Ji Peng  *

This version is not peer-reviewed

Submitted:

05 October 2023

Posted:

07 October 2023

You are already at the latest version

Alerts
Abstract
Formal Calculation uses an auxiliary form to calculate various nested sums and provides results in three forms. In addition to computation, it is also a powerful tool for analysis, allowing one to study various numbers in a unified way. This article contains many results of two types of Stirling numbers, associated Stirling numbers, and Eulerian numbers, making a great generalization of Euler polynomials, Wilson's theorem, and Wolstenholme's theorem, showing that they are just special cases. Formal Calculation provides a novel method for obtaining combinatorial identities and analyzing q-binomial.This article has obtained a large number of results in q-analogues, including inversion formulas for q-binomial coefficients. This article also introduces a theorem on symmetry.
Keywords: 
Subject: Computer Science and Mathematics  -   Discrete Mathematics and Combinatorics

1. Introduction

Formal Calculation is introduced in [1,2,3] , this article contains its summary and latest achievements.
Definition 1. 
Recursive define p , p Z , 0 f ( n ) = f ( n ) , n = 0 N 1 1 f ( n + 1 ) = f ( N ) , n = 0 N 1 f ( n + 1 ) = 1 f ( N ) , 1 =
Definition 2. 
Recursive define SUM(N)=SUM(N,PS,PT). K i , D i Ring with identity elements.
S U M ( N , [ K 1 : D 1 ] , [ T 1 = 1 ] ) = n = 0 N 1 ( K 1 + n D 1 )
S U M ( N , [ K 1 : D 1 , K 2 : D 2 ] , [ T 1 , T 2 = T 1 + 2 p ] ) = n = 0 N 1 ( K 2 + n D 2 ) p S U M ( n + 1 , [ K 1 : D 1 ] , [ T 1 ] )
I f f ( N ) = A i M i N i a n d M i i s n o t c h a n g e d w i t h N , t h e n p f ( N ) = A i M i p N i p
[ K 1 : D , K 2 : D . . . K M : D ] is abbreviated as [ K 1 , K 2 . . . K M ] : D , [ K 1 , K 2 . . . K M ] : 1 is abbreviated as [ K 1 , K 2 . . . K M ] .
By default,this paper use:
PS= [ K 1 : D 1 , K 2 : D 2 . . . K M : D M ] ,PT= [ T 1 , T 2 . . . T M ] ,PS1=[PS, K M + 1 : D M + 1 ],PT1=[PT, T M + 1 ]
This is actually nested summation. For example:
S U M ( N , P S , [ 1 , 2 , 3 . . . M ] ) = n = 0 N 1 i = 1 M ( K i + n D i )
S U M ( N , P S , [ 1 , 3 , 5 . . . 2 M 1 ] ) = n M = 0 N 1 ( K M + n M D M ) . . . n 2 = 0 n 3 ( K 2 + n 2 D 2 ) n 1 = 0 n 2 ( K 1 + n 1 D 1 )
S U M ( N , P S , [ 1 , 2 , 4 ] ) = n 3 = 0 N 1 ( K 3 + n 3 D 3 ) n = 0 n 3 ( K 1 + n D 1 ) ( K 2 + n D 2 )
S U M ( N , P S , [ 1 , 3 , 4 ] ) = n 3 = 0 N 1 ( K 3 + n 3 D 3 ) ( K 2 + n 3 D 2 ) n = 0 n 3 ( K 1 + n D 1 )
The following use K to represent the set [ K 1 , K 2 . . . K M ] , T to represent the set [ T 1 , T 2 . . . T M ] .
Use the auxiliary form: ( K 1 + T 1 ) ( K 2 + T 2 ) . . . ( K M + T M ) = i = 1 M X i , X i = T i o r K i
Definition 3. 
X(T)=Number of { X 1 , X 2 . . . X M } T
Definition 4. 
X T 1 =Number of { X 1 , X 2 . . . X i 1 } T , X K 1 =Number of { X 1 , X 2 . . . X i 1 } K
X T =Number of { X 1 , X 2 . . . X i } T ,and also define X K
Obviously: X T 1 + X K 1 = i 1 .
Theorem 1. 
[1] SUM(N,PS,PT)=
F o r m 1 g = 0 M H 1 ( g ) N 1 g N + T M M = g = 0 M H 1 ( g ) T M M + 1 + g N + T M M , B i = K i + X T 1 D i , X i = K i ( T i X K 1 ) D i , X i = T i
F o r m 2 g = 0 M H 2 ( g ) N 1 N + T M M + g = g = 0 M H 2 ( g ) T M M + 1 + g N + T M M + g , B i = K i + ( X K 1 T i ) D i , X i = K i ( T i X K 1 ) D i , X i = T i
F o r m 3 g = 0 M H 3 ( g ) N 1 g N + T M g = g = 0 M H 3 ( g ) T M + 1 N + T M g , B i = K i + X T 1 D i , X i = K i K i + ( T i X T 1 ) D i , X i = T i
The factors of X i cannot be exchanged. H i ( g ) ,short for H i ( g , P S , P T ) , is also defined above as X ( T ) = g i = 1 M B i
The theorem is proved by induction.There have three forms because: n = 0 N 1 n M n + K
= ( M + 1 ) M + 2 N + K + ( M K ) M + 1 N + K = ( M + 1 ) M + 2 N + K + 1 ( 1 K ) M + 1 N + K = ( M K ) M + 2 N + K + 1 + ( 1 + K ) M + 2 N + K
Definition 5. 
F M K = { K 1 , K 2 . . . K M } = K I 1 K I 2 . . . K I M , a < b , I a < I b , F M N is short for F M { 1 , 2 . . . N } , F 0 K = 0
Definition 6. 
E M K = { K 1 , K 2 . . . K M } = K I 1 K I 2 . . . K I M , a < b , I a I b , E M N is short for E M { 1 , 2 . . . N } , E 0 K = 0
Theorem 2. 
S U M ( N , P S , [ 1 , 2 . . . M ] ) = i = 1 M ( K i + n D i )
Theorem 3. 
In SUM(N,[...PS...],[...T+1,T+2...T+M...]), K i can exchange orders.
Theorem 4. 
S U M ( N , [ L 1 , L 2 . . . L q , P S ] , [ L 1 , L 2 . . . L q , P T ] ) = i = 1 q L i × S U M ( N , P S , P T ) , s o T 1 can great than 1, T i N
Theorem 5. 
S U M ( N , [ 1 , 1 . . . 1 ] , [ 1 , 2 . . . M ] ) = S U M ( N , [ 1 , 1 . . . 1 ] , [ 2 , 3 . . . M ] ) = 1 M + 2 M + . . . + N M
Theorem 6. 
S U M ( N , [ 1 , 1 . . . 1 ] , [ 1 , 3 . . . 2 M 1 ] ) = S U M ( N , [ 1 , 1 . . . 1 ] , [ 3 , 5 . . . 2 M 1 ] )
= λ 1 + . . . + λ N = M , λ i 0 1 λ 1 2 λ 2 . . . N λ N = E M N = S 2 ( N + M , N ) . S 2 is Stirling numbers of the second kind.
Theorem 7. 
S U M ( N , [ 1 , 2 . . . M ] , [ 1 , 3 . . . 2 M 1 ] ) = S U M ( N , [ 2 , 3 . . . M ] , [ 3 , 5 . . . 2 M 1 ] )
= 1 i 1 < i 2 < . . . < i M N + M 1 i 1 i 2 . . . i M = F M N + M 1 = S 1 ( N + M , N ) . S 1 is unsigned Stirling numbers of the first kind.
Example 1.1:
F o r m = ( 1 + T 1 ) ( 2 + T 2 ) ( 3 + T 3 ) , X ( T ) = 1 X i = 1 × 2 × T 3 + 1 × T 2 × 3 + T 1 × 2 × 3
H 1 ( 1 ) = 1 × 2 × ( T 3 X K 1 ) + 1 × ( T 2 X K 1 ) × ( 3 + X T 1 ) + T 1 × ( 2 + X T 1 ) × ( 3 + X T 1 ) = 1 × 2 × ( 5 2 ) + 1 × ( 3 1 ) × ( 3 + 1 ) + 1 × ( 2 + 1 ) × ( 3 + 1 ) = 26
S U M ( N , [ 1 , 2 , 3 ] , [ 1 , 3 , 5 ] ) = 1 × 3 × 5 6 N + 2 + 35 5 N + 2 + 26 4 N + 2 + 1 × 2 × 3 3 N + 2
S U M ( N , [ 2 , 3 ] , [ 3 , 5 ] ) = 3 × 5 6 N + 3 + ( 2 × 4 + 3 × 4 ) 5 N + 3 + 2 × 3 4 N + 3
It also can be calculated in the Ring with identity elements. K i , D i can be a matrix.
Theorem 8. 
( K i + n D i ) can be decomposed into three forms by 1 and ∇.

