Submitted:
05 April 2023
Posted:
06 April 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Soil Quality Indicators for Grassland
3. Grazing Management and Soil Quality
3.1. Grazing Strategies for Grassland Soil Conservation
4. New Grass Species for Grassland Soil Resilience
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- EUROSTAT Share of Main Land Types in Utilised Agricultural Area (UAA) by NUTS 2 Regions. Available online: https://ec.europa.eu/eurostat/cache/metadata/en/tai05_esmsip2.htm (accessed on 18 April 2021).
- Suttie, J.M.; Stephen G, R.; Batello, C. Grasslands of the World; Food & Agriculture Org., 2005; Vol. 34; ISBN 978-92-5-105337-9.
- Milazzo, F.; Fernández, P.; Peña, A.; Vanwalleghem, T. The Resilience of Soil Erosion Rates under Historical Land Use Change in Agroecosystems of Southern Spain. Sci. Total Environ. 2022, 822, 153672. [Google Scholar] [CrossRef]
- Schils, R.L.M.; Bufe, C.; Rhymer, C.M.; Francksen, R.M.; Klaus, V.H.; Abdalla, M.; Milazzo, F.; Lellei-Kovács, E.; Berge, H. ten; Bertora, C.; et al. Permanent Grasslands in Europe: Land Use Change and Intensification Decrease Their Multifunctionality. Agric. Ecosyst. Environ. 2022, 330, 107891. [Google Scholar] [CrossRef]
- Zhang, Z.; Hou, G.; Liu, M.; Wei, T.; Sun, J. Degradation Induces Changes in the Soil C:N:P Stoichiometry of Alpine Steppe on the Tibetan Plateau. J. Mt. Sci. 2019, 16, 2348–2360. [Google Scholar] [CrossRef]
- Metera, E.; Sakowski, T.; Słoniewski, K.; Romanowicz, B. Grazing as a Tool to Maintain Biodiversity of Grassland - a Review. Anim. Sci. Pap. Rep. 2010, 28, 315–334. [Google Scholar]
- Silveira, M.L.; Liu, K.; Sollenberger, L.E.; Follett, R.F.; Vendramini, J.M.B. Short-Term Effects of Grazing Intensity and Nitrogen Fertilization on Soil Organic Carbon Pools under Perennial Grass Pastures in the Southeastern USA. Soil Biol. Biochem. 2013, 58, 42–49. [Google Scholar] [CrossRef]
- Steffens, M.; Kölbl, A.; Kögel-Knabner, I. Alteration of Soil Organic Matter Pools and Aggregation in Semi-Arid Steppe Topsoils as Driven by Organic Matter Input. Eur. J. Soil Sci. 2009, 60, 198–212. [Google Scholar] [CrossRef]
- Thomas, S.M.; Beare, M.H.; Francis, G.S.; Barlow, H.E.; Hedderley, D.I. Effects of Tillage, Simulated Cattle Grazing and Soil Moisture on N2O Emissions from a Winter Forage Crop. Plant Soil 2008, 309, 131. [Google Scholar] [CrossRef]
- Zhou, Z.C.; Gan, Z.T.; Shangguan, Z.P.; Dong, Z.B. Effects of Grazing on Soil Physical Properties and Soil Erodibility in Semiarid Grassland of the Northern Loess Plateau (China). CATENA 2010, 82, 87–91. [Google Scholar] [CrossRef]
- Esch, E.H.; Hernández, D.L.; Pasari, J.R.; Kantor, R.S.G.; Selmants, P.C. Response of Soil Microbial Activity to Grazing, Nitrogen Deposition, and Exotic Cover in a Serpentine Grassland. Plant Soil 2013, 366, 671–682. [Google Scholar] [CrossRef]
- Zhan, T.; Zhang, Z.; Sun, J.; Liu, M.; Zhang, X.; Peng, F.; Tsunekawa, A.; Zhou, H.; Gou, X.; Fu, S. Meta-Analysis Demonstrating That Moderate Grazing Can Improve the Soil Quality across China’s Grassland Ecosystems. Appl. Soil Ecol. 2020, 147, 103438. [Google Scholar] [CrossRef]
- Centeri, C. Effects of Grazing on Water Erosion, Compaction and Infiltration on Grasslands. Hydrology 2022, 9, 34. [Google Scholar] [CrossRef]
- Milazzo, F.; Francksen, R.M.; Zavattaro, L.; Abdalla, M.; Hejduk, S.; Enri, S.R.; Pittarello, M.; Price, P.N.; Schils, R.L.M.; Smith, P.; et al. The Role of Grassland for Erosion and Flood Mitigation in Europe: A Meta-Analysis. Agric. Ecosyst. Environ. 2023, 348, 108443. [Google Scholar] [CrossRef]
