Version 1
: Received: 2 April 2023 / Approved: 4 April 2023 / Online: 4 April 2023 (05:14:25 CEST)
How to cite:
Silva, L. F. D.; Almeida-Neto, P. F. D.; Gama, D.; Miarka, B.; Aidar, F. J.; Silva, T. D. S.; Sabido, V.; Neto, R. B.; Slimani, M.; Dantas, P. M. S.; Cabral, B. G. D. A. T. Predicting 6000m Performance Time in Junior Rowers using a 500m Indoor Rowing Test. Preprints2023, 2023040039. https://doi.org/10.20944/preprints202304.0039.v1
Silva, L. F. D.; Almeida-Neto, P. F. D.; Gama, D.; Miarka, B.; Aidar, F. J.; Silva, T. D. S.; Sabido, V.; Neto, R. B.; Slimani, M.; Dantas, P. M. S.; Cabral, B. G. D. A. T. Predicting 6000m Performance Time in Junior Rowers using a 500m Indoor Rowing Test. Preprints 2023, 2023040039. https://doi.org/10.20944/preprints202304.0039.v1
Silva, L. F. D.; Almeida-Neto, P. F. D.; Gama, D.; Miarka, B.; Aidar, F. J.; Silva, T. D. S.; Sabido, V.; Neto, R. B.; Slimani, M.; Dantas, P. M. S.; Cabral, B. G. D. A. T. Predicting 6000m Performance Time in Junior Rowers using a 500m Indoor Rowing Test. Preprints2023, 2023040039. https://doi.org/10.20944/preprints202304.0039.v1
APA Style
Silva, L. F. D., Almeida-Neto, P. F. D., Gama, D., Miarka, B., Aidar, F. J., Silva, T. D. S., Sabido, V., Neto, R. B., Slimani, M., Dantas, P. M. S., & Cabral, B. G. D. A. T. (2023). Predicting 6000m Performance Time in Junior Rowers using a 500m Indoor Rowing Test. Preprints. https://doi.org/10.20944/preprints202304.0039.v1
Chicago/Turabian Style
Silva, L. F. D., Paulo Moreira Silva Dantas and Breno Guilherme de Araújo Tinoco Cabral. 2023 "Predicting 6000m Performance Time in Junior Rowers using a 500m Indoor Rowing Test" Preprints. https://doi.org/10.20944/preprints202304.0039.v1
Abstract
The present study aimed to develop a mathematical model to estimate the performance of an indoor rowing event of 6000m through an 500 m all out test in junior athletes. We selected141 subjects from the Brazilian rowing confederation database (15.9 ± 1.0 years), subsequently randomised the sample to the development (~70%) and cross-validation (~30%) groups of the mathematical model. Performance data for 500m and 6000m were collected (there was a 48h washout between one test and anoth-er).Subsequently, the mathematical model: Time(min) 6000m = { [( Time(s) 500-m * 6) * 2] / 60} + 1.3, was developed by arithmetic modeling using machine learning and Regression analysis, being tested by intraclass correlation coefficient (ICC), Concordance correlation coefficient (CCC), Validity (Cb ), preci-sion (ρ) and bland-Altman plotting. The prediction of the result of 6000m through the mathematical model utilizando apenas o desempenho de 500m “all-out” test showed a significant reliability in de-velopment group (r2 = 0.730, ICC = 0.753; CCC = 0.895, Cb = 0.879, ρ: 0.957, pure error: 0.2 secounds (1.0% estimative error)); and in cross-validation group (r2 = 0.710, ICC = 0.747; CCC = 0.888, Cb = 0.875, ρ: 0.903, pure error: 0.3 secounds (1.4% estimative error)). When comparing the estimated re-sults of the 6000m performance by the mathematical model with the real performance of 6000m per-formed in indoor rowing, no statistical differences were observed. In addition, the mathematical model did not present a significant proportion bias in relation to the 6000 m performance in both groups. The mathematical model for predicting 6000m performance through a 500m fast test was significant for national level junior rowing athletes.
Public Health and Healthcare, Physical Therapy, Sports Therapy and Rehabilitation
Copyright:
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.