1. Modular Problems
Our first kind of problems come from the Dvoretzky theorem [
36,
37,
38,
39,
40,
41,
42,
43,
44,
45,
46,
47,
48,
49,
50]. Let
and
be finite dimensional Banach spaces such that
. Remember that the Banach-Mazur distance between
and
is defined as
For
, let
be the standard Euclidean Hilbert space.
Theorem 1.
[28,51](John Theorem) If is any n-dimensional real Banach space, then
Theorem 2.
[28,52](Dvoretzky Theorem) There is a universal constant satisfying the following property: If is any n-dimensional real Banach space and , then for every natural number
there exists a k-dimensional Banach subspace of such that
Let
be a unital C*-algebra with invariant basis number property (see [
53] for a study on such C*-algebras) and
,
be finite rank Banach modules over
such that
. Modular Banach-Mazur distance between
and
is defined as
Given a unital C*-algebra
and
, by
we mean the standard (left) module over
. We equip
with the C*-valued inner product
defined by
Hence norm on
is given by
Then it is well-known that
is a Hilbert C*-module. We denote this Hilbert C*-module by
.
Problem 3.(Modular Dvoretzky Problem) Let be the set of all unital C*-algebras with invariant basis number property. What is the best function satisfying the following property: If is any n-rank Banach module over a unital C*-algebra with IBN property and , then for every natural number
there exists a k-rank Banach submodule of such that
A particular case of Problem 3 is the following conjecture.
Conjecture 4.(Modular Dvoretzky Conjecture) Let be a unital C*-algebra with IBN property. There is a universal constant (which may depend upon ) satisfying the following property: If is any n-rank Banach module and , then for every natural number
there exists a k-rank Banach submodule of such that
Our second kind of problems come from the type-cotype theory of Banach spaces [
8,
12,
13,
18,
19,
28,
54,
55]. Let
be a Hilbert space,
. Recall that for any
n points
, we have
It is Equality (
1) which motivated the definition of type and cotype for Banach spaces.
Definition 4.
[28] Let . A Banach space is said to be of(Rademacher) type pif there exists such that
Definition 4.
[28] Let . A Banach space is said to be of(Rademacher) cotype qif there exists such that
Let
be a (left) Hilbert C*-module over a unital C*-algebra
,
. We see that for any
n points
, we have
Problem 5.(Modular Type-Cotype Problems) Whether there is a way to define type (we call modular-type) and cotype (we call modular-cotype) for Banach modules over C*-algebras which reduces to Equality (2) for Hilbert C*-modules?
Problem 6. Whether there is a notion of type and cotype for Banach modules over C*-algebras such that Kwapien theorems holds?, In other words, whether following statements hold?
- (i)
A Banach module over a unital C*-algebra has modular-type 2 and modular-cotype 2 if and only if is isomorphic to a Hilbert C*-module over .
- (ii)
If and are Banach modules over a unital C*-algebra of modular-type 2 and modular-cotype 2, respectively, then a bounded module morphism factors through a Hilbert C*-module over .
Problem 7.(Modular Khinchin-Kahane Inequalities Problems) Whether there is a Khinchin-Kahane inequalities for Banach modules over C*-algebras which reduce to Equality (2) for Hilbert C*-modules?
Our third kind of problems come from Grothendieck inequality [
1,
2,
28,
56,
57,
58,
59,
60,
61,
62,
63].
Theorem 8.
[1,2,28,56,57,58](Grothendieck Inequality) There is a universal constant satisfying the following: For any Hilbert space and any , if a scalar matrix satisfy
then
Problem 8.(Modular Grothendieck Inequality Problem - 1) Let be the set of all unital C*-algebras. Let be a Hilbert C*-module over a unital C*-algebra . Let be the set of all positive elemnts in . What is the best function satisfying the following property: If satisfy
then
In particular, whether depends on m and n?
Problem 8.(Modular Grothendieck Inequality Problem - 2) Let be the set of all unital C*-algebras. Let be a Hilbert C*-module over a unital C*-algebra . Let be the set of all positive elemnts in . What is the best function satisfying the following property: If satisfy
then
In particular, whether depends on m and n?