2. Property

2.1. Relationships between H ( g )

By definition:
  • H 1 ( g , P S 1 , P T 1 ) = H 1 ( g 1 ) ( T M + 1 [ M ( g 1 ) ] ) D M + 1 + H 1 ( g ) ( K M + 1 + g D M + 1 )
  • H 2 ( g , P S 1 , P T 1 ) = H 2 ( g 1 ) ( T M + 1 [ M ( g 1 ) ] ) D M + 1 + H 2 ( g ) ( K M + 1 + [ M g T M + 1 ] D M + 1 )
  • H 3 ( g , P S 1 , P T 1 ) = H 3 ( g 1 ) ( K M + 1 + ( T M + 1 [ g 1 ] ) D M + 1 ) + H 3 ( g ) ( K M + 1 + g D M + 1 )
Using these relationships and induction can prove:
Theorem 9. 
H 1 ( g ) = k = g M H 2 ( k ) g k = k = 0 g H 3 ( k ) M g M k [2]
Inversion→
Theorem 10. 
H 2 ( g ) = k = g M ( 1 ) k + g H 1 ( k ) g k , H 3 ( g ) = k = 0 g ( 1 ) k + g H 1 ( k ) M g M k
Calculation with 9 →
Theorem 11. 
g = 0 M H 1 ( g ) = g = 0 M H 2 ( g ) 2 g = g = 0 M H 3 ( g ) 2 M g
Theorem 12. 
g = 0 M H 1 ( g ) B g A = g = 0 M H 2 ( g ) B A + g = g = 0 M H 3 ( g ) B g A + M g , A , B N
This indicates F o r m 1 = F o r m 2 = F o r m 3 g = 0 M H 1 ( g ) g A = g = 0 M H 2 ( g ) g A + g = g = 0 M H 3 ( g ) M A + M g
Induction [2]→
Theorem 13. 
g = 0 M H 1 ( g ) g B g A + 1 = g = 0 M H 2 ( g ) g B 1 A + g = g = 0 M { H 3 ( g ) g B g A + M g + M × H 3 ( g ) B 1 g A + M g }

2.2. Property of H(g)

X i = ( X i T ) ( X i K ) .In some cases, H(g) is easy to calculate.
Definition 7. 
H ( g , T ) = H ( g , T , P S , P T ) = X i T B i , H ( g , T ) = X i T B i . A l s o d e f i n e H ( g , K ) , H ( g , K )
If D i = 1 and T i + 1 = T i + 1 , H 1 ( g , T ) = i = 1 g T i . H 1 ( g , T , P S , [ 1 , 2 . . . M ] ) = g ! . H 1 ( g , K , [ 1 , 1 . . . 1 ] , P T ) = E M g g + 1
Theorem 14. 
If D i = 1 , H 1 ( g , K ) = F M g K E 0 g + F M g 1 K E 1 g + . . . + F 0 K E M g g
Theorem 15. 
If D i = 1 , H 1 ( g , T ) = F g T E 0 M g F g 1 T E 1 M g + . . . + ( 1 ) M g F 0 T E g M g
Theorem 16. 
If D i = 1 and K i + 1 K i = T i + 1 T i = 1 , H 1 ( g ) = g M T 1 . . . T g × K g + 1 . . . K M
Theorem 17. 
If PS=PT, H 1 ( g ) = i = 1 M T i N M , H 2 ( M ) = H 3 ( 0 ) = i = 1 M T i , H 2 ( g < M ) = H 3 ( g > 0 ) = 0
Theorem 18. 
H 1 ( g , [ A D : D , P S ] , [ A , P T ] ) = A D ( H 1 ( g 1 ) + H 1 ( g ) ) H 1 ( g , [ 1 , P S ] , [ 1 , P T ] ) = H 1 ( g 1 ) + H 1 ( g )
Definition 8. 
E p q ( [ T 1 , T 2 . . . T M ] , C )
= λ 1 + λ 2 + . . . + λ q = p , λ i 0 1 λ 1 2 λ 2 . . . q λ q ( T 1 + λ 1 C ) ( T 2 + λ 1 C + λ 2 C ) . . . ( T q 1 + λ 1 C + λ 2 C + . . . + λ q 1 C )
[4] has proved: g M = M g 1 M = E M g 1 g + 1 ( [ 1 , 1 . . . 1 ] , 1 ] )
g M is Eulerian numbers.It is known that there exists Worpitzky identity: N M = g = 0 M 1 g M M N + g
e g : 2 5 = E 2 3 ( [ 1 , 1 . . . ] , 1 ) = λ 1 + λ 2 + λ 3 = 2 1 λ 1 2 λ 2 3 λ 3 ( 1 + λ 1 ) ( 1 + λ 1 + λ 2 ) = 66
By simple calculation:
H 1 ( g , [ 1 , 1 . . . 1 ] , P T = [ T i = T 1 + ( C + 1 ) ( i 1 ) ] ) = E M g g + 1 ( P T , C )
H 3 ( g , [ 1 , 1 . . . 1 ] , P T = [ T i = T 1 + ( C + 1 ) ( i 1 ) ] ) = E M g g + 1 ( [ T i = T 1 1 + C ( i 1 ) ] , C + 1 )