- Bagchi, S.; Roy, S.; Maitra, A.; Sran, R.S. Herbivores Suppress Soil Microbes to Influence Carbon Sequestration in the Grazing Ecosystem of the Trans-Himalaya. Agric. Ecosyst. Environ. 2017, 239, 199–206. [Google Scholar] [CrossRef]
- Klipple, G.E.; Bement, R.E. Light Grazing: Is It Economically Feasible as a Range-Improvement Practice. J. Range Manag. 1961, 14, 57. [Google Scholar] [CrossRef]
- di Virgilio, A.; Lambertucci, S.A.; Morales, J.M. Sustainable Grazing Management in Rangelands: Over a Century Searching for a Silver Bullet. Agric. Ecosyst. Environ. 2019, 283, 106561. [Google Scholar] [CrossRef]
- Lawrence, R.; Whalley, R.D.B.; Reid, N.; Rader, R. Short-Duration Rotational Grazing Leads to Improvements in Landscape Functionality and Increased Perennial Herbaceous Plant Cover. Agric. Ecosyst. Environ. 2019, 281, 134–144. [Google Scholar] [CrossRef]
- Ma, S.; Zhou, Y.; Gowda, P.H.; Chen, L.; Starks, P.J.; Steiner, J.L.; Neel, J.P.S. Evaluating the Impacts of Continuous and Rotational Grazing on Tallgrass Prairie Landscape Using High-Spatial-Resolution Imagery. Agronomy 2019, 9, 238. [Google Scholar] [CrossRef]
- Oliva, G.; Ferrante, D.; Cepeda, C.; Humano, G.; Puig, S. Holistic versus Continuous Grazing in Patagonia: A Station-Scale Case Study of Plant and Animal Production. Rangel. Ecol. Manag. 2021, 74, 63–71. [Google Scholar] [CrossRef]
- Dong, S.; Shang, Z.; Gao, J.; Boone, R.B. Enhancing Sustainability of Grassland Ecosystems through Ecological Restoration and Grazing Management in an Era of Climate Change on Qinghai-Tibetan Plateau. Agric. Ecosyst. Environ. 2020, 287, 106684. [Google Scholar] [CrossRef]
- Zheng, K.; Wei, J.-Z.; Pei, J.-Y.; Cheng, H.; Zhang, X.-L.; Huang, F.-Q.; Li, F.-M.; Ye, J.-S. Impacts of Climate Change and Human Activities on Grassland Vegetation Variation in the Chinese Loess Plateau. Sci. Total Environ. 2019, 660, 236–244. [Google Scholar] [CrossRef]
- Wang, J.; Wang, K.; Zhang, M.; Zhang, C. Impacts of Climate Change and Human Activities on Vegetation Cover in Hilly Southern China. Ecol. Eng. 2015, 81, 451–461. [Google Scholar] [CrossRef]
- Ciais, P.; Reichstein, M.; Viovy, N.; Granier, A.; Ogée, J.; Allard, V.; Aubinet, M.; Buchmann, N.; Bernhofer, C.; Carrara, A.; et al. Europe-Wide Reduction in Primary Productivity Caused by the Heat and Drought in 2003. Nature 2005, 437, 529–533. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Z.; Tong, L.; Khalifa, M.; Wang, Q.; Gang, C.; Wang, Z.; Li, J.; Sun, Z. Assessing the Effects of Climate Variation and Human Activities on Grassland Degradation and Restoration across the Globe. Ecol. Indic. 2019, 106, 105504. [Google Scholar] [CrossRef]
- Fernández-Habas, J.; Real, D.; Vanwalleghem, T.; Fernández-Rebollo, P. LANZA® Tedera Is Strongly Suppressed by Competition from Lolium Multiflorum and Is Best Adapted to Light-Textured Soils. Agronomy 2023, 13, 965. [Google Scholar] [CrossRef]
- Foster, K.; Ryan, M.H.; Real, D.; Ramankutty, P.; Lambers, H.; Foster, K.; Ryan, M.H.; Real, D.; Ramankutty, P.; Lambers, H. Drought Resistance at the Seedling Stage in the Promising Fodder Plant Tedera (Bituminaria Bituminosa Var. Albomarginata). Crop Pasture Sci. 2012, 63, 1034–1042. [Google Scholar] [CrossRef]
- Karlen, D.L.; Ditzler, C.A.; Andrews, S.S. Soil Quality: Why and How? Geoderma 2003, 114, 145–156. [Google Scholar] [CrossRef]
- Doran, J.W.; Parkin, T.B. Defining and Assessing Soil Quality. In Defining Soil Quality for a Sustainable Environment; John Wiley & Sons, Ltd, 1994; pp. 1–21 ISBN 978-0-89118-930-5.
