to be p-absolutely summing if there is a real constant C > 0 satisfying following: for every n N and for all x 1 , , x n X ,
j = 1 n T x j p 1 p C sup f X * , f 1 j = 1 n | f ( x j ) | p 1 p .
In this case, the p-absolutely summing norm of T is defined as
π p ( T ) : = inf { C : C satisfies Inequality ( 1 ) } .
The set of all p-absolutely summing operators from X to Y is denoted by Π p ( X , Y ) .
Following are most important results in the theory of p-absolutely summing operators.
Theorem 1. 
[7,11] Let 1 p < and X , Y be Banach spaces. Then ( Π p ( X , Y ) , π p ( · ) ) is an operator ideal.
Theorem 2. 
[7,28] Let H and K be Hilbert spaces. Then a bounded linear operator T : H K is 2-absolutely summing if and only if it is Hilbert-Schmidt. Moreover, T H S = π 2 ( T ) .
Theorem 3. 
[7,28] (Pietsch Factorization Theorem) Let X and Y be Banach spaces. A bounded linear operator T : X Y is p-absolutely summing if and only if there is a real constant C > 0 and a regular Borel probability measure on B X * { f : f X * , f 1 } in weak*-topology such that
T x C B X * | f ( x ) | p d μ B X * ( f ) 1 p , x X .
Moreover, π p ( T ) = inf { C : C satisfies Inequality ( 2 ) } .
In this paper, we define the notion of p-absolutely summing morphisms between Hilbert C*-modules over commutative C*-algebras (Definition 2). We derive in Theorem 5 that an adjointable morphism between Hilbert C*-module over a monote closed C*-algebra is 2-summing if and only if modular Hilbert-Schmidt. We then formulate version of Pietsch factorization problem for p-absolutely summing morphisms and solve partially.

2. p-absolutely summing morphisms

We define modular version of Definition 1 as follows. For the theory of Hilbert C*-modules we refer [29,30,31].
Definition 2. 
Let 1 p < . Let M and N be Hilbert C*-modules over a commutative C*-algebra A . An adjointable morphism T : M N is said to be modular p-absolutely summing if there is a real constant C > 0 satisfying following: for every n N and for all x 1 , , x n M ,
j = 1 n T x j , T x j p 2 1 p C sup x M , x 1 j = 1 n ( x , x j x j , x ) p 2 1 p .
In this case, the p-absolutely summing norm of T is defined as
π p ( T ) inf { C : C satisfies Inequality ( 3 ) } .
The set of all p-absolutely summing morphisms from M to N is denoted by Π p ( M , N ) .
In 2021, Stern and van Suijlekom introduced the notion of modular Schatten class morphisms [32].
Definition 3. 
[32] Let 1 p < . Let A be a C*-algebra and A ^ be its Gelfand spectrum. Let M and N be Hilbert C*-modules over A . Let T : M N be an adjointable morphism. We say that T is in the modular p-Schatten class if the function
Tr | T | p : A ^ χ Tr | χ * T | p R { }
lies in A . The modular p-Schatten norm of T is defined as
T p Tr | T | p A 1 p .
Modular 2-Schatten (resp. 1-Schatten) class morphism is called as modular Hilbert-Schmidt (resp. modular trace class). We denote T 2 by T H S .
Using the theory of modular frames for Hilbert C*-modules (see [33]) Stern and van Suijlekom were able to derive following result.
Theorem 4. 
[32] Let M and N be Hilbert C*-modules over A . Let T : M N be an adjointable morphism. Then T is modular Hilbert-Schmidt if and only if for every modular Parseval frame { τ n } n for M , the series n = 1 | T | p τ n , τ n converges in norm in A and
Tr | T | p = n = 1 | T | p τ n , τ n .
We now derive modular version of Theorem 2 with the following notion.
Definition 4. 
[34] A C*-algebra A is said to be monotone closed if every bounded increasing net in A has the least upper bound in A .
Theorem 5. 