2.3. Shape of numbers

In this section,if not specifically mentioned, T 1 = 1 , T i + 1 T i = 1 o r 2 .
To calculate 1 K 1 < K 2 < . . . < K M N K 1 K 2 . . . K M (*),products needs to be divided into 2 M 1 categories.
There are M-1 intervals between factors.If the interval=1,define it as Continuity.If the interval>1,define it as Discontinuity. Continuities,Discontinuities and their Positions are defined as Shape.So there have 2 M 1 Shapes.
From the definition of nested sum:
1 K 1 < K 2 < K 3 N K 1 K 2 K 3 = S U M ( N , [ 1 , 2 , 3 ] , [ 1 , 2 , 3 ] ) + S U M ( N 1 , [ 1 , 2 , 4 ] , [ 1 , 2 , 4 ] ) + S U M ( N 1 , [ 1 , 3 , 4 ] , [ 1 , 3 , 4 ] ) + S U M ( N 2 , [ 1 , 3 , 5 ] , [ 1 , 3 , 5 ] )
Definition 9. 
PB(PT)=Number of T i + 1 < T i + 1 =Number of discontinuities
( * ) = A l l o f t h e S h a p e s w i t h f a c t o r s = M S U M ( N P B ( P T ) , P T , P T ) .From 17 we can obtain a simple formula:
Theorem 19. 
S U M ( N , P T , P T ) = i = 1 M T i T M M + 1 N + T M M ,PT has no restrictions.
This generalizes the famous formula n = 0 N 1 M n = M + 1 N . It was discovered during the calculation of (*) which led to the birth of Formal Calculation.
Theorem 20. 
Number of Products in SUM(N,PT,PT) = P B ( P T ) + 1 N + P B ( P T )
Definition 10. 
M I N g ( M ) = P B ( P T ) = g i = 1 M T i = 1 × P B ( P T ) = g i = 2 M T i
This is the sum of the products of PTs with the same number of discontinuities.By definition:
Theorem 21. 
M I N g ( M ) = ( M + g ) ! i 1 i 2 . . . i g , 2 i 1 < i 2 < . . . < i g M + g 1 , i j + 1 i j 2
Based on the concept of Shape rather than 21, it is easier to understand.
e g : M I N 2 ( 4 ) = ( 12357 ) + ( 12457 ) + ( 13457 ) + ( 12467 ) + ( 13467 ) + ( 13567 ) .Here (...) is products.
From the definition of nested sum,there exists general classification principles:
Theorem 22. 
S U M ( N , [ K 1 : D 1 , K 2 : D 2 . . . K M : D M ] , [ T 1 , T 2 . . . T M ] ) = S U M ( N , P S , [ T 1 . . . T i , T i + 1 1 . . . T M 1 ] ) + S U M ( N 1 , [ K 1 : D 1 . . . K i : D i , K i + 1 + D i + 1 : D i + 1 . . . K M + D M : D M ] , P T )
e g : S U M ( N , [ 1 , 2 , 3 ] , [ 1 , 3 , 5 ] ) = S U M ( N , [ 1 , 2 , 3 ] , [ 1 , 2 , 4 ] ) + S U M ( N 1 , [ 1 , 3 , 4 ] , [ 1 , 3 , 5 ] ) = S U M ( N , [ 1 , 2 , 3 ] , [ 1 , 2 , 3 ] ) + S U M ( N 1 , [ 1 , 2 , 4 ] , [ 1 , 2 , 4 ] ) + S U M ( N 1 , [ 1 , 3 , 4 ] , [ 1 , 3 , 4 ] ) + S U M ( N 2 , [ 1 , 3 , 5 ] , [ 1 , 3 , 5 ] )
( * ) = S U M ( N , [ 1 , 2 . . . M ] , [ 1 , 3 . . . 2 M 1 ] ) = g = 0 M 1 M I N g ( M ) g + 1 N . I t s e x a c t l y .

2.4. H(g) and Associated Stirling Numbers

Associated Stirling Numbers of the first kind S 1 , r ( n , k ) is defined as the number of permutations of a set of n elements having exactly k cycles, all length >= r.
  • S 1 , r ( n , k ) = n ! k ! i 1 + i 2 + . . . + i k = n , i j r 1 i 1 i 2 . . . i k
  • S 1 , r ( n + 1 , k ) = n S 1 , r ( n , k ) + ( n ) r 1 S 1 , r ( n r + 1 , k 1 ) , n k r
  • ( n 1 ) ! i 1 i 2 . . . i k 1 , r i 1 < i 2 < . . . < i k 1 n r , i j + 1 i j r [5]
Derived from 2 and definition of H(g) or 3 and 21:
Theorem 23. 
M I N g ( M ) = S 1 , 2 ( M + g + 1 , g + 1 )
Table 1. Table of M I N g ( M ) = S 1 , 2 ( M + g + 1 , g + 1 ) .
Table 1. Table of M I N g ( M ) = S 1 , 2 ( M + g + 1 , g + 1 ) .
g=0 g=1 g=2 g=3 g=4 g=5 g=6
M=1 1
M=2 2 3
M=3 6 20 15
M=4 24 130 210 105
M=5 120 924 2380 2520 945
M=6 720 7308 26432 44100 34650 10395
M=7 5040 64224 303660 705320 866250 540540 135135
Associated Stirling Numbers of the second kind S 2 , r ( n , k ) is defined as the number of permutations of a set of n elements having exactly k blocks, all length >= r.
2
S 2 , r ( n , k ) = n ! k ! i 1 + i 2 + . . . + i k = n , i j r 1 i 1 ! i 2 ! . . . i k !
2
S 2 , r ( n + 1 , k ) = k S 2 , r ( n , k ) + r 1 n S 2 , r ( n r + 1 , k 1 ) , n k r
Derived from 2:
Theorem 24. 
H 2 ( g , [ 1 , 1 . . . 1 ] , [ 3 , 5 . . . 2 M 1 ] ) = S 2 , 2 ( M + g + 1 , g + 1 )
Table 2. Table of H 2 ( g , [ 1 , 1 . . . 1 ] , [ 3 , 5 . . . 2 M 1 ] ) = S 2 , 2 ( M + g + 1 , g + 1 ) .
Table 2. Table of H 2 ( g , [ 1 , 1 . . . 1 ] , [ 3 , 5 . . . 2 M 1 ] ) = S 2 , 2 ( M + g + 1 , g + 1 ) .
g=0 g=1 g=2 g=3 g=4 g=5 g=6
M=1 1
M=2 1 3
M=3 1 10 15
M=4 1 25 105 105
M=5 1 56 490 1260 945
M=6 1 119 1918 9450 17325 10395
M=7 1 246 6825 56980 190575 270270 135135
S U M ( N , [ 2 , 3 . . . M ] , [ 3 , 5 . . . 2 M 1 ] ) = S 1 , 1 ( N + M , N ) = ( N + M ) ! N ! i 1 + i 2 + . . . + i N = N + M , i j 1 1 i 1 i 2 . . . i N
= g = 0 M 1 S 1 , 2 ( M + g + 1 , g + 1 ) M + 1 + g N + M = g = 1 M S 1 , 2 ( M + g , g ) M + g N + M
= ( N + M ) ! N ! g = 1 M [ i 1 + . . . + i N = N + M , i j 1 , N u m b e r o f i j > 1 = g 1 i 1 i 2 . . . i N ] = g = 1 M f ( * )
f ( * ) = ( N + M ) ! N ! N g N i 1 + . . . + i g = g + M , i j 1 1 i 1 i 2 . . . i g = M + g N + M S 1 , 2 ( M + g , g )
Use the same way:
Theorem 25. 
S 1 , r ( r N + M , N ) = g = 1 M 1 r N g ( r N r g ) ! ( N g ) ! r g + M r N + M S 1 , r + 1 ( r g + M , g )
Theorem 26. 
S 2 , r ( r N + M , N ) = g = 1 M 1 ( r ! ) N g ( r N r g ) ! ( N g ) ! r g + M r N + M S 2 , r + 1 ( r g + M , g )