- Warkentin, B.P.; Fletcher, H.F. Soil Quality for Intensive Agriculture. Proc. Int. Semin. Soil Environ. Fertil. Manag. Intensive Agric. 1977.
- Council, N.R.; Agriculture, B. on; Policy, C. on L.-R.S. and W.C. Soil and Water Quality: An Agenda for Agriculture; National Academies Press, 1993; ISBN 978-0-309-04933-7.
- Guo, S.; Han, X.; Li, H.; Wang, T.; Tong, X.; Ren, G.; Feng, Y.; Yang, G. Evaluation of Soil Quality along Two Revegetation Chronosequences on the Loess Hilly Region of China. Sci. Total Environ. 2018, 633, 808–815. [Google Scholar] [CrossRef]
- Ditzler, C.A.; Tugel, A.J. Soil Quality Field Tools. Agron. J. 2002, 94, 33–38. [Google Scholar] [CrossRef]
- Ball, B.C.; Munkholm, L.J.; Batey, T. Applications of Visual Soil Evaluation. Soil Tillage Res. 2013, Complete, 1–2. [Google Scholar] [CrossRef]
- Sonneveld, M.P.W.; Heuvelink, G.B.M.; Moolenaar, S. w. Application of a Visual Soil Examination and Evaluation Technique at Site and Farm Level. Soil Use Manag. 2014, 30, 263–271. [Google Scholar] [CrossRef]
- Muñoz-Rojas, M. Soil Quality Indicators: Critical Tools in Ecosystem Restoration. Curr. Opin. Environ. Sci. Health 2018, 5, 47–52. [Google Scholar] [CrossRef]
- Buytaert, W.; Deckers, J.; Dercon, G.; de Bièvre, B.; Poesen, J.; Govers, G. Impact of Land Use Changes on the Hydrological Properties of Volcanic Ash Soils in South Ecuador. Soil Use Manag. 2002, 18, 94–100. [Google Scholar] [CrossRef]
- Sullivan, P.L.; Billings, S.A.; Hirmas, D.; Li, L.; Zhang, X.; Ziegler, S.; Murenbeeld, K.; Ajami, H.; Guthrie, A.; Singha, K.; et al. Embracing the Dynamic Nature of Soil Structure: A Paradigm Illuminating the Role of Life in Critical Zones of the Anthropocene. Earth-Sci. Rev. 2022, 225, 103873. [Google Scholar] [CrossRef]
- Meurer, K.H.E.; Chenu, C.; Coucheney, E.; Herrmann, A.M.; Keller, T.; Kätterer, T.; Nimblad Svensson, D.; Jarvis, N. Modelling Dynamic Interactions between Soil Structure and the Storage and Turnover of Soil Organic Matter. Biogeosciences 2020, 17, 5025–5042. [Google Scholar] [CrossRef]
- Bünemann, E.K.; Bongiorno, G.; Bai, Z.; Creamer, R.E.; De Deyn, G.; de Goede, R.; Fleskens, L.; Geissen, V.; Kuyper, T.W.; Mäder, P.; et al. Soil Quality – A Critical Review. Soil Biol. Biochem. 2018, 120, 105–125. [Google Scholar] [CrossRef]
- Abdalla, K.; Mutema, M.; Hill, T. Soil and Organic Carbon Losses from Varying Land Uses: A Global Meta-Analysis. Geogr. Res. 2020, 58, 167–185. [Google Scholar] [CrossRef]
- Tonneijck, F.H.; Jansen, B.; Nierop, K.G.J.; Verstraten, J.M.; Sevink, J.; De Lange, L. Towards Understanding of Carbon Stocks and Stabilization in Volcanic Ash Soils in Natural Andean Ecosystems of Northern Ecuador. Eur. J. Soil Sci. 2010, 61, 392–405. [Google Scholar] [CrossRef]