We believe strongly that depends on .
Remark 8.
Modular Bourgain-Tzafriri restricted invertibility conjectureandModular Johnson-Lindenstrauss flattening conjecturehave been stated in [64,65].
References
- Grothendieck, A. Produits tensoriels topologiques et espaces nucléaires. Mem. Amer. Math. Soc. 1955, 16.
- Diestel, J.; Fourie, J.H.; Swart, J. The metric theory of tensor products: Grothendieck’s resume revisited; American Mathematical Society, Providence, RI, 2008; pp. x+278. [CrossRef]
- Tomczak-Jaegermann, N. Banach-Mazur distances and finite-dimensional operator ideals; Vol. 38, Pitman Monographs and Surveys in Pure and Applied Mathematics, Longman Scientific and Technical, Harlow, 1989; pp. xii+395.
- Defant, A.; Floret, K. Tensor norms and operator ideals; Vol. 176, North-Holland Mathematics Studies, North-Holland Publishing Co., Amsterdam, 1993; pp. xii+566.
- Wojtaszczyk, P. Banach spaces for analysts; Vol. 25, Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, 1991; pp. xiv+382. [CrossRef]
- Lindenstrauss, J.; Pelczynski, A. Absolutely summing operators in Lp-spaces and their applications. Studia Math. 1968, 29, 275–326. [CrossRef]
- Pietsch, A. Absolut p-summierende Abbildungen in normierten Raumen. Studia Math. 1966/67, 28, 333–353. [CrossRef]
- Diestel, J.; Jarchow, H.; Tonge, A. Absolutely summing operators; Vol. 43, Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, 1995; pp. xvi+474. [CrossRef]
- Pelczynski, A. A characterization of Hilbert-Schmidt operators. Studia Math. 1966/67, 28, 355–360. [CrossRef]
- Johnson, W.B.; Schechtman, G. Computing p-summing norms with few vectors. Israel J. Math. 1994, 87, 19–31. [CrossRef]
- Pietsch, A. Operator ideals; Vol. 20, North-Holland Mathematical Library, North-Holland Publishing Co., Amsterdam-New York, 1980; p. 451.
- Johnson, W.B.; Lindenstrauss, J., Eds. Handbook of the geometry of Banach spaces. Vol. I; North-Holland Publishing Co., Amsterdam, 2001; pp. x+1005.
- Johnson, W.B.; Lindenstrauss, J., Eds. Handbook of the geometry of Banach spaces. Vol. 2; North-Holland, Amsterdam, 2003; pp. xii+1866.
- Pietsch, A. History of Banach spaces and linear operators; Birkhäuser Boston, Inc., Boston, MA, 2007; pp. xxiv+855.
- Hytonen, T.; van Neerven, J.; Veraar, M.; Weis, L. Analysis in Banach spaces. Vol. II: Probabilistic methods and operator theory; Vol. 67, A Series of Modern Surveys in Mathematics, Springer, 2017; pp. xxi+616. [CrossRef]
- Jameson, G.J.O. Summing and nuclear norms in Banach space theory; Vol. 8, London Mathematical Society Student Texts, Cambridge University Press, Cambridge, 1987; pp. xii+174. [CrossRef]
- Garling, D.J.H. Inequalities: a journey into linear analysis; Cambridge University Press, Cambridge, 2007; pp. x+335. [CrossRef]
- Li, D.; Queffelec, H. Introduction to Banach spaces: analysis and probability. Vol. 2; Vol. 167, Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, 2018; pp. xxx+374.
- Li, D.; Queffelec, H. Introduction to Banach spaces: analysis and probability. Vol. 1; Vol. 166, Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, 2018; pp. xxx+431.
- Lindenstrauss, J.; Tzafriri, L. Classical Banach spaces. I: Sequence spaces; Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 92, Springer-Verlag, Berlin-New York, 1977; pp. xiii+188.