2.5. Table of H(g)

Table 3. Table of H(g).
Table 3. Table of H(g).
PS PT H 1 ( g ) H 2 ( g ) H 3 ( g )
[ 1 , 1 . . . 1 ] [ 1 , 2 . . . M ] g ! E M g g + 1 = g ! S 2 ( M + 1 , g + 1 ) ( 1 ) M g g ! S 2 ( M , g ) g M
[ 1 , 1 . . . 1 ] [ 2 , 3 . . . M ] ( g + 1 ) ! S 2 ( M , g + 1 ) ( 1 ) M 1 g ( g + 1 ) ! S 2 ( M , g + 1 ) g M
[ 1 , 1 . . . 1 ] [ 1 , 3 . . . 2 M 1 ] E M g g + 1 ( P T , 1 ) ( 1 ) M g M I N g 1 ( M ) E M g g + 1 ( [ 0 , 1 . . . ] , 2 )
[ 1 , 1 . . . 1 ] [ 3 , 5 . . . 2 M 1 ] S 2 , 2 ( M + 1 + g , g + 1 ) ( 1 ) M 1 g M I N g ( M ) E M 1 g g + 1 ( [ 2 , 3 . . . ] , 2 )
[ 1 , 2 . . . M ] [ 1 , 3 . . . 2 M 1 ] M I N g 1 ( M ) + M I N g ( M ) 1 × ( 1 ) M g E M g g ( [ 3 , 5 . . . ] , 1 ) 1 × E g M g ( [ 2 , 3 . . . ] , 2 )
[ 2 , 3 . . . M ] [ 3 , 5 . . . 2 M 1 ] M I N g ( M ) ( 1 ) M 1 g S 2 , 2 ( M + 1 + g , g + 1 ) E g M g ( [ 2 , 3 . . . ] , 2 )

3. Application

3.1. Number analysis

Theorem 27. 
9, 11, 13 →
  • g = 0 M g M = M ! , g = 1 M ( 1 ) M g g ! S 2 ( M , g ) = 1 , g = 1 M ( 1 ) M g g × g ! S 2 ( M , g ) = 2 M 1
  • g ! S 2 ( M , g ) = k = g M ( 1 ) M k k ! S 2 ( M , k ) g 1 K 1 = k = 0 g 1 k M M g M 1 k , 1 g M
  • S 1 , 2 ( M + g , g ) = k = g M ( 1 ) M k S 2 , 2 ( M + k , k ) g 1 K 1 , S 2 , 2 ( M + g , g ) = k = g M ( 1 ) M k S 1 , 2 ( M + k , k ) g 1 K 1
  • g = 1 M g ! S 2 ( M , g ) = g = 1 M ( 1 ) M g g ! S 2 ( M , g ) 2 g 1 = g = 1 M M g M 2 M g
  • g = 1 M S 2 , 2 ( M + g , g ) = g = 1 M ( 1 ) M g S 1 , 2 ( M + g , g ) 2 g 1 , g = 1 M S 1 , 2 ( M + g , g ) = g = 1 M ( 1 ) M g S 2 , 2 ( M + g , g ) 2 g 1
  • g = 1 M g ! S 2 ( M , g ) ( g 1 ) g A + 1 = g = 1 M ( 1 ) M g g ! S 2 ( M , g ) ( g 1 ) g A + g 1
  • g = 0 M 1 ( 1 ) M 1 g M I N g ( M ) = g = 1 M ( 1 ) M g S 1 , 2 ( M + g , g ) = 1 , g = 1 M ( 1 ) M g S 2 , 2 ( M + g , g ) = M !
PS=PT=[1,2...M], H 1 ( g ) = H 1 ( M g ) = M ! g M ,14→
Theorem 28. 
M ! g M = g ! i = 0 M g S 1 ( M + 1 , g + 1 + i ) S 2 ( g + i , g ) = ( M g ) ! i = 0 g S 1 ( M + 1 , M + 1 i ) S 2 ( M i , M g )
H 1 ( g , [ 1 , 1 . . . 1 ] , [ 1 , 2 . . . M ] ) = g ! S 2 ( M + 1 , g + 1 ) , F i { 1 , 1 . . . 1 } = i M ,
Theorem 29. 
S 2 ( M + 1 , g + 1 ) = i = 0 M g S 2 ( M i , g ) i M
H 1 ( g , [ 1 , 2 . . . M ] , [ 1 , 2 . . . M ] ) = H 1 ( g , [ M , M 1 . . . 1 ] , [ 1 , 2 . . . M ] ) = M ! g M
Theorem 30. 
g ! g M = i = 0 g S 1 ( M + 1 , M + 1 g + i ) S 2 ( M g + i , M g ) ( 1 ) i
H 1 ( g , [ K + i ] , [ T + i ] ) ,16 g M T 1 . . . T g × K g + 1 . . . K M ,14 T 1 . . . T g ( . . . ) ,15 K g + 1 . . . K M ( . . . )
Theorem 31. 
i = g + 1 M ( K + i ) g M = F M g { K + i } E 0 g + . . . + F 0 { K + i } E M g g , i = 1 g ( T + i ) g M = F g { T + i } E 0 M g + . . . + ( 1 ) g F 0 { T + i } E g M g

3.2. Merge and Expand

Theorem 32. 
SUM(N,PS,PT)=SUM(N,[1,1...1,PS],[1,1...1,PT]) expand g = 0 M ( . . . ) = g = 0 M + ( n u m b e r o f 1 a d d e d ) ( . . . )
Any g = 0 M a g Y + g X can be converted to a M M ! q S U M ( N + P , [ K 1 , K 2 . . . K M ] , [ 1 , 2 . . . M ] )
10 provides the necessary and sufficient condition for g = 0 M H ( g ) Y + g X to be merged into g = 0 M K ( . . . ) Y + K + g X + K :
H 2 ( g ) = x = g M ( 1 ) x H ( x ) g x = 0 , g < K o r H 3 ( g ) = x = 0 g ( 1 ) x H ( x ) M g M x = 0 , M g < K
For example:
S U M ( N , [ 1 , 2 . . . M ] , [ 1 , 2 . . . M ] ) , x = g M ( 1 ) x x M g x = 0 , 0 g < M n = 0 N 1 M M + d n = 1 M ! S U M ( N , [ 1 , 2 . . . M ] : d , [ 1 , 2 . . . M ] ) = 1 M ! g = 0 M H 1 ( g ) 1 + g N
I f M k d , B i ( X i = K i ) = i + ( X K 1 i ) d H 2 ( g < k ) = 0 n = 0 N 1 M M + d n = g = 0 M k ( . . . ) 1 + g + k N + k
After a simple calculation,it can be written as:
Theorem 33. 
Necessary and sufficient conditions for merging, 0 g < K M :
  • n = 0 M H ( n ) Y + n X n = 0 M K ( . . . ) Y + K + n X + K : x = 0 M ( 1 ) x H ( x ) g P ± x = 0
  • n = 0 M H ( n ) Y + n X + n n = 0 M K ( . . . ) Y + K + n X + K + n : x = 0 M H ( x ) g P ± x = 0
  • n = 0 M H ( n ) Y X n n = 0 M K ( . . . ) Y K X K n : x = 0 M H ( x ) g P ± x = 0
Theorem 34. 
g = 0 M g M A A + T + g Y + g X = g = 0 A g + T A + T M + T M + T + g Y + M A + g X + M A , A 0
Proof. 
It can be proved by induction, but it is cumbersome.
SUM(N,[T+1,T+2...T+M],[T+A+1,T+A+2...T+A+M])
= g = 0 M g M [ T + A + g ] g [ T + M ] M g T + A + 1 + g N + T + A
= g = 0 M g M ( T + A + g ) ! ( T + A ) ! ( T + M ) ! ( T + g ) ! T + A + 1 + g N + T + A = A ! ( T + M ) ! ( T + A ) ! g = 0 M g M A A + T + g T + A + 1 + g N + T + A
= ( T + M ) ! ( T + A ) ! S U M ( N , [ T + 1 , T + 2 . . . T + A ] , [ T + M + 1 , T + M + 2 . . . T + M + A ] )
= ( T + M ) ! ( T + A ) ! g = 0 A g A ( T + M + g ) ! ( T + M ) ! ( T + A ) ! ( T + g ) ! T + M + 1 + g N + T + M
g = 0 M g M A A + T + g T + A + 1 + g N + T + A = g = 0 A ( T + M + g ) ! ( T + M ) ! ( T + A ) ! ( T + g ) ! A ! ( A g ) ! g ! 1 A ! T + M + 1 + g N + T + M
g : = M g g = 0 M g M A A + T + M g Y + g X = g = 0 A g A + T M + T A + M + T g Y + M A + g X + M A , A 0
When A>M, it is an expansion; When A<M, it is a merge.Combining with 33:
Theorem 35. 
g = 0 M ( 1 ) g g M A X 1 ± g B X 2 ± g = 0 , M > A + B , A , B 0
I f f ( n ) = i = 0 B a i n i , B < M g = 0 M ( 1 ) g g M f ( g ) = 0 g = 0 M ( 1 ) g g M Y 1 X 1 ± g Y 2 X 2 ± g . . . = 0 , Y i < M
It can be proved by induction:
Theorem 36. 
g = 0 M ( 1 ) g g M M + K T + g = ( 1 ) M K T , K 0 0 , K < 0 ; g = 0 M ( 1 ) g g M M + K T g = K T , K 0 0 , K < 0 T ± g Z
This helps to understand the differential sequence.