- Ghimire, R.; Bista, P.; Machado, S. Long-Term Management Effects and Temperature Sensitivity of Soil Organic Carbon in Grassland and Agricultural Soils. Sci. Rep. 2019, 9, 12151. [Google Scholar] [CrossRef]
- Lehtinen, T.; Gísladóttir, G.; Lair, G.J.; van Leeuwen, J.P.; Blum, W.E.H.; Bloem, J.; Steffens, M.; Ragnarsdóttir, K.V. Aggregation and Organic Matter in Subarctic Andosols under Different Grassland Management. Acta Agric. Scand. Sect. B — Soil Plant Sci. 2015, 65, 246–263. [Google Scholar] [CrossRef]
- Ravetto, E.; Petrella, F.; Ungaro, F.; Zavattaro, L.; Mainetti, A.; Lombardi, G.; Lonati, M. Vegetation and Environmental Factors Affect Carbon Stock of Alpine Pastures Available online:. Available online: https://iris.unito.it/handle/2318/1792250#.YaTKudDMKUk (accessed on 29 November 2021).
- Horrocks, C.A.; Arango, J.; Arevalo, A.; Nuñez, J.; Cardoso, J.A.; Dungait, J.A.J. Smart Forage Selection Could Significantly Improve Soil Health in the Tropics. Sci. Total Environ. 2019, 688, 609–621. [Google Scholar] [CrossRef] [PubMed]
- Askari, M.S.; Holden, N.M. Indices for Quantitative Evaluation of Soil Quality under Grassland Management. Geoderma 2014, 230–231, 131–142. [Google Scholar] [CrossRef]
- Kemp, D.R.; Michalk, D.L. Towards Sustainable Grassland and Livestock Management. J. Agric. Sci. 2007, 145, 543–564. [Google Scholar] [CrossRef]
- Barber-Cross, T.; Filazzola, A.; Brown, C.; Dettlaff, M.A.; Batbaatar, A.; Grenke, J.S.J.; Peetoom Heida, I.; Cahill, J.F. A Global Inventory of Animal Diversity Measured in Different Grazing Treatments. Sci. Data 2022, 9, 209. [Google Scholar] [CrossRef] [PubMed]
- Hickman, K.R.; Hartnett, D.C.; Cochran, R.C.; Owensby, C.E. Grazing Management Effects on Plant Species Diversity in Tallgrass Prairie. J. Range Manag. 2004, 57, 58–65. [Google Scholar] [CrossRef]
- Bartley, R.; Corfield, J.P.; Hawdon, A.A.; Kinsey-Henderson, A.E.; Abbott, B.N.; Wilkinson, S.N.; Keen, R.J.; Bartley, R.; Corfield, J.P.; Hawdon, A.A.; et al. Can Changes to Pasture Management Reduce Runoff and Sediment Loss to the Great Barrier Reef? The Results of a 10-Year Study in the Burdekin Catchment, Australia. Rangel. J. 2014, 36, 67–84. [Google Scholar] [CrossRef]
- McIvor, J.G.; Williams, J.; Gardener, C.J. Pasture Management Influences Runoff and Soil Movement in the Semi-Arid Tropics. Aust. J. Exp. Agric. 1995, 35, 55–65. [Google Scholar] [CrossRef]
- Lu, X.; Kelsey, K.C.; Yan, Y.; Sun, J.; Wang, X.; Cheng, G.; Neff, J.C. Effects of Grazing on Ecosystem Structure and Function of Alpine Grasslands in Qinghai–Tibetan Plateau: A Synthesis. Ecosphere 2017, 8, e01656. [Google Scholar] [CrossRef]