Let M and N be Hilbert C*-modules over a commutative C*-algebra A . Assume A is monotone closed. Let T : M N be an adjointable morphism. Then T Π 2 ( M , N ) if and only if T is modular Hilbert-Schmidt. Moreover, T H S = π 2 ( T ) .
Proof. 
( ) Let T Π 2 ( M , N ) . Let { τ n } n = 1 be a modular Parseval frame for M . Then
x , x = n = 1 x , τ n τ n , x , x M ,
where the series converges in the norm of A . To show T is modular Hilbert-Schmidt, using Theorem 4, it suffices to show that the series n = 1 T τ n , T τ n converges in norm in A . Note that the series n = 1 T τ n , T τ n is monotonically increasing. Since the C*-algebra is monotone closed, we are done if we show the sequence { j = 1 n T τ j , T τ j } n = 1 is bounded. Let n N . Since T is 2-summing, using Equation (4) we have
j = 1 n T τ j , T τ j π 2 ( T ) 2 sup x M , x 1 j = 1 n x , τ j τ j , x π 2 ( T ) 2 sup x M , x 1 j = 1 x , τ j τ j , x = π 2 ( T ) 2 sup x M , x 1 x 2 = π 2 ( T ) 2 .
( ) Let n N and x 1 , , x n M . Let { ω n } n = 1 be an orthonormal basis for M . Define
S : M x j = 1 n x , ω j x j M .
Then
S 2 = S * 2 = sup x M , x 1 S * x 2 = sup x M , x 1 n = 1 S * x , ω n ω n 2 = sup x M , x 1 n = 1 x , S ω n ω n 2 = sup x M , x 1 j = 1 n x , x j ω j 2 = sup x M , x 1 j = 1 n x , x j x j , x .
Hence
j = 1 n T x j , T x j = j = 1 n T S ω j , T S ω j = T S HS 2 T HS 2 S = T HS 2 sup x M , x 1 j = 1 n x , x j x j , x .
 □
Note that we have not used monotonic closedness of C*-algebra in “if” part. In view of Theorem 3, we formulate following problem.
Question 6. 
Whether there exists a modular Pietsch factorization theorem?
We solve Question (6) partially in the following theorem. Integrals in the following theorem is in the Kasparov sense [35].
Theorem 7. 
Let M and N be Hilbert C*-modules over a commutative C*-algebra A . Let T : M N be an adjointable morphism. Assume that there exists a Lie group G B M { x : x M , x 1 } satisfying following.
(i) 
μ G ( G ) = 1 .
(ii) 
For each x M , the map G y x . y y , x is continuous.
(iii) 
There exists a real C > 0 such that
T x , T x p 2 C p G ( x . y y , x ) p 2 d μ G ( y ) , x M .
Then T modular p-absolutely summing and π p ( T ) = C .
Proof. 
Let n N and x 1 , , x n M . Then
j = 1 n T x j , T x j p 2 C p j = 1 n G ( x j , y y , x j ) p 2 d μ G ( y ) = C p G j = 1 n ( x j , y y , x j ) p 2 d μ G ( y ) C p G j = 1 n ( x j , y y , x j ) p 2 d μ G ( y ) C p G sup y M , y 1 j = 1 n ( x j , y y , x j ) p 2 d μ G ( y ) = C p sup y M , y 1 j = 1 n ( x j , y y , x j ) p 2 μ G ( G ) = C p sup y M , y 1 j = 1 n ( x j , y y , x j ) p 2 .
 □

3. Appendix

In this appendix we formulate some problems for Banach modules over C*-algebras based on the results in Banach spaces which influenced a lot in the modern development of Functional Analysis. Our first kind of problems come from the Dvoretzky theorem [36,37,38,39,40,41,42,43,44,45,46,47,48,49,50]. Let X and Y be finite dimensional Banach spaces such that dim ( X ) = dim ( Y ) . Remenber that the Banach-Mazur distance between X and Y is defined as
d B M ( X , Y ) : = inf { T T 1 : T : X Y is invertible linear operator } .