3.3. Congruences

P is prime. K i , D is any integer,D ≠0.
Theorem 37. ( P , D ) = 1 , S U M ( P , [ K 1 , K 2 . . . K M ] : D , [ 1 , 2 . . . M ] ) 1 ( mod P ) , M = P 1 0 ( mod P ) , M < P 1
Proof. 
If M=P-1, S U M ( P ) H 1 ( P 1 ) P P H 1 ( P 1 ) ( P 1 ) ! D P 1 1 ( mod P )
If a product has a factor that is divisible by P then ignore it and change the factor to its minimum positive residue, then we can obtain many congruences. Wilson’s Theorem is a special case.eg: A , B , C N
1 A 2 B + 2 A 3 B + . . . + ( P 2 ) A ( P 1 ) B 1 A 3 B + . . . + ( P 3 ) A ( P 1 ) B + ( P 1 ) A 1 B 1 ( mod P ) , A + B = P 1 0 ( mod P ) , A + B < P 1
1 A 2 B 3 C + 2 A 3 B 4 C + . . . + ( P 3 ) A ( P 2 ) B ( P 1 ) C 1 ( mod P ) , A + B + C = P 1 0 ( mod P ) , A + B + C < P 1
Theorem 38. 
0 < K i , K j < P , K i K j K 1 λ 1 K 2 λ 2 . . . K q λ q 0 mod P , λ 1 + λ 2 + . . . + λ q < P 1 1 mod P , λ 1 + λ 2 + . . . + λ q = P 1 , λ i N
Wolstenholme’s Theorem is also a special case.P>3.
  • Wolstenholme’s Theorem: ( P 1 ) ! n = 1 P 1 1 n = 0 < K i , K j < P , K i K j K 1 K 2 . . . K P 2 0 ( mod P 2 )
  • n = 1 P 1 n P 2 0 ( mod P 2 )
They are two extremes.In fact,there have:
Theorem 39. 
0 < K i , K j < P , K i K j K 1 C 1 K 2 C 2 . . . K q C q 0 ( mod P 2 ) , C 1 + C 2 + . . . + C q = P 2 , C i > 0
Proof. 
If X ( mod P 2 ) and X + Y ( mod P 2 ) then Y ( mod P 2 ) .The Sum has symmetry.
For A B P 3 , A B ,if P A B then add A B P 3 with ( P A ) B P 3 to P B P 3 ,if P A = B then add A B P 3 with B B P 3 to P B P 3 .so A B P 3 + B P 2 = x P B P 3 , 0 < x < P A B P 3 0 ( mod P 2 ) .
Similarly:
For A B C P 4 , A B C ,treat P-A=B,P-A=C, P A B , C separately.
A B C P 4 + x B 2 C P 4 + y B C P 3 0 mod P 2 , 0 < x , y < P
A B C P 4 + x B 2 C P 4 0 mod P 2 , 0 < x < P
A B C P 4 + B 2 C P 4 = ( 2 P B ) B C P 4 + B 2 C P 4 = 2 P B C P 4 0 mod P 2
B 2 C P 4 0 mod P 2 A B C P 4 0 mod P 2
Prove the conclusion in a similar way... □
Theorem 40. 
E P 2 P 1 = S 2 ( 2 P 3 , P 1 ) 0 ( mod P 2 ) ; E P 2 P = S 2 ( 2 P 2 , P ) 0 ( mod P 2 )
e g : S 2 ( 7 , 4 ) = 350 , S 2 ( 8 , 5 ) = 1050 0 ( mod 25 ) , S 2 ( 11 , 6 ) = 179487 , S 2 ( 12 , 7 ) = 627396 0 ( mod 49 )