- Zhou, G.; Zhou, X.; He, Y.; Shao, J.; Hu, Z.; Liu, R.; Zhou, H.; Hosseinibai, S. Grazing Intensity Significantly Affects Belowground Carbon and Nitrogen Cycling in Grassland Ecosystems: A Meta-Analysis. Glob. Change Biol. 2017, 23, 1167–1179. [Google Scholar] [CrossRef]
- Abdalla, M.; Hastings, A.; Chadwick, D.R.; Jones, D.L.; Evans, C.D.; Jones, M.B.; Rees, R.M.; Smith, P. Critical Review of the Impacts of Grazing Intensity on Soil Organic Carbon Storage and Other Soil Quality Indicators in Extensively Managed Grasslands. Agric. Ecosyst. Environ. 2018, 253, 62–81. [Google Scholar] [CrossRef]
- Dong, S.K.; Wen, L.; Li, Y.Y.; Wang, X.X.; Zhu, L.; Li, X.Y. Soil-Quality Effects of Grassland Degradation and Restoration on the Qinghai-Tibetan Plateau. Soil Sci. Soc. Am. J. 2012, 76, 2256–2264. [Google Scholar] [CrossRef]
- Devi, T.I.; Yadava, P.S.; Garkoti, S.C. Cattle Grazing Influences Soil Microbial Biomass in Sub-Tropical Grassland Ecosystems at Nambol, Manipur, Northeast India. Trop. Ecol. 2014, 55, 195–206. [Google Scholar]
- Silva, F.D. da; Amado, T.J.C.; Ferreira, A.O.; Assmann, J.M.; Anghinoni, I.; Carvalho, P.C. de F. Soil Carbon Indices as Affected by 10 Years of Integrated Crop–Livestock Production with Different Pasture Grazing Intensities in Southern Brazil. Agric. Ecosyst. Environ. 2014, 190, 60–69. [Google Scholar] [CrossRef]
- Franzluebbers, A.J.; Wright, S.F.; Stuedemann, J.A. Soil Aggregation and Glomalin under Pastures in the Southern Piedmont USA. Soil Sci. Soc. Am. J. 2000, 64, 1018–1026. [Google Scholar] [CrossRef]
- Enriquez, A.S.; Chimner, R.A.; Cremona, M.V.; Diehl, P.; Bonvissuto, G.L. Grazing Intensity Levels Influence C Reservoirs of Wet and Mesic Meadows along a Precipitation Gradient in Northern Patagonia. Wetl. Ecol. Manag. 2015, 23, 439–451. [Google Scholar] [CrossRef]
- Zhang, J.; Zuo, X.; Zhou, X.; Lv, P.; Lian, J.; Yue, X. Long-Term Grazing Effects on Vegetation Characteristics and Soil Properties in a Semiarid Grassland, Northern China. Environ. Monit. Assess. 2017, 189, 216. [Google Scholar] [CrossRef]
- Jiao, T.; Nie, Z.; Zhao, G.; Cao, W. Changes in Soil Physical, Chemical, and Biological Characteristics of a Temperate Desert Steppe under Different Grazing Regimes in Northern China. Commun. Soil Sci. Plant Anal. 2016, 47, 338–347. [Google Scholar] [CrossRef]
- Bilotta, G.S.; Brazier, R.E.; Haygarth, P.M. The Impacts of Grazing Animals on the Quality of Soils, Vegetation, and Surface Waters in Intensively Managed Grasslands. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press, 2007; Vol. 94, pp. 237–280.
- Donovan, M.; Monaghan, R. Impacts of Grazing on Ground Cover, Soil Physical Properties and Soil Loss via Surface Erosion: A Novel Geospatial Modelling Approach. J. Environ. Manage. 2021, 287, 112206. [Google Scholar] [CrossRef] [PubMed]
- Döbert, T.F.; Bork, E.W.; Apfelbaum, S.; Carlyle, C.N.; Chang, S.X.; Khatri-Chhetri, U.; Silva Sobrinho, L.; Thompson, R.; Boyce, M.S. Adaptive Multi-Paddock Grazing Improves Water Infiltration in Canadian Grassland Soils. Geoderma 2021, 401, 115314. [Google Scholar] [CrossRef]
- Park, J.Y.; Ale, S.; Teague, W.R.; Dowhower, S.L. Simulating Hydrologic Responses to Alternate Grazing Management Practices at the Ranch and Watershed Scales. J. Soil Water Conserv. 2017, 72, 102–121. [Google Scholar] [CrossRef]
- Pauler, C.M.; Isselstein, J.; Braunbeck, T.; Schneider, M.K. Influence of Highland and Production-Oriented Cattle Breeds on Pasture Vegetation: A Pairwise Assessment across Broad Environmental Gradients. Agric. Ecosyst. Environ. 2019, 284, 106585. [Google Scholar] [CrossRef]
- Pauler, C.M.; Isselstein, J.; Suter, M.; Berard, J.; Braunbeck, T.; Schneider, M.K. Choosy Grazers: Influence of Plant Traits on Forage Selection by Three Cattle Breeds. Funct. Ecol. 2020, 34, 980–992. [Google Scholar] [CrossRef]
- Pauler, C.M.; Isselstein, J.; Berard, J.; Braunbeck, T.; Schneider, M.K. Grazing Allometry: Anatomy, Movement, and Foraging Behavior of Three Cattle Breeds of Different Productivity. Front. Vet. Sci. 2020, 7. [Google Scholar] [CrossRef]
- Pittarello, M.; Enri, S.R.; Lonati, M.; Lombardi, G. Slope and Distance from Buildings Are Easy-to-Retrieve Proxies for Estimating Livestock Site-Use Intensity in Alpine Summer Pastures. PLOS ONE 2021, 16, e0259120. [Google Scholar] [CrossRef] [PubMed]
- Probo, M.; Lonati, M.; Pittarello, M.; Bailey, D.W.; Garbarino, M.; Gorlier, A.; Lombardi, G.; Probo, M.; Lonati, M.; Pittarello, M.; et al. Implementation of a Rotational Grazing System with Large Paddocks Changes the Distribution of Grazing Cattle in the South-Western Italian Alps. Rangel. J. 2014, 36, 445–458. [Google Scholar] [CrossRef]
- Perotti, E.; Probo, M.; Pittarello, M.; Lonati, M.; Lombardi, G. A 5-Year Rotational Grazing Changes the Botanical Composition of Sub-Alpine and Alpine Grasslands. Appl. Veg. Sci. 2018, 21, 647–657. [Google Scholar] [CrossRef]
- Pittarello, M.; Probo, M.; Perotti, E.; Lonati, M.; Lombardi, G.; Ravetto Enri, S. Grazing Management Plans Improve Pasture Selection by Cattle and Forage Quality in Sub-Alpine and Alpine Grasslands. J. Mt. Sci. 2019, 16, 2126–2135. [Google Scholar] [CrossRef]
- Allen, V.G.; Batello, C.; Berretta, E.J.; Hodgson, J.; Kothmann, M.; Li, X.; McIvor, J.; Milne, J.; Morris, C.; Peeters, A.; et al. An International Terminology for Grazing Lands and Grazing Animals. Grass Forage Sci. 2011, 66, 2–28. [Google Scholar] [CrossRef]
- Briske, D.D.; Derner, J.D.; Brown, J.R.; Fuhlendorf, S.D.; Teague, W.R.; Havstad, K.M.; Gillen, R.L.; Ash, A.J.; Willms, W.D. Rotational Grazing on Rangelands: Reconciliation of Perception and Experimental Evidence. Rangel. Ecol. Manag. 2008, 61, 3–17. [Google Scholar] [CrossRef]
- Zhou, Y.; Gowda, P.H.; Wagle, P.; Ma, S.; Neel, J.P.S.; Kakani, V.G.; Steiner, J.L. Climate Effects on Tallgrass Prairie Responses to Continuous and Rotational Grazing. Agronomy 2019, 9, 219. [Google Scholar] [CrossRef]
- Pittarello, M.; Probo, M.; Lonati, M.; Bailey, D.W.; Lombardi, G. Effects of Traditional Salt Placement and Strategically Placed Mineral Mix Supplements on Cattle Distribution in the Western Italian Alps. Grass Forage Sci. 2016, 71, 529–539. [Google Scholar] [CrossRef]
- Li, W.; Li, X.; Zhao, Y.; Zheng, S.; Bai, Y. Ecosystem Structure, Functioning and Stability under Climate Change and Grazing in Grasslands: Current Status and Future Prospects. Curr. Opin. Environ. Sustain. 2018, 33, 124–135. [Google Scholar] [CrossRef]
- Larreguy, C.; Carrera, A.L.; Bertiller, M.B. Reductions of Plant Cover Induced by Sheep Grazing Change the Above-Belowground Partition and Chemistry of Organic C Stocks in Arid Rangelands of Patagonian Monte, Argentina. J. Environ. Manage. 2017, 199, 139–147. [Google Scholar] [CrossRef] [PubMed]
- Barnard, R.; Barthes, L.; Leadley, P.W. Short-Term Uptake of 15N by a Grass and Soil Micro-Organisms after Long-Term Exposure to Elevated CO2. Plant Soil 2006, 280, 91–99. [Google Scholar] [CrossRef]
- Pinay, G.; Barbera, P.; Carreras-Palou, A.; Fromin, N.; Sonié, L.; Madeleine Couteaux, M.; Roy, J.; Philippot, L.; Lensi, R. Impact of Atmospheric CO2 and Plant Life Forms on Soil Microbial Activities. Soil Biol. Biochem. 2007, 39, 33–42. [Google Scholar] [CrossRef]
- Garnier, E.; Lavorel, S.; Ansquer, P.; Castro, H.; Cruz, P.; Dolezal, J.; Eriksson, O.; Fortunel, C.; Freitas, H.; Golodets, C.; et al. Assessing the Effects of Land-Use Change on Plant Traits, Communities and Ecosystem Functioning in Grasslands: A Standardized Methodology and Lessons from an Application to 11 European Sites. Ann. Bot. 2007, 99, 967–985. [Google Scholar] [CrossRef] [PubMed]
- Macleod, C. (Kit) J. A.; Humphreys, M.W.; Whalley, W.R.; Turner, L.; Binley, A.; Watts, C.W.; Skøt, L.; Joynes, A.; Hawkins, S.; King, I.P.; et al. A Novel Grass Hybrid to Reduce Flood Generation in Temperate Regions. Sci. Rep. 2013, 3, 1683. [Google Scholar] [CrossRef]
- Volaire, F.; Barkaoui, K.; Norton, M. Designing Resilient and Sustainable Grasslands for a Drier Future: Adaptive Strategies, Functional Traits and Biotic Interactions. Eur. J. Agron. 2014, 52, 81–89. [Google Scholar] [CrossRef]
- Gyssels, G.; Poesen, J.; Bochet, E.; Li, Y. Impact of Plant Roots on the Resistance of Soils to Erosion by Water: A Review. Prog. Phys. Geogr. Earth Environ. 2005, 29, 189–217. [Google Scholar] [CrossRef]
- Jones, A.; Panagos, P.; Barcelo, S.; Bouraoui, F.; Bosco, C.; Dewitte, O.; Gardi, C.; Erhard, M.; Hervás, J.; Hiederer, R.; et al. The State of Soil in Europe : A Contribution of the JRC to the European Environment Agency’s Environment State and Outlook Report— SOER 2010; 2012.