For n N , let ( R n , · , · ) be the standard Euclidean Hilbert space.
Theorem 8. 
[28,51] (John Theorem) If X is any n-dimensional real Banach space, then
d B M ( Y , ( R n , · , · ) ) n .
Theorem 9. 
[28,52] (Dvoretzky Theorem) There is a universal constant C > 0 satisfying the following property: If X is any n-dimensional real Banach space and 0 < ε < 1 3 , then for every natural number
k C log n ε 2 | log ε | ,
there exists a k-dimensional Banach subspace Y of X such that
d B M ( Y , ( R k , · , · ) ) < 1 + ε .
Let A be a unital C*-algebra with invariant basis number property (see [53] for a study on such C*-algebras) and E , F be finite rank Banach modules over A such that rank ( E ) = rank ( F ) . Modular Banach-Mazur distance between E and F is defined as
d M B M ( E , F ) : = inf { T T 1 : T : E F is invertible module homomorphism } .
Given a unital C*-algebra A and n N , by A n we mean the standard (left) module over A . We equip A n with the C*-valued inner product · , · : A n × A n A defined by
( a j ) j = 1 n , ( b j ) j = 1 n : = j = 1 n a j b j * , ( a j ) j = 1 n , ( b j ) j = 1 n A n .
Hence norm on A n is given by
( a j ) j = 1 n : = j = 1 n a j a j * 1 2 , ( a j ) j = 1 n A n .
Then it is well-known that A n is a Hilbert C*-module. We denote this Hilbert C*-module by ( A n , · , · ) .
Problem 1. 
(Modular Dvoretzky Problem) Let A be the set of all unital C*-algebras with invariant basis number property. What is the best function Ψ : A × 0 , 1 3 × N ( 0 , ) satisfying the following property: If E is any n-rank Banach module over a unital C*-algebra A with IBN property and 0 < ε < 1 3 , then for every natural number
k Ψ ( A , ε , n ) ,
there exists a k-rank Banach submodule F of E such that
d M B M ( F , ( A k , · , · ) ) < 1 + ε .
A particular case of Problem 1 is the following conjecture.
Conjecture 10. 
(Modular Dvoretzky Conjecture) Let A be a unital C*-algebra with IBN property. There is a universal constant C > 0 (which may depend upon A ) satisfying the following property: If E is any n-rank Banach module and 0 < ε < 1 3 , then for every natural number
k C log n ε 2 | log ε | ,
there exists a k-rank Banach submodule F of E such that
d M B M ( F , ( A k , · , · ) ) < 1 + ε .
Our second kind of problems come from the type-cotype theory of Banach spaces [8,12,13,18,19,28,54,55]. Let H be a Hilbert space, n N . Recall that for any n points x 1 , , x n H , we have
1 2 n ε 1 , , ε n { 1 , 1 } j = 1 n ε j x j 2 = j = 1 n x j 2 .
It is Equality (5) which motivated the definition of type and cotype for Banach spaces.
Definition 5. 
[28] Let 1 p 2 . A Banach space X is said to be of  (Rademacher) type p if there exists T p ( X ) > 0 such that
1 2 n ε 1 , , ε n { 1 , 1 } j = 1 n ε j x j p 1 p T p ( X ) j = 1 n x j p 1 p , x 1 , , x n X , n N .
Definition 6. 
[28] Let 2 q < . A Banach space X is said to be of (Rademacher) cotype q if there exists C q ( X ) > 0 such that
j = 1 n x j q 1 q C q ( X ) 1 2 n ε 1 , , ε n { 1 , 1 } j = 1 n ε j x j q 1 q , x 1 , , x n X , n N .
Let E be a (left) Hilbert C*-module over a unital C*-algebra A , n N . We see that for any n points x 1 , , x n E , we have
1 2 n ε 1 , , ε n { 1 , 1 } j = 1 n ε j x j , k = 1 n ε k x k = j = 1 n x j , x j .