4. Combinatorial Identities

Definition 11. 
R-FOLD SUM: ( r ) N f ( k ) = k r = 1 N . . . k 2 = 1 k 3 k 1 = 1 k 2 f ( k 1 ) = k r = 0 N 1 . . . k 2 = 0 k 3 k 1 = 0 k 2 f ( k 1 + 1 )
By nested sum:
Theorem 41. 
( r ) N p S U M ( k , P S , P T ) = p r S U M ( N , P S , P T )
Theorem 42. 
k r = 1 N . . . k 2 = 1 k 3 k 1 = 1 k 2 S U M ( k r , P S , [ 1 , 2 . . . M ] ) = S U M ( N , P S , P T = [ T i = i + r 1 ] )
Proof. 
P S 1 = [ 1 : 0 , 1 : 0 . . . 1 : 0 , P S ] , P T 1 = [ 1 , 3 . . . 2 ( r 1 ) 1 , 1 + 2 ( r 1 ) , 2 + 2 ( r 1 ) . . . M + 2 ( r 1 ) ]
B i = K i + X K 1 D i = 1 , X i K ( T i X T 1 ) D i = 0 , X i T H 1 ( g > M , P S 1 , P T 1 ) = 0 , H 1 ( g M , P S 1 , P T 1 ) = H 1 ( g , P S , P T )
S U M ( N , P S 1 , P T 1 ) = g = 0 M H 1 ( g , P S , P T ) r + g N + r 1 = k r = 1 N S U M ( k r , P S , [ 1 , 2 . . . M ] ) . . . k 2 = 1 k 3 k 1 = 1 k 2 1
Theorem 43. 
k x = 1 N . . . k 2 = 1 k 3 k 1 = 1 k 2 S U M ( k r , P S , [ 1 , 2 . . . M ] ) = r x S U M ( N , P S , [ T i = i + r 1 ] )
e g : ( * ) k r = 1 N . . . k 2 = 1 k 3 k 1 = 1 k 2 j k i = 1 j ! i r S U M ( N + 1 , [ 0 , 1 , 2 . . . ( j 1 ) ] , [ T x = x + ( i 1 ) ] )
H 1 ( g < j ) = 0 , H 1 ( j ) = ( j + i 1 ) ! ( i 1 ) ! , T j j = i 1
( * ) = 1 j ! i r ( j + i 1 ) ! ( i 1 ) ! j + 1 + ( i 1 ) ( N + 1 ) + ( i 1 ) = i 1 j + i 1 j + i ( i r ) N + i ( i r ) = i 1 j + i 1 j + r N + r [6]
Using induction to prove:
Theorem 44. 
0 n 1 . . . n M N 1 ( K + n 1 D 1 + . . . + n M D M ) = ( D 1 + 2 D 2 + . . . + M D M ) M + 1 N + M 1 + K M N + M 1
e g : 0 n 1 . . . n p n ( n 1 + . . . + n p ) = n p = 0 n n p 1 = 0 n p . . . n 1 = 0 n 2 ( n 1 + . . . + n p ) = 2 p + 1 p + 1 n + p = p n 2 p n + p . [6]
2 , 3 , 4 can be used to derive combinatorial identities.
Theorem 45. 
A n + A M n + M + B =
  • g = 0 M g A + g M g M + B A + g n + A
  • g = 0 M ( 1 ) M g g A + g M g A B A + g n + A + g
  • g = 0 M g A B M g M + B A + M n + A + M g
Proof. 
= 1 A ! M ! S U M ( N , [ 1 , 2 . . . A , B + 1 . . . B + M ] , [ 1 , 2 . . . A + M ] ) = 1 M ! S U M ( N , [ B + 1 . . . B + M ] , [ A + 1 . . . A + M ] )
H 1 ( g ) = g M ( A + 1 ) . . . ( A + g ) ( B + g + 1 ) . . . ( B + M ) = g M g ! g A + g ( M g ) ! M g B + M
Using a similar method to obtain H 2 ( g ) , H 3 ( g )
Theorem 46. 
A n + X M n + Y = x = 0 A x M + x A x M + X Y M + x n + Y , 0 Y M
Proof. 
= 1 A ! M ! S U M ( N , [ X , X 1 . . . X A + 1 , Y , Y 1 . . . Y M + 1 ] , [ 1 , 2 . . . A + M ] )
= 1 A ! M ! S U M ( N , [ 1 , 2 . . . Y , 0 , 1 , 2 . . . ( M Y ) + 1 , X , X 1 . . . X A + 1 ] , [ 1 , 2 . . . A + M ] )
= Y ! A ! M ! S U M ( N , [ 0 , 1 , 2 . . . ( M Y ) + 1 , X , X 1 . . . X A + 1 ] , [ Y + 1 , Y + 2 . . . A + M ] )
I f H 1 ( g ) 0 t h e n X 1 , X 2 . . . X M Y T H 1 ( g < M Y ) = 0 , L e t C = A + M Y
I f H 1 ( g M Y ) 0 , N u m b e r o f X K = C g C M + Y H 1 ( g ) = C g C M + Y [ X + M Y ] C g [ Y + 1 ] g
x:=-(M-Y-g) H 1 ( M Y + x ) = A ! ( A x ) ! x ! ( M + X Y ) ! ( M + X Y A + x ) ! ( M + x ) ! Y !
Theorem 47. 
i = 1 M ( A + 2 i + n ) = A n + A 1 g = 0 M ( 2 ( M g ) 1 ) ! ! g 2 M g [ A + 1 ] g A + g n + A + g , A 0
Proof. 
P S = [ A + 2 , A + 4 . . . A + 2 M ] , P T = [ A + 1 , A + 2 . . . A + M ] , P T 1 = [ 1 , 3 . . . 2 ( M g ) 1 ]
H 2 ( g , K ) = S U M ( g + 1 , P T 1 , P T 1 ) ) = ( 2 ( M g ) 1 ) ! ! g 2 M g , H 2 ( g , T ) = [ A + 1 ] g
A n + A i = 1 M ( A + 2 i + n ) = 1 A ! S U M ( N , [ 1 , 2 . . . A , P S ] , [ 1 , 2 . . . A , P T ] ) = S U M ( N , P S , P T )
Theorem 48. 
SUM(N,[A+1,A+3...A+2M-1],[1,3...2M-1])= g = 0 M [ A ] M g ( 2 g 1 ) ! ! 2 g M + g M + g N + M 1 + g
Proof. 
H 2 ( g , T ) = S U M ( M g + 1 , [ 1 , 3 . . . 2 g 1 ] , [ 1 , 3 . . . 2 g 1 ] ) ) = ( 2 g 1 ) ! ! 2 g M + g , H 2 ( g , K ) = [ A ] M g
Theorem 49. 
SUM(N,[A,A+1...A+M-1]:2,[1,3...2M-1])= M M + N 1 [ A + M + N 2 ] M
Proof. 
S U M ( g + 1 , [ A , A + 1 . . . A + M 1 g ] : 2 , [ 1 , 3 . . . 2 ( M g ) 1 ] )
= H 1 ( g , K , [ A , A + 1 . . . A + M 1 ] , [ 1 , 2 . . . M ] ) = g M [ A + M 1 ] M g
S U M ( N , [ 1 , 2 . . . M ] : 2 , [ 1 , 3 . . . 2 M 1 ] ) = M ! M N + M 1 2 , 1 + 3 + . . . + ( 2 N 1 ) = N 2
49 and 45 1 M ! H ( g , [ A + 1 , A + 2 . . . A + M ] : 2 , [ 1 , 3 . . . 2 M 1 ] ) = H ( g , [ A + 1 , A + 2 . . . A + M ] , [ M + 1 , M + 2 . . . 2 M ] )
Theorem 50. 
S U M ( N , [ A + 2 , A + 4 . . . A + 2 M ] : 3 , [ 1 , 3 . . . 2 M 1 ] ) = g = 0 M g A + N 1 + g M g N + M 1 g [ M + N g ] M 2 M g
Proof. 
P S 1 = [ A + 2 , A + 4 . . . A + 2 M ] , P T 1 = [ A + 1 , A + 2 . . . A + M ]
H 1 ( g , P S 1 , P T 1 ) = [ A + 1 ] g S U M ( g + 1 , [ A + 2 , A + 4 . . . A + 2 ( M g ) ] : 3 , [ 1 , 3 . . . 2 ( M g ) 1 ] ) )
= k = g M H 2 ( g , P S 1 , P T 1 ) g k , = k = g M ( 2 ( M k ) 1 ) ! ! k 2 M k [ A + 1 ] k g k

