Abstract
The following system of equations {x_1 \cdot x_1=x_2, x_2 \cdot x_2=x_3, 2^{2^{x_1}}=x_3, x_4 \cdot x_5=x_2, x_6 \cdot x_7=x_2} has exactly one solution in ({\mathbb N}\{0,1})^7, namely (2,4,16,2,2,2,2). Hypothesis 1 states that if a system of equations S \subseteq {x_i \cdot x_j=x_k: i,j,k \in {1,...,7}} \cup {2^{2^{x_j}}=x_k: j,k \in {1,...,7}} has at most five equations and at most finitely many solutions in ({\mathbb N}\{0,1})^7, then each such solution (x_1,...,x_7) satisfies x_1,...,x_7 \leq 16. Hypothesis 1 implies that there are infinitely many composite numbers of the form 2^{2^{n}}+1. Hypotheses 2 and 3 are of similar kind. Hypothesis 2 implies that if the equation x!+1=y^2 has at most finitely many solutions in positive integers x and y, then each such solution (x,y) belongs to the set {(4,5),(5,11),(7,71)}. Hypothesis 3 implies that if the equation x(x+1)=y! has at most finitely many solutions in positive integers x and y, then each such solution (x,y) belongs to the set {(1,2),(2,3)}. We describe semi-algorithms sem_j (j=1,2,3) that never terminate. For every j \in {1,2,3}, if Hypothesis j is true, then sem_j endlessly prints consecutive positive integers starting from 1. For every j \in {1,2,3}, if Hypothesis j is false, then sem_j prints a finite number (including zero) of consecutive positive integers starting from 1.