Problem 2. 
(Modular Type-Cotype Problems) Whether there is a way to define type (we call modular-type) and cotype (we call modular-cotype) for Banach modules over C*-algebras which reduces to Equality (6) for Hilbert C*-modules?
Problem 3. 
Whether there is a notion of type and cotype for Banach modules over C*-algebras such that Kwapien theorems holds?, In other words, whether following statements hold?
(i) 
A Banach module M over a unital C*-algebra A has modular-type 2 and modular-cotype 2 if and only if M is isomorphic to a Hilbert C*-module over A .
(ii) 
If M and N are Banach modules over a unital C*-algebra A of modular-type 2 and modular-cotype 2, respectively, then a bounded module morphism T : M N factors through a Hilbert C*-module over A .
Problem 4. 
(Modular Khinchin-Kahane Inequalities Problems) Whether there is a Khinchin-Kahane inequalities for Banach modules over C*-algebras which reduce to Equality (6) for Hilbert C*-modules?
Our third kind of problems come from Grothendieck inequality [1,2,28,56,57,58,59,60,61,62,63].
Theorem 11. 
[1,2,28,56,57,58] (Grothendieck Inequality) There is a universal constant K G satisfying the following: For any Hilbert space H and any m , n N , if a scalar matrix [ a j , k ] 1 j m , 1 k n satisfy
j = 1 m k = 1 n a j , k s j t k 1 , s j , t k K , | s j | 1 , | t k | 1 ,
then
j = 1 m k = 1 n a j , k u j , v k K G , u j , v k H , u j 1 , v k 1 .
Problem 5. 
(Modular Grothendieck Inequality Problem - 1) Let A be the set of all unital C*-algebras. Let E be a Hilbert C*-module over a unital C*-algebra A . Let A + be the set of all positive elemnts in A . What is the best function Ψ : A × N × N A + satisfying the following property: If [ a j , k ] 1 j m , 1 k n M m × n ( A ) satisfy
j = 1 m k = 1 n a j , k s j t k , p = 1 m q = 1 n a p , q s p t q 1 , s j , t k A , s j s j * = s j * s j = 1 , 1 j m , t k t k * = t k * t k = 1 , 1 k n ,
then
j = 1 m k = 1 n a j , k u j , v k , p = 1 m q = 1 n a p , q u p , v q Ψ ( A , m , n ) , u j , v k E , u j , u j = 1 , 1 j m , v k , v k = 1 , 1 k n .
In particular, whether Ψ depends on m and n?
Problem 6. 
(Modular Grothendieck Inequality Problem - 2) Let A be the set of all unital C*-algebras. Let E be a Hilbert C*-module over a unital C*-algebra A . Let A + be the set of all positive elemnts in A . What is the best function Ψ : A × N × N A + satisfying the following property: If [ a j , k ] 1 j m , 1 k n M m × n ( A ) satisfy
j = 1 m k = 1 n a j , k s j t k , p = 1 m q = 1 n a p , q s p t q 1 , s j , t k A , s j 1 , 1 j m , t k 1 , 1 k n ,
then
j = 1 m k = 1 n a j , k u j , v k , p = 1 m q = 1 n a p , q u p , v q Ψ ( A , m , n ) , u j , v k E , u j 1 , 1 j m , v k 1 , 1 k n .
In particular, whether Ψ depends on m and n?
We believe strongly that Ψ depends on A .
Remark 1. 
Modular Bourgain-Tzafriri restricted invertibility conjecture  and Modular Johnson-Lindenstrauss flattening conjecture have been stated in [64,65].

References

  1. Grothendieck, A. Produits tensoriels topologiques et espaces nucléaires. Mem. Amer. Math. Soc. 1955, 16. [CrossRef]
  2. Diestel, J.; Fourie, J.H.; Swart, J. The metric theory of tensor products: Grothendieck’s resume revisited; American Mathematical Society, Providence, RI, 2008; pp. x+278. [CrossRef]
  3. Tomczak-Jaegermann, N. Banach-Mazur distances and finite-dimensional operator ideals; Vol. 38, Pitman Monographs and Surveys in Pure and Applied Mathematics, Longman Scientific and Technical, Harlow, 1989; pp. xii+395.