5. Matrix of SUM(N)

Consider H(g) as variables,list SUM(N),SUM(N+1)…SUM(N+M),we can obtain a (M+1) ×(M+1) matrix.
Let P = N + T M M , Q = N 1 , corresponding to the three forms.define A 1 , 2 , 3 ( P , Q , M ) =
Q P Q M P Q + M P + M Q P + M , Q P Q P + M Q + M P + M Q + M P + 2 M , Q P + M Q M P Q + M P + 2 M Q P + M
Theorem 51. 
A 1 ( P , Q , M ) = A 2 ( P , Q , M ) = A 3 ( P , Q , M ) , A ( P , Q , M ) = A ( P , P Q , M ) [2]
Theorem 52. 
A ( P , 0 , M ) = 1 , A ( P , 1 , M ) = 1 + M P + M , A ( P , Q > 1 , M ) = g = 0 Q 1 1 + M P + M g 1 + M 1 + M g [2]
If SUM(N) or SUM(N) is easy to obtained,then H(g) can be calculated with the Cramer’s law.Below, T M M
Theorem 53. 
H 1 ( g ) = k = 1 g + 1 ( 1 ) g + 1 + k T M M + k T M M + 1 + g S U M ( k ) = k = 1 g + 1 ( 1 ) g + 1 + k T M M + k 1 T M M + g S U M ( k )
( 1 ) S U M ( N , [ 1 , 1 . . . 1 ] , [ 2 , 3 . . . M ] ) = N M S 2 ( M , g ) = 1 g ! k = 0 g ( 1 ) g + k k g k M = 1 g ! k = 0 g ( 1 ) k k g ( g k ) M
Theorem 54. 
z ( k ) = i = 1 k ( 1 ) i + k i k S U M ( k ) , H 2 ( g ) = k = g + 1 M + 1 ( 1 ) g + k 1 g k 1 z ( k )
S U M ( N , [ 1 , 1 . . . 1 ] , [ 2 , 3 . . . M ] ) = N M z ( k ) = i = 1 k ( 1 ) i + k i k i M = k ! S 2 ( M , k ) . 2
Theorem 55. 
H 3 ( g ) = k = 1 g + 1 ( 1 ) g + 1 + k g + 1 k 2 + T M S U M ( k ) = k = 1 g + 1 ( 1 ) g + 1 + k g + 1 k 1 + T M S U M ( k )
( 2 ) S U M ( N , [ 1 , 1 . . . 1 ] , [ 2 , 3 . . . M ] ) = N M g M = k = 1 g + 1 ( 1 ) 1 + g + k g + 1 k M + 1 k M = k = 0 g ( 1 ) k k M + 1 ( g + 1 k ) M
(1)(2) are already known formula.

6. Eulerian polynomials and Beyond

In this section, q 0 , q 1 .Inductive proof:
Theorem 56. 
n = 0 N 1 q n M n + K = q N g = 0 M ( 1 ) g M g N + K 1 g ( q 1 ) g + 1 + q M K ( 1 q ) M + 1
Definition 12. 
A q M = k = 0 M ( 1 q ) M k q k S 2 ( M , k ) k ! , A q 0 = 1 , A q 1 = q
Table 4. Table of A q M .
Table 4. Table of A q M .
M=0 M=1 M=2 M=3 M=4 M=5 M=6 OEIS
A 2 M 1 2 6 26 150 1082 9366 A000629
A 3 M 1 3 12 66 480 4368 47712 A123227
A 4 M 1 4 20 132 1140 12324 160020 A201355
n M = S U M ( N , [ 1 , 1 . . . 1 ] , [ 2 , 3 . . . M ] ) = g = 0 M S 2 ( M , g ) g ! g n = g = 0 M ( 1 ) M g S 2 ( M , g ) g ! g n + g = g = 0 M g M M n + g
n = 0 N 1 q n n M = g = 0 M S 2 ( M , g ) g ! n = 0 N 1 q n g n = g = 0 M S 2 ( M , g ) g ! { q N k = 0 g ( 1 ) k g k N 1 k ( q 1 ) k + 1 + q g ( 1 q ) g + 1 }
= q N ( q 1 ) M + 1 g = 0 M S 2 ( M , g ) g ! k = 0 M ( 1 ) k g k N 1 k ( q 1 ) M k + g = 0 M S 2 ( M , g ) g ! ( 1 q ) M g q g ( 1 q ) M + 1
= q N ( q 1 ) M + 1 k = 0 M ( 1 ) k ( q 1 ) M k g = 0 M S 2 ( M , g ) g ! g k N 1 k + A q M ( 1 q ) M + 1
= q N ( q 1 ) M + 1 k = 0 M ( 1 ) k ( q 1 ) M k k ( N 1 ) M + A q M ( 1 q ) M + 1 ( * )
Use the F r o m 2 and F r o m 3 of n M ,the first part of (*) keep same, we can obtain:
Theorem 57. 
A q M = q k = 0 M ( q 1 ) M k S 2 ( M , k ) k ! = g = 0 M g M q M g = g = 0 M g M q 1 + g
n M = S U M ( N , [ 1 , 1 . . . 1 ] , [ 1 , 2 . . . M ] ) = g = 0 M S 2 ( M + 1 , g + 1 ) g ! g n 1
Theorem 58. 
A q M = k = 0 M ( 1 q ) M k q k + 1 S 2 ( M + 1 , k + 1 ) k ! , M > 0
S 2 ( M + 1 , k + 1 ) = 1 ( k + 1 ) ! j = 0 k + 1 ( 1 ) j + k + 1 j k + 1 j M + 1 = 1 k ! j = 0 k ( 1 ) j + k j k ( j + 1 ) M
By definition of difference:
k ( N 1 ) M = j = 0 k ( 1 ) j j k ( N 1 j ) M = j = 0 k ( 1 ) j j k g = 0 M g M N g ( j + 1 ) M g ( 1 ) M g
= g = 0 M ( 1 ) M g k g M N g j = 0 k ( 1 ) j + k j k ( j + 1 ) M g = g = 0 M ( 1 ) M g k g M N g S 2 ( M g + 1 , k + 1 ) k !
( * ) = q N ( q 1 ) M + 1 k = 0 M ( 1 ) k ( q 1 ) M k { g = 0 M ( 1 ) M g k g M N g S 2 ( M g + 1 , k + 1 ) k ! } + A q M ( 1 q ) M + 1
= q N ( q 1 ) M + 1 g = 0 M ( 1 ) M g ( q 1 ) g g M N g k = 0 M ( q 1 ) M k g S 2 ( M g + 1 , k + 1 ) k ! + A q M ( 1 q ) M + 1 ( * * )
N = 0 , ( * ) = 0 q N ( q 1 ) M + 1 ( . . . ) + A q M ( 1 q ) M + 1 = 0
Theorem 59. 
A q M = k = 0 M ( q 1 ) M k S 2 ( M + 1 , k + 1 ) k !
A q M g = k = 0 M ( q 1 ) M k g S 2 ( M g + 1 , k + 1 ) k ! , ( * * )
Theorem 60. 
n = 0 N 1 q n n M = q N ( q 1 ) M + 1 g = 0 M ( 1 ) M g ( q 1 ) g g M A q M g N g + A q M ( 1 q ) M + 1
The Eulerian polynomials: A M ( t ) : i = 0 t i i M = t A M ( t ) ( 1 t ) M + 1 , A M ( t ) = g = 0 M 1 g M t g
| q | < 1 , lim N n = 0 N 1 q n n M = A q M ( 1 t ) M + 1 A t M = t A M ( t ) . There have 5 expressions for A M ( t ) .
Eulerian Numbers and Polynomials is just a special case,we can handler:
n = 0 N 1 q n p S U M ( n + Y , P S , P T ) , X = T M M p
= g = 0 M H 1 ( g ) n = 0 N 1 q n X + 1 + g n + Y + X = g = 0 M H 1 ( g ) { q N k = 0 X + 1 + g ( 1 ) k X + 1 + g k N + Y + X 1 k ( q 1 ) k + 1 + q 1 + g Y ( 1 q ) X + 2 + g } g = 0 M H 2 ( g ) n = 0 N 1 q n X + 1 + g n + Y + X + g = g = 0 M H 2 ( g ) { q N k = 0 X + 1 + g ( 1 ) k X + 1 + g k N + Y + X + g 1 k ( q 1 ) k + 1 + q 1 Y ( 1 q ) X + 2 + g } g = 0 M H 3 ( g ) n = 0 N 1 q n X + 1 + M n + Y + X + M g = g = 0 M H 3 ( g ) { q N k = 0 X + 1 + M ( 1 ) k X + 1 + M k N + Y + X + M g 1 k ( q 1 ) k + 1 + q 1 + g Y ( 1 q ) X + 2 + M }
Theorem 61. 
n = 0 M H 1 ( g ) ( 1 q ) M g q g + 1 = q n = 0 M H 2 ( g ) ( 1 q ) M g = n = 0 M H 3 ( g ) q g + 1
Here q can take any value,which is magical. q = 0.5
Definition 13. 
A q ( P S , P T ) =
Theorem 62. 
X = T M p , n = 0 N 1 q n p S U M ( n + Y ) = q N ( q 1 ) X + 2 k = 0 M ( q 1 ) X k ( 1 ) k p + K 1 S U M ( n + Y 2 ) + A q ( P S , P T ) q Y ( 1 q ) X + 2
Theorem 63. 
| q | < 1 , n = 0 q n p S U M ( n + Y , P S , P T ) = A q ( P S , P T ) q Y ( 1 q ) T M + 2 p
We can handler 63 of SUM(N,[a,a...a]:d,[1,2...M]),SUM(N,[1,1...1,2,2...2...k,k...k],[1,2...kM]). Many results of [7,8] can be obtained by this.