- Tomczak-Jaegermann, N. Computing 2-summing norm with few vectors. Ark. Mat. 1979, 17, 273–277. [CrossRef]
- Kwapien, S. On a theorem of L. Schwartz and its applications to absolutely summing operators. Studia Math. 1970, 38, 193–201. [CrossRef]
- Farmer, J.D.; Johnson, W.B. Lipschitz p-summing operators. Proc. Amer. Math. Soc. 2009, 137, 2989–2995. [CrossRef]
- Botelho, G.; Pellegrino, D.; Rueda, P. A unified Pietsch domination theorem. J. Math. Anal. Appl. 2010, 365, 269–276. [CrossRef]
- Pellegrino, D.; Santos, J. A general Pietsch domination theorem. J. Math. Anal. Appl. 2011, 375, 371–374. [CrossRef]
- Chen, D.; Zheng, B. Remarks on Lipschitz p-summing operators. Proc. Amer. Math. Soc. 2011, 139, 2891–2898. [CrossRef]
- Botelho, G.; Maia, M.; Pellegrino, D.; Santos, J. A unified factorization theorem for Lipschitz summing operators. Q. J. Math. 2019, 70, 1521–1533. [CrossRef]
- Albiac, F.; Kalton, N.J. Topics in Banach space theory; Vol. 233, Graduate Texts in Mathematics, Springer, [Cham], 2016; pp. xx+508. [CrossRef]
- Paschke, W.L. Inner product modules over B*-algebras. Trans. Amer. Math. Soc. 1973, 182, 443–468. [CrossRef]
- Rieffel, M.A. Induced representations of C*-algebras. Advances in Math. 1974, 13, 176–257. [CrossRef]
- Kaplansky, I. Modules over operator algebras. Amer. J. Math. 1953, 75, 839–858. [CrossRef]
- Stern, A.B.; van Suijlekom, W.D. Schatten classes for Hilbert modules over commutative C*-algebras. J. Funct. Anal. 2021, 281, Paper No. 109042, 35. [CrossRef]
- Frank, M.; Larson, D.R. Frames in Hilbert C*-modules and C*-algebras. J. Operator Theory 2002, 48, 273–314.
- Takesaki, M. Theory of operator algebras. I; Vol. 124, Operator Algebras and Non-commutative Geometry: Encyclopaedia of Mathematical Sciences, Springer-Verlag, Berlin, 2002; pp. xx+415.
- Kasparov, G.G. Topological invariants of elliptic operators. I. K-homology. Izv. Akad. Nauk SSSR Ser. Mat. 1975, 39, 796–838.
- Milman, V.D.; Schechtman, G. Asymptotic theory of finite-dimensional normed spaces; Vol. 1200, Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1986; pp. viii+156.
- Milman, V.D. A new proof of A. Dvoretzky’s theorem on cross-sections of convex bodies. Funkcional. Anal. i Priložen. 1971, 5, 28–37.
- Milman, V. Dvoretzky’s theorem—thirty years later. Geom. Funct. Anal. 1992, 2, 455–479. [CrossRef]
- Figiel, T. A short proof of Dvoretzky’s theorem on almost spherical sections of convex bodies. Compositio Math. 1976, 33, 297–301.
- Szankowski, A. On Dvoretzky’s theorem on almost spherical sections of convex bodies. Israel J. Math. 1974, 17, 325–338. [CrossRef]
- Matousek, J. Lectures on discrete geometry; Vol. 212, Graduate Texts in Mathematics, Springer-Verlag, New York, 2002; pp. xvi+481. [CrossRef]
- Matsak, I.; Plichko, A. Dvoretzky’s theorem by Gaussian method. In Functional analysis and its applications; Elsevier Sci. B. V., Amsterdam, 2004; Vol. 197, North-Holland Math. Stud., pp. 171–184. [CrossRef]
- Pisier, G. The volume of convex bodies and Banach space geometry; Vol. 94, Cambridge Tracts in Mathematics, Cambridge University Press, Cambridge, 1989; pp. xvi+250. [CrossRef]
- Gordon, Y.; Guedon, O.; Meyer, M. An isomorphic Dvoretzky’s theorem for convex bodies. Studia Math. 1998, 127, 191–200. [CrossRef]
- Figiel, T. A short proof of Dvoretzky’s theorem. In Séminaire Maurey-Schwartz 1974–1975: Espaces Lp, applications radonifiantes et géométrie des espaces de Banach, Exp. No. XXIII; 1975; pp. 6 pp. (erratum, p. 3).