  4. Defant, A.; Floret, K. Tensor norms and operator ideals; Vol. 176, North-Holland Mathematics Studies, North-Holland Publishing Co., Amsterdam, 1993; pp. xii+566.
  5. Wojtaszczyk, P. Banach spaces for analysts; Vol. 25, Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, 1991; pp. xiv+382. [CrossRef]
  6. Lindenstrauss, J.; Pelczynski, A. Absolutely summing operators in Lp-spaces and their applications. Studia Math. 1968, 29, 275–326. [CrossRef]
  7. Pietsch, A. Absolut p-summierende Abbildungen in normierten Raumen. Studia Math. 1966/67, 28, 333–353. [CrossRef]
  8. Diestel, J.; Jarchow, H.; Tonge, A. Absolutely summing operators; Vol. 43, Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, 1995; pp. xvi+474. [CrossRef]
  9. Pelczynski, A. A characterization of Hilbert-Schmidt operators. Studia Math. 1966/67, 28, 355–360. [CrossRef]
  10. Johnson, W.B.; Schechtman, G. Computing p-summing norms with few vectors. Israel J. Math. 1994, 87, 19–31. [CrossRef]
  11. Pietsch, A. Operator ideals; Vol. 20, North-Holland Mathematical Library, North-Holland Publishing Co., Amsterdam-New York, 1980; p. 451.
  12. Johnson, W.B.; Lindenstrauss, J., Eds. Handbook of the geometry of Banach spaces. Vol. I; North-Holland Publishing Co., Amsterdam, 2001; pp. x+1005.
  13. Johnson, W.B.; Lindenstrauss, J., Eds. Handbook of the geometry of Banach spaces. Vol. 2; North-Holland, Amsterdam, 2003; pp. xii+1866.
  14. Pietsch, A. History of Banach spaces and linear operators; Birkhäuser Boston, Inc., Boston, MA, 2007; pp. xxiv+855.
  15. Hytonen, T.; van Neerven, J.; Veraar, M.; Weis, L. Analysis in Banach spaces. Vol. II: Probabilistic methods and operator theory; Vol. 67, A Series of Modern Surveys in Mathematics, Springer, 2017; pp. xxi+616. [CrossRef]
  16. Jameson, G.J.O. Summing and nuclear norms in Banach space theory; Vol. 8, London Mathematical Society Student Texts, Cambridge University Press, Cambridge, 1987; pp. xii+174. [CrossRef]
  17. Garling, D.J.H. Inequalities: a journey into linear analysis; Cambridge University Press, Cambridge, 2007; pp. x+335. [CrossRef]
  18. Li, D.; Queffelec, H. Introduction to Banach spaces: analysis and probability. Vol. 2; Vol. 167, Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, 2018; pp. xxx+374.
  19. Li, D.; Queffelec, H. Introduction to Banach spaces: analysis and probability. Vol. 1; Vol. 166, Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, 2018; pp. xxx+431.
  20. Lindenstrauss, J.; Tzafriri, L. Classical Banach spaces. I: Sequence spaces; Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 92, Springer-Verlag, Berlin-New York, 1977; pp. xiii+188.