7. Formal Calculation of q-Binomial

7.1. Concept

q-Binomial: M N q = ( q N 1 ) ( q N 1 1 ) . . . ( q N M + 1 1 ) ( q M 1 ) ( q M 1 1 ) . . . ( q 1 1 ) , q 0 , 1 ,abbreviated as G M N
  • G 0 N = 1 , G M < 0 , M > N N = 0 , G M N = G N M N
  • G M N = q M G M N 1 + G M 1 N 1 = G M N 1 + q N M G M 1 N 1
  • n = 0 N 1 q n G M n + K = q M K G M + 1 N + K
  • G K M = w Ω ( 0 M K , 1 K ) q i n v ( w ) [9]. w 1 w M with M-K(zeros) and K(ones),inv(·) denotes the inversion statistic.
The Formal Calculation use q n ( K i + G 1 n D i ) instead of K i + q n D i .
Definition 14. 
Recurssive define q p , p N , q 0 f ( n ) = f ( n ) , n = 0 N 1 q n q 1 f ( n + 1 ) = f ( N ) , n = 0 N 1 q n f ( n + 1 ) = q 1 f ( N )
Definition 15. 
Recursive define S U M q ( N ) = S U M q ( N , P S , P T ) .
S U M q ( N , [ K 1 : D 1 ] , [ T 1 = 1 ] ) = n = 0 N 1 q n ( K 1 + G 1 n D 1 )
S U M q ( N , [ K 1 : D 1 , K 2 : D 2 ] , [ T 1 , T 2 = T 1 + 2 p ] ) = n = 0 N 1 q n ( K 2 + G 1 n D 2 ) p S U M q ( n + 1 , [ K 1 : D 1 ] , [ T 1 ] )
Theorem 64. 
n = 0 N 1 q n G 1 n G M n + K , M > 0 , M K
= q 2 ( M K ) + 1 G 1 M + 1 G M + 2 N + K + q M K G 1 M K G M + 1 N + K
= q M 2 K 1 G 1 M + 1 G M + 2 N + K + 1 + q M K ( G 1 M K q K 1 G 1 M + 1 ) G M + 1 N + K
= ( q 2 ( M K ) + 1 G 1 M + 1 q 2 M K + 2 G 1 M K ) G M + 2 N + K + q M K G 1 M K G M + 2 N + K + 1
Use this to prove:
Theorem 65. 
[2] S U M q ( N , P S , P T ) =
F o r m 1 g = 0 M H 1 q ( g ) G N 1 g N + T M M = g = 0 M H 1 q ( g ) G T M M + 1 + g N + T M M , B i = q ( T i T i 1 1 ) X T 1 ( K i + G 1 X T 1 D i ) , X i = K i q 1 + ( T i T i 1 ) X T 1 G 1 T i X K 1 D i , X i = T i
F o r m 2 g = 0 M H 2 q ( g ) G N 1 N + T M M + g = g = 0 M H 2 q ( g ) G T M M + 1 + g N + T M M + g , B i = K i q ( T i X K 1 ) G 1 T i X K 1 D i , X i = K i q ( T i X K 1 ) G 1 T i X K 1 D i , X i = T i
F o r m 3 g = 0 M H 3 q ( g ) G N 1 g N + T M g = g = 0 M H 3 q ( g ) G T M + 1 N + T M g , B i = q ( T i T i 1 1 ) X T 1 ( K i + G 1 X T 1 D i ) , X i = K i q 1 + ( T i T i 1 1 ) X T 1 { ( q X T 1 G 1 T i q T i G 1 X T 1 ) D i K i q T i } , X i = T i
H q ( g ) = X ( T ) = g i = 1 M B i , lim q 1 S U M q ( N ) = S U M ( q ) , lim q 1 H q ( g ) = H ( g )

7.2. Property

Theorem 66. 
q 1 S U M q ( N , P S , [ 1 , 2 . . . M ] ) = i = 1 M ( K i + D i G 1 n )
Theorem 67. 
In S U M q ( N , [ . . . P S . . . ] , [ . . . T + 1 , T + 2 . . . T + M . . . ] ) , K i can exchange orders.
F o r m 2 is simplest, X = T M M p , iii→
Theorem 68. 
q p S U M q ( N ) = g = 0 M H 1 q ( g ) G X + 1 + g N + X q g p = g = 0 M H 2 q ( g ) G X + 1 + g N + X + g = g = 0 M H 3 q ( g ) G X + M + 1 N + X + M g q g p
Definition 16. 
n q = q n G 1 n , n q + = q n G 1 n , n q ! = n q . . . 2 q 1 q , 0 q ! = 0 , n q + ! i s s i m i l a r .
F o r m 2
Theorem 69. 
S U M q ( N , [ L 1 q , L 2 q . . . L Q q , P S ] , [ L 1 , L 2 . . . L Q , P T ] ) = i = 1 Q L i q S U M q ( N , P S , P T ) , T 1 can great than 1, T i N
Theorem 70. 
S U M q ( N , [ T 1 q , T 2 q . . . T M q ] , [ T 1 , T 2 . . . T M ] ) = i = 1 M T i q G T M + 1 N + T M
S U M q ( N , [ 1 q , 2 q . . . M q ] , [ 1 , 2 . . . M ] ) n = 0 N 1 q n G 1 n + 1 G 1 n + 2 . . . G 1 n + M = G 1 1 G 1 2 . . . G 1 M G M + 1 N + M
By definition and iv
Theorem 71. 
I n H q ( g ) , X i K q X T = G M g M = G g M

7.3. Application

Theorem 72. 
0 λ 1 λ 2 . . . λ M N q λ 1 + λ 2 + . . . + λ M = G M N + M = G N N + M [6]
Proof. 
S U M q ( N + 1 , [ 1 , 1 . . . 1 ] : 0 , [ 1 , 3 . . . 2 M 1 ] ) H 2 q ( g > 0 