- Figiel, T. Some remarks on Dvoretzky’s theorem on almost spherical sections of convex bodies. Colloq. Math. 1971/72, 24, 241–252. [CrossRef]
- Figiel, T.; Lindenstrauss, J.; Milman, V.D. The dimension of almost spherical sections of convex bodies. Acta Math. 1977, 139, 53–94. [CrossRef]
- Schechtman, G. A remark concerning the dependence on ϵ in Dvoretzky’s theorem. In Geometric aspects of functional analysis (1987–88); Springer, Berlin, 1989; Vol. 1376, Lecture Notes in Math., pp. 274–277. [CrossRef]
- Gordon, Y. Gaussian processes and almost spherical sections of convex bodies. Ann. Probab. 1988, 16, 180–188.
- Pisier, G. Probabilistic methods in the geometry of Banach spaces. In Probability and analysis (Varenna, 1985); Springer, Berlin, 1986; Vol. 1206, Lecture Notes in Math., pp. 167–241. [CrossRef]
- John, F. Extremum problems with inequalities as subsidiary conditions. In Studies and Essays Presented to R. Courant on his 60th Birthday, January 8, 1948; Interscience Publishers, Inc., New York, N. Y., 1948; pp. 187–204.
- Dvoretzky, A. Some results on convex bodies and Banach spaces. Proc. Internat. Sympos. Linear Spaces (Jerusalem, 1960). Jerusalem Academic Press, Jerusalem; Pergamon, Oxford, 1961, pp. 123–160.
- Gipson, P.M. Invariant basis number for C*-algebras. Illinois J. Math. 2015, 59, 85–98.
- Latala, R.; Oleszkiewicz, K. On the best constant in the Khinchin-Kahane inequality. Studia Math. 1994, 109, 101–104.
- Szarek, S.J. On the best constants in the Khinchin inequality. Studia Math. 1976, 58, 197–208. [CrossRef]
- Blei, R.C. An elementary proof of the Grothendieck inequality. Proc. Amer. Math. Soc. 1987, 100, 58–60. [CrossRef]
- Friedland, S.; Lim, L.H.; Zhang, J. An elementary and unified proof of Grothendieck’s inequality. Enseign. Math. 2018, 64, 327–351. [CrossRef]
- Rietz, R.E. A proof of the Grothendieck inequality. Israel J. Math. 1974, 19, 271–276. [CrossRef]
- Haagerup, U. A new upper bound for the complex Grothendieck constant. Israel J. Math. 1987, 60, 199–224. [CrossRef]
- Jameson, G.J.O. The interpolation proof of Grothendieck’s inequality. Proc. Edinburgh Math. Soc. (2) 1985, 28, 217–223. [CrossRef]
- Kaijser, S. A simple-minded proof of the Pisier-Grothendieck inequality. In Banach spaces, harmonic analysis, and probability theory (Storrs, Conn., 1980/1981); Springer, Berlin, 1983; Vol. 995, Lecture Notes in Math., pp. 33–44. [CrossRef]
- Blei, R. The Grothendieck inequality revisited. Mem. Amer. Math. Soc. 2014, 232, vi+90. [CrossRef]
- Pisier, G. Grothendieck’s theorem, past and present. Bull. Amer. Math. Soc. (N.S.) 2012, 49, 237–323. [CrossRef]
- Krishna, K.M. Modular Bourgain-Tzafriri Restricted Invertibility Conjectures and Johnson-Lindenstrauss Flattening Conjecture. arXiv:2208.05223v1 [math.FA], 10 August 2022.
- Krishna, K.M. Modular Paulsen Problem and Modular Projection Problem. arXiv:2207.12799.v1 [math.FA], 26 July 2022.
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).