  21. Tomczak-Jaegermann, N. Computing 2-summing norm with few vectors. Ark. Mat. 1979, 17, 273–277. [CrossRef]
  22. Kwapien, S. On a theorem of L. Schwartz and its applications to absolutely summing operators. Studia Math. 1970, 38, 193–201. [CrossRef]
  23. Farmer, J.D.; Johnson, W.B. Lipschitz p-summing operators. Proc. Amer. Math. Soc. 2009, 137, 2989–2995. [CrossRef]
  24. Botelho, G.; Pellegrino, D.; Rueda, P. A unified Pietsch domination theorem. J. Math. Anal. Appl. 2010, 365, 269–276. [CrossRef]
  25. Pellegrino, D.; Santos, J. A general Pietsch domination theorem. J. Math. Anal. Appl. 2011, 375, 371–374. [CrossRef]
  26. Chen, D.; Zheng, B. Remarks on Lipschitz p-summing operators. Proc. Amer. Math. Soc. 2011, 139, 2891–2898. [CrossRef]
  27. Botelho, G.; Maia, M.; Pellegrino, D.; Santos, J. A unified factorization theorem for Lipschitz summing operators. Q. J. Math. 2019, 70, 1521–1533. [CrossRef]
  28. Albiac, F.; Kalton, N.J. Topics in Banach space theory; Vol. 233, Graduate Texts in Mathematics, Springer, [Cham], 2016; pp. xx+508. [CrossRef]
  29. Paschke, W.L. Inner product modules over B*-algebras. Trans. Amer. Math. Soc. 1973, 182, 443–468. [CrossRef]
  30. Rieffel, M.A. Induced representations of C*-algebras. Advances in Math. 1974, 13, 176–257. [CrossRef]
  31. Kaplansky, I. Modules over operator algebras. Amer. J. Math. 1953, 75, 839–858. [CrossRef]
  32. Stern, A.B.; van Suijlekom, W.D. Schatten classes for Hilbert modules over commutative C*-algebras. J. Funct. Anal. 2021, 281, Paper No. 109042, 35. [CrossRef]
  33. Frank, M.; Larson, D.R. Frames in Hilbert C*-modules and C*-algebras. J. Operator Theory 2002, 48, 273–314.
  34. Takesaki, M. Theory of operator algebras. I; Vol. 124, Operator Algebras and Non-commutative Geometry: Encyclopaedia of Mathematical Sciences, Springer-Verlag, Berlin, 2002; pp. xx+415.
  35. Kasparov, G.G. Topological invariants of elliptic operators. I. K-homology. Izv. Akad. Nauk SSSR Ser. Mat. 1975, 39, 796–838.
  36. Milman, V.D.; Schechtman, G. Asymptotic theory of finite-dimensional normed spaces; Vol. 1200, Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1986; pp. viii+156.
  37. Milman, V.D. A new proof of A. Dvoretzky’s theorem on cross-sections of convex bodies. Funkcional. Anal. i Priložen. 1971, 5, 28–37.
  38. Milman, V. Dvoretzky’s theorem—thirty years later. Geom. Funct. Anal. 1992, 2, 455–479. [CrossRef]
  39. Figiel, T. A short proof of Dvoretzky’s theorem on almost spherical sections of convex bodies. Compositio Math. 1976, 33, 297–301.
  40. Szankowski, A. On Dvoretzky’s theorem on almost spherical sections of convex bodies. Israel J. Math. 1974, 17, 325–338. [CrossRef]
  41. Matousek, J. Lectures on discrete geometry; Vol. 212, Graduate Texts in Mathematics, Springer-Verlag, New York, 2002; pp. xvi+481. [CrossRef]
  42. Matsak, I.; Plichko, A. Dvoretzky’s theorem by Gaussian method. In Functional analysis and its applications; Elsevier Sci. B. V., Amsterdam, 2004; Vol. 197, North-Holland Math. Stud., pp. 171–184. [CrossRef]
  43. Pisier, G. The volume of convex bodies and Banach space geometry; Vol. 94, Cambridge Tracts in Mathematics, Cambridge University Press, Cambridge, 1989; pp. xvi+250. [CrossRef]
  44. Gordon, Y.; Guedon, O.; Meyer, M. An isomorphic Dvoretzky’s theorem for convex bodies. Studia Math. 1998, 127, 191–200. [CrossRef]
  45. Figiel, T. A short proof of Dvoretzky’s theorem. In Séminaire Maurey-Schwartz 1974–1975: Espaces Lp, applications radonifiantes et géométrie des espaces de Banach, Exp. No. XXIII; 1975; pp. 6 pp. (erratum, p. 3).
