Altmetrics
Downloads
114
Views
23
Comments
0
A peer-reviewed article of this preprint also exists.
This version is not peer-reviewed
Submitted:
27 April 2023
Posted:
28 April 2023
You are already at the latest version
Filter | size | k | b | |
The high-boost filter (including Laplace filter) | 9×9 | - | ||
Gaussian filter | 9×9 | - | - |
Layer a | The size of input data | The number of the layer |
Conv3-64 | 224x224x3 | 2 |
Conv3-128 | 112x112x64 | 2 |
Conv3-256* | 56x56x128 | 3 |
Conv3-512 | 28x28x256 | 3 |
Conv3-512* | 14x14x512 | 3 |
Layer | The size of input data | The number of the layer |
PCFS | 28x28x256,7x7x512 | 1 |
FC | 7x7x256+7x7x512 | 1 |
Network architecture | Accuracy (%) |
LCC (mean) |
SRCC (mean) |
MAE | RMSE | EMD |
SPP-Net [34] | 74.41 | 0.5869 | 0.6007 | 0.4611 | 0.5878 | 0.0539 |
AA-Net [35] | 77.00 | - | - | - | - | - |
InceptionNet [7] | 79.43 | 0.6865 | 0.6756 | 0.4154 | 0.5359 | 0.0466 |
NIMA [8] | 81.51 | 0.636 | 0.612 | - | - | 0.050 |
GPF-CNN [15] | 81.81 | 0.7042 | 0.6900 | 0.4072 | 0.5246 | 0.045 |
ReLIC++ [27] | 82.35 | 0.760 | 0.748 | - | - | - |
FF-VEN | 83.64 | 0.773 | 0.755 | 0.4011 | 0.5109 | 0.044 |
Network architecture | Accuracy (%) |
LCC (mean) |
SRCC (mean) |
MAE | RMSE | EMD |
GIST-SVM [37] | 59.9 | - | - | - | - | - |
FV-SIFT-SVM [37] | 60.8 | - | - | - | - | - |
MRTLCNN [38] | 65.2 | - | - | - | - | - |
GLFN [14] | 75.6 | 0.5464 | 0.5217 | 0.4242 | 0.5211 | 0.070 |
FF-VEN | 78.1 | 0.6381 | 0.6175 | 0.4278 | 0.5285 | 0.062 |
Network architecture | Accuracy (%) |
LCC (mean) |
SRCC (mean) |
MAE | RMSE | EMD |
VGG16 [36] | 74.41 | 0.5869 | 0.6007 | 0.4611 | 0.5878 | 0.0539 |
Random-VGG16 [20] | 78.54 | 0.6382 | 0.6274 | 0.4410 | 0.5660 | 0.0510 |
Saliency-VGG16 [38] | 79.19 | 0.6711 | 0.6601 | 0.4228 | 0.5430 | 0.0475 |
GPF-VGG16 [15] | 80.70 | 0.6868 | 0.6762 | 0.4144 | 0.5347 | 0.0460 |
VE-CNN (VGG16) | 81.03 | 0.7395 | 0.7185 | 0.4073 | 0.5279 | 0.0441 |
SDFF (VGG16) | 81.47 | 0.7119 | 0.7021 | 0.4103 | 0.5317 | 0.0462 |
Mean | Network architecture | Accuracy (%) |
LCC (mean) |
SRCC (mean) |
MAE | RMSE | EMD |
NIMA [8] | 78.46 | 0.6265 | 0.6043 | 0.5577 | 0.6897 | 0.067 | |
[0,4) | ReLIC++ [27] | 80.02 | 0.6887 | 0.6765 | - | - | - |
FF-VEN | 80.59 | 0.7095 | 0.6971 | 0.5037 | 0.6139 | 0.059 | |
NIMA [8] | 80.43 | 0.7271 | 0.7028 | 0.4037 | 0.5256 | 0.048 | |
[4,7) | ReLIC++ [27] | 81.15 | 0.8733 | 0.8547 | - | - | - |
FF-VEN | 81.33 | 0.8945 | 0.8831 | 0.3748 | 0.4851 | 0.039 | |
NIMA [8] | 94.93 | 0.5936 | 0.5645 | 0.5927 | 0.7314 | 0.073 | |
[7,10] | ReLIC++ [27] | 96.64 | 0.6223 | 0.6084 | - | - | - |
FF-VEN | 98.71 | 0.6113 | 0.6492 | 0.5343 | 0.6457 | 0.061 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 MDPI (Basel, Switzerland) unless otherwise stated