Submitted:
19 April 2023
Posted:
19 April 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Funding
References
- Issanova, G.T.; Abuduwaili, J.; Mamutov, Zh. U.; Kaldybaev, A.A.; Saparov, G.A.; Bazarbaeva, T.A. Saline soils and identification of salt accumulation provinces in Kazakhstan. Arid Ecosyst. 2017, 7, 243–250. [Google Scholar] [CrossRef]
- Karlykhanov, O.K.; Toktaganova, G.B. The Assessment of Irrigated Land Salinization in the Aral Sea Region. Sci. Educ. 2016. [Google Scholar]
- Suska-Malawska, M. Spatial and In-Depth Distribution of Soil Salinity and Heavy Metals (Pb, Zn, Cd, Ni, Cu) in Arable Irrigated Soils in Southern Kazakhstan. Agronomy 2022, 12, 1207. [Google Scholar] [CrossRef]
- Bakirov, K. Using the method of induced mutagenesis on rice in order to obtain practically valuable forms; Autoref. for the degree of Candidate of Agricultural Sciences: Almalybak, 1979. [Google Scholar]
- Abugalieva, S.; Baibosynova, S.M.; Kondybaev, A.B.; Podolskih, A.N.; Turuspekov, Y. Genetic and phenotypic diversity of the rice collection in Kazakhstan. 2014, 175, 46–59. [Google Scholar]
- Abikenova, S.M.; Rau, A.G.; Assanbekov, B.A.; Zhanashev, I.Z.; Kalybekova, E.M. Research of the rice productivity on saline lands of rice systems in Kazakhstan Republic. Life Sci. J. 2014, 11, 356–361. [Google Scholar]
- Olzhabayeva, A.O.; Rau, A.G.; Sarkynov, E.S.; Baimanov, Z.N.; Shomantaev, A.A. Effect of Irrigation and Fertilizers on Rice Yield in Conditions of Kyzylorda Irrigation Array. Biosci. Biotechnol. Res. Asia 2016, 13, 2045–2053. [Google Scholar] [CrossRef]
- Haque, M.A.; Rafii, M.Y.; Yusoff, M.M.; Ali, N.S.; Yusuff, O.; Datta, D.R.; Anisuzzaman, M.; Ikbal, M.F. Advanced Breeding Strategies and Future Perspectives of Salinity Tolerance in Rice. Agronomy 2021, 11, 1631. [Google Scholar] [CrossRef]
- Sikora, P.; Chawade, A.; Larsson, M.; Olsson, J.; Olsson, O. Mutagenesis as a Tool in Plant Genetics, Functional Genomics, and Breeding. International Journal of Plant Genomics 2011, 2011, 1–13. [Google Scholar] [CrossRef]
- Oladosu, Y.; Rafii, M.Y.; Abdullah, N.; Hussin, G.; Ramli, A.; Rahim, H.A.; Miah, G.; Usman, M. Principle and application of plant mutagenesis in crop improvement: a review. Biotechnology & Biotechnological Equipment 2016, 30, 1–16. [Google Scholar] [CrossRef]
- Mutant Variety Database FAO/IAEA-MVD. Food and agriculture organization of the United Nations/ International atomic energy agency – mutant variety database. Available online: https://nucleus.iaea.org/sites/mvd (accessed on 5 April 2023).
- Bakirov, K.; Vereshchagin, G.A. The use of mutagenic factors in the creation of new varieties of rice. Bulletin of Agricultural Sciences of Kazakhstan 1980, 12, 20–26. [Google Scholar]
- Bakiruly, K.; Tokhetova, L.A.; Yershin, Z.R.; Kasymzhanov, M.T. The effect of ionizing radiation on the growth processes of rice and barley plants using the electron accelerator of JSC "Nuclear Technology Park". Bulletin of the National Research Center of RK 2016, 1. [Google Scholar]
- Kharitonov, E.M.; Goncharova, Y.K.; Maliuchenko, E.A. The genetics of the traits determining adaptability to abiotic stress in rice (Oryza sativa L.). Russ J Genet Appl Res 2017, 7, 684–697. [Google Scholar] [CrossRef]
- Bakiruly, K.; Yershin, Z.R.; Aitzhanov, A.; Abdyvalieva, K.S. Studying the effect of radiation treatment of rice seeds with heavy ions on growth processes in the initial stages of ontogenesis using the DC-60 ion accelerator. Proceedings of the international scientific and practical conference "Science, Production, Business: Current state and ways of innovative development of the agricultural sector on the example of the Agricultural Holding "Bayserke-Agro" dedicated to the 70th anniversary of the Honored Worker of the Republic of Kazakhstan Dosmukhambetov T.M., Almaty, Kazakhstan, 2019.
- Su, Y.; Zhao, G.; Wei, Z.; Yan, C.; Liu, S. Mutation of cellulose synthase gene improves the nutritive value of rice straw. Asian-Australasian journal of animal sciences 2012, 25, 800–805. [Google Scholar] [CrossRef] [PubMed]
- Viana, V.E.; Pegoraro, C.; Busanello, C.; Costa de Oliveira, A. Mutagenesis in Rice: The Basis for Breeding a New Super Plant. Front. Plant Sci. 2019, 10, 1326. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Z.; Lin, J.; Lin, T.; Xu, M.; Huang, Z.; Yang, Z.; Huang, X.; Zheng, J. Genome-wide analysis of radiation-induced mutations in rice (Oryza sativa L. ssp. indica). Mol. Biosyst. 2014, 10, 795–805. [Google Scholar] [CrossRef] [PubMed]
- Schiocchet, M.A.; Noldin, J.A.; Raimondi, J.V.; Neto, A.T.; Marschalek, R.; Wickert, E.; Martins, G.N.; et., al. SCS118 Marques — New rice cultivar obtained through induced mutation. Crop Breeding and Applied Biotechnology 2014, 14, 68–70. [Google Scholar] [CrossRef]
- Ichida, H.; Morita, R.; Shirakawa, Y.; Hayashi, Y.; Abe, T. Targeted exome sequencing of unselected heavy-ion beam-irradiated populations reveals less-biased mutation characteristics in the rice genome. The Plant Journal 2019, 98, 301–314. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Shimizu, A.; Nishio, T.; Tsutsumi, N.; Kato, H. Comparison and Characterization of Mutations Induced by Gamma-Ray and Carbon-Ion Irradiation in Rice (Oryza sativa L.) Using Whole-Genome Resequencing. G3 (Bethesda, Md.) 2019, 9, 3743–3751. [Google Scholar] [CrossRef] [PubMed]
- Abdelnour-Esquivel, A.; Perez, J.; Rojas, M.; et al. Use of gamma radiation to induce mutations in rice (Oryza sativa L.) and the selection of lines with tolerance to salinity and drought. In Vitro Cell.Dev.Biol.-Plant 2020, 56, 88–97. [Google Scholar] [CrossRef]
- Mei, L. Effect of Fast Neutron Irradiation on Amylose Content and Amylopectin Structure of Thailand Rice Cultivar Jao Hom Nin. Agricultural Science&Technology 2010, 4, 19–21. [Google Scholar]
- Ruengphayak, S.; Ruanjaichon, V.; Saensuk, C.; et al. Forward screening for seedling tolerance to Fe toxicity reveals a polymorphic mutation in ferric chelate reductase in rice. Rice 2015, 8. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; et al. Genome-Wide Sequencing of 41 Rice (Oryza sativa L.) Mutated Lines Reveals Diverse Mutations Induced by Fast-Neutron Irradiation. Mol. Plant 2016, 9, 1078–1081. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; et al. The Sequences of 1504 Mutants in the Model Rice Variety Kitaake Facilitate Rapid Functional Genomic Studies. Plant Cell 2017, 29, 1218–1231. [Google Scholar] [CrossRef] [PubMed]
- Kruglyak, A.I.; Alekseenok, Y.V.; Doroshkevich, A.S.; Appazov, N.O.; Bakiruly, K.; Mezentseva, Z.V.; Ilyina, M.N. Obtaining a drought-resistant variety of rice culture as a result of mutagenesis induced by neutrons generated at the EG-5 installation at JINR. Collection of reports, 1 International Conference "Genetic and radiation technologies in agriculture", Obninsk, Russia, 18-21 October 2022.
- Bakiruly, K.; Tautenov, I.A.; Zhalbyrov, A.E. Creation of source material for rice breeding by treating seeds with ionizing radiation. Bulletin of the Korkyt Ata Kyzylorda University 2022, 3, 55–64. [Google Scholar]
- Kruglyak, A.I.; Doroshkevich, A.S.; Aleksiayenak, Y.; Appazov, N.O.; Bakiruly, K.B.; Balasoui, M.; Mirzayev, M.N.; Nabiyev, A.A.; Popov, E. Application of the accelerator mass spectrometry method to study the mechanisms of radiation mutagenesis of rice crops: the current state of the issue. Condensed matter research at the IBR-2, International Conference, Dubna, Russia, 25-29 April 2022.
- Doroshkevich, A.S.; Zelenyak, T.Y.; Kruglyak, A.I.; Alekseenok, Yu.V. et. al. The study of the cosmogenic radiation effects on condensed matter and living organisms on the Earth using the EG-5 accelerator (JINR). Book of Abstract: The 16th International Symposium on Origin of Matter and Evolution of Galaxies, Hanoi, Vietnam, 25-28 October 2022.
- Kruglyak, A.I.; Doroshkevich, A.S.; Zelenyak, T.Y.; Alekseenok, Y.V. et. al. Influence of cosmogenic neutron radiation on the evolution of terrestrial biological forms on the example of rice and Oyster mushrooms cultures // Book of Abstract: The 16th International Symposium on Origin of Matter and Evolution of Galaxies, Hanoi, Vietnam, 25-28 October 2022.
- Lyahovkin, A.G. Methodological guidelines for the study of the world collection of rice and the classifier of the genus Oryza L, Vsesoyuz. akad. s.-h. nauk im. V. I. Lenina: Vsesoyuz. nauch.-issled. in-t rastenievodstva im. N. I. Vavilova, Leningrad, USSR, 1974; p. 25.
- Dospekhov, B.A. Methodology of field experience, 5rd ed.; Agropromizdat: Moscow, USSR, 1985; p. 351. [Google Scholar]
- Methodology of variety testing of agricultural plants, Astana, Kazakhstan, 2010.


| Name of the variety | Type of irradiation |
Salinization and drought factor | Duration of the interphase period, days | Growing season, days | |||
| flooding of seedlings | shoots - tillering | tillering - earing | earing – full ripeness | ||||
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| Aikerim Leader |
γ – rays | NaCl | 13-14 | 33-35 | 31-32 | 43-45 | 119-125 |
| sorbite | 13 | 33 | 32 | 43 | 121 | ||
| NaCl+ sorbite |
13 | 33 | 32 | 44 | 122 | ||
| Fast neutrons |
NaCl | 12-13 | 32-34 | 33-35 | 43-46 | 120-128 | |
| sorbite | 13 | 32 | 35-36 | 44 | 124-125 | ||
| NaCl+ sorbite |
12-13 | 31-32 | 36-37 | 43-45 | 122-127 | ||
| Control | - | 12 | 32 | 30 | 42 | 116 | |
| Syr Suluy | γ – rays | NaCl | No shoots | ||||
| sorbite | 12-13 | 33-35 | 31-33 | 44-46 | 120-127 | ||
| NaCl+ sorbite |
12-13 | 32-35 | 31-33 | 44-45 | 119-126 | ||
| Fast neutrons |
NaCl | 12 | 34 | 33 | 45 | 124 | |
| sorbite | 12-13 | 32-33 | 31-33 | 44-16 | 119-125 | ||
| NaCl+ sorbite |
12-13 | 33-34 | 31-33 | 44-46 | 120-126 | ||
| Control | - | 12 | 32 | 31 | 43 | 118 | |
| γ – rays | NaCl | 11 | 32 | 30 | 41-42 | 114-115 | |
| сoрбит | 11 | 33 | 30-31 | 42-43 | 116-118 | ||
| NaCl+ сoрбит |
12 | 33 | 31-32 | 42-45 | 117-122 | ||
| Fast neutrons |
NaCl | 10-12 | 31-33 | 31-34 | 41-44 | 113-123 | |
| сoрбит | 10-11 | 32-33 | 32-34 | 42-45 | 116-123 | ||
| NaCl+ сoрбит |
11-12 | 31-33 | 31-35 | 43-46 | 116-126 | ||
| Control | - | 10 | 30 | 28 | 37 | 105 | |
| Name of the mutant | Plant height, cm | Bushiness, pcs. | The main panicle | Grain weight per plant, g | |||||
| General | Productive | Length, cm. | Number of grains, pcs. | Emptiness,% | Grain weight, g | ||||
| full | puny | ||||||||
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| Aikerim variety | |||||||||
| Control | 121 | 4,4 | 4,4 | 19,6 | 107 | 42 | 28,2 | 3,17 | 11,79 |
| М1А-1-1-3 | 113-126 | 4-6 | 1 | 21,0-24,0 | 28-76 | 87-118 | 53,4-80,8 | 1,00-2,58 | 1,80-4,75 |
| М1А-1-2-1 | 98,0 | 16 | 6 | 22,0 | 142 | 7 | 4,7 | 4,69 | 21,69 |
| М1А-1-3-1 | 112,0 | 11 | 3 | 25,0 | 66 | 102 | 60,7 | 2,31 | 4,33 |
| М1А-2-1-7 | 113-127 | 3-13 | 1-4 | 21,0-25,5 | 38-156 | 23-130 | 12,8-74,3 | 1,23-5,11 | 1,71-18,26 |
| М1А-2-2-2 | 112-115 | 13-16 | 1-3 | 20,0-26,0 | 85-116 | 24-126 | 17,1-59,7 | 3,00-3,85 | 4,68-16,31 |
| М1А-2-3-2 | 109-110 | 14-17 | 1-5 | 20,5-23,0 | 73-90 | 72-129 | 44,4-63,9 | 2,15-3,21 | 2,38-14,20 |
| Leader variety | |||||||||
| Control | 94 | 7,0 | 7,0 | 16,6 | 156 | 42 | 21,2 | 4,14 | 28,88 |
| М1L-1-1-0 | Absent | ||||||||
| М1:L-1-2-6 | 69-83 | 5-13 | 1-2 | 11,0-14,5 | 5-84 | 24-84 | 22,2-92,1 | 0,11-1,96 | 0,11-4,59 |
| М1L-1-3-8 | 62-78 | 3-13 | 0-1 | 11,0-13,5 | 0-48 | 43-90 | 61,3-100,0 | 0,00-1,19 | 0,00-2,57 |
| М1L-2-1-1 | 91,0 | 47 | 25 | 16,0 | 104 | 65 | 38,5 | 3,20 | 20,32 |
| М1L-2-2-13 | 55-78,5 | 2-14 | 0-3 | 10,5-15,0 | 0-81 | 22-105 | 24,4-100,0 | 0,00-2,26 | 0,00-3,88 |
| М1L-2-3-16 | 53-79 | 1-19 | 0-4 | 11,0-16,0 | 0-98 | 31-91 | 24,6-100,0 | 0,00-2,45 | 0,00-5,70 |
| Syr Suluy variety | |||||||||
| Control | 88 | 5,2 | 5,2 | 18,0 | 86 | 35 | 28,9 | 2,84 | 13,25 |
| М1С-1-1-9 | 47-71 | 2-8 | 0-4 | 7,0-13,0 | 0-31 | 2-56 | 6,9-100,0 | 0,00-1,08 | 0,00-3,29 |
| М1С-1-2-3 | 56-62 | 12-13 | 0-2 | 12,5-15 | 0-18 | 30-75 | 62,5-100,0 | 0,00-0,55 | 0,00-0,75 |
| М1С-1-3-12 | 49-73 | 4-10 | 0-4 | 6,5-13,5 | 0-33 | 3-62 | 10,0-75,0 | 0,00-0,99 | 0,00-2,77 |
| М1С-2-1-30 | 48-67 | 3-12 | 0-4 | 8,0-14,0 | 0-40 | 4-51 | 16,6-100,0 | 0,00-1,29 | 0,00-3,39 |
| М1С-2-2-14 | 47-72 | 3-22 | 0-4 | 9,0-14,0 | 0-67 | 2-96 | 2,9-100,0 | 0,00-2,29 | 0,00-5,82 |
| М1С-2-3-30 | 51-72 | 1-14 | 0-3 | 8,0-19,0 | 0-32 | 2-57 | 7,4-100,0 | 0,00-2,07 | 0,00-5,00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