- Kairis, O.; Karavitis, C.; Salvati, L.; Kounalaki, A.; Kosmas, K. Exploring the Impact of Overgrazing on Soil Erosion and Land Degradation in a Dry Mediterranean Agro-Forest Landscape (Crete, Greece). Arid Land Res. Manag. 2015, 29, 360–374. [Google Scholar] [CrossRef]
- Quijas, S.; Schmid, B.; Balvanera, P. Plant Diversity Enhances Provision of Ecosystem Services: A New Synthesis. Basic Appl. Ecol. 2010, 11, 582–593. [Google Scholar] [CrossRef]
- Zhu, H.; Fu, B.; Wang, S.; Zhu, L.; Zhang, L.; Jiao, L.; Wang, C. Reducing Soil Erosion by Improving Community Functional Diversity in Semi-Arid Grasslands. J. Appl. Ecol. 2015, 52, 1063–1072. [Google Scholar] [CrossRef]
- Comparing Synthetic and Natural Grasslands for Agricultural Production and Ecosystem Service. ; Humphreys, A., O’Donovan, Sheehy-Skeffington, Eds.; IBERS: Gogerddan, 2014; pp. 215–229. [Google Scholar]
- Yuan, Z.-Q.; Yu, K.-L.; Wang, B.-X.; Zhang, W.-Y.; Zhang, X.-L.; Siddique, K.H.M.; Stefanova, K.; Turner, N.C.; Li, F.-M. Cutting Improves the Productivity of Lucerne-Rich Stands Used in the Revegetation of Degraded Arable Land in a Semi-Arid Environment. Sci. Rep. 2015, 5, 12130. [Google Scholar] [CrossRef]
- Ahmed, L.Q.; Louarn, G.; Fourtie, S.; Sampoux, J.P.; Escobar-Gutiérrez, D.C. Genetic Diversity of Lolium Perenne L. in the Response to Temperature during Germination.; 2014; p. 121.
- Marshall, A.H.; Lowe, M.; Sizer-Coverdale, E. Root Architecture of Interspecific Hybrids between Trifolium Repens L. and Trifolium Ambiguum M. Bieb. and Their Potential to Deliver Ecosystem Services.; 2014.
- Kell, D.B. Breeding Crop Plants with Deep Roots: Their Role in Sustainable Carbon, Nutrient and Water Sequestration. Ann. Bot. 2011, 108, 407–418. [Google Scholar] [CrossRef] [PubMed]
- Humphreys, M.W.; Canter, P.J.; Thomas, H.M. Advances in Introgression Technologies for Precision Breeding within the Lolium - Festuca Complex. Ann. Appl. Biol. 2003, 143, 1–10. [Google Scholar] [CrossRef]
- Lynch, J.P. Roots of the Second Green Revolution. Aust. J. Bot. 2007, 55, 493–512. [Google Scholar] [CrossRef]
- Rasmussen, C.R.; Thorup-Kristensen, K.; Dresbøll, D.B. Uptake of Subsoil Water below 2 m Fails to Alleviate Drought Response in Deep-Rooted Chicory (Cichorium Intybus L. ). Plant Soil 2020, 446, 275–290. [Google Scholar] [CrossRef]
- Skinner, R.H. Yield, Root Growth, and Soil Water Content in Drought-Stressed Pasture Mixtures Containing Chicory. Crop Sci. 2008, 48, 380–388. [Google Scholar] [CrossRef]
- Foster, K.; Ryan, M.H.; Real, D.; Ramankutty, P.; Lambers, H.; Foster, K.; Ryan, M.H.; Real, D.; Ramankutty, P.; Lambers, H. Seasonal and Diurnal Variation in the Stomatal Conductance and Paraheliotropism of Tedera (Bituminaria Bituminosa Var. Albomarginata) in the Field. Funct. Plant Biol. 2013, 40, 719–729. [Google Scholar] [CrossRef]
- DaCosta, M.; Huang, B. Deficit Irrigation Effects on Water Use Characteristics of Bentgrass Species. Crop Sci. 2006, 46, 1779–1786. [Google Scholar] [CrossRef]
- Peña, F.J.D.; Peña, F.J.D. Sistemas agrícolas tradicionales de las zonas áridas de las islas canarias. http://purl.org/dc/dcmitype/Text, Universidad de La Laguna, 2004.
- Foster, K.; Lambers, H.; Real, D.; Ramankutty, P.; Cawthray, G. r.; Ryan, M. h. Drought Resistance and Recovery in Mature Bituminaria Bituminosa Var. Albomarginata. Ann. Appl. Biol. 2015, 166, 154–169. [Google Scholar] [CrossRef]
- Döring, T.F.; Vieweger, A.; Pautasso, M.; Vaarst, M.; Finckh, M.R.; Wolfe, M.S. Resilience as a Universal Criterion of Health. J. Sci. Food Agric. 2015, 95, 455–465. [Google Scholar] [CrossRef] [PubMed]


Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