  46. Figiel, T. Some remarks on Dvoretzky’s theorem on almost spherical sections of convex bodies. Colloq. Math. 1971/72, 24, 241–252. [CrossRef]
  47. Figiel, T.; Lindenstrauss, J.; Milman, V.D. The dimension of almost spherical sections of convex bodies. Acta Math. 1977, 139, 53–94. [CrossRef]
  48. Schechtman, G. A remark concerning the dependence on ϵ in Dvoretzky’s theorem. In Geometric aspects of functional analysis (1987–88); Springer, Berlin, 1989; Vol. 1376, Lecture Notes in Math., pp. 274–277. [CrossRef]
  49. Gordon, Y. Gaussian processes and almost spherical sections of convex bodies. Ann. Probab. 1988, 16, 180–188. [CrossRef]
  50. Pisier, G. Probabilistic methods in the geometry of Banach spaces. In Probability and analysis (Varenna, 1985); Springer, Berlin, 1986; Vol. 1206, Lecture Notes in Math., pp. 167–241. [CrossRef]
  51. John, F. Extremum problems with inequalities as subsidiary conditions. In Studies and Essays Presented to R. Courant on his 60th Birthday, January 8, 1948; Interscience Publishers, Inc., New York, N. Y., 1948; pp. 187–204.
  52. Dvoretzky, A. Some results on convex bodies and Banach spaces. Proc. Internat. Sympos. Linear Spaces (Jerusalem, 1960). Jerusalem Academic Press, Jerusalem; Pergamon, Oxford, 1961, pp. 123–160.
  53. Gipson, P.M. Invariant basis number for C*-algebras. Illinois J. Math. 2015, 59, 85–98. [CrossRef]
  54. Latala, R.; Oleszkiewicz, K. On the best constant in the Khinchin-Kahane inequality. Studia Math. 1994, 109, 101–104.
  55. Szarek, S.J. On the best constants in the Khinchin inequality. Studia Math. 1976, 58, 197–208. [CrossRef]
  56. Blei, R.C. An elementary proof of the Grothendieck inequality. Proc. Amer. Math. Soc. 1987, 100, 58–60. [CrossRef]
  57. Friedland, S.; Lim, L.H.; Zhang, J. An elementary and unified proof of Grothendieck’s inequality. Enseign. Math. 2018, 64, 327–351. [CrossRef]
  58. Rietz, R.E. A proof of the Grothendieck inequality. Israel J. Math. 1974, 19, 271–276. [CrossRef]
  59. Haagerup, U. A new upper bound for the complex Grothendieck constant. Israel J. Math. 1987, 60, 199–224. [CrossRef]
  60. Jameson, G.J.O. The interpolation proof of Grothendieck’s inequality. Proc. Edinburgh Math. Soc. (2) 1985, 28, 217–223. [CrossRef]
  61. Kaijser, S. A simple-minded proof of the Pisier-Grothendieck inequality. In Banach spaces, harmonic analysis, and probability theory (Storrs, Conn., 1980/1981); Springer, Berlin, 1983; Vol. 995, Lecture Notes in Math., pp. 33–44. [CrossRef]
  62. Blei, R. The Grothendieck inequality revisited. Mem. Amer. Math. Soc. 2014, 232, vi+90. [CrossRef]
  63. Pisier, G. Grothendieck’s theorem, past and present. Bull. Amer. Math. Soc. (N.S.) 2012, 49, 237–323. [CrossRef]
  64. Krishna, K.M. Modular Bourgain-Tzafriri Restricted Invertibility Conjectures and Johnson-Lindenstrauss Flattening Conjecture. arXiv:2208.05223v1 [math.FA], 10 August 2022.
  65. Krishna, K.M. Modular Paulsen Problem and Modular Projection Problem. arXiv:2207.12799.v1 [math.FA], 26 July 2022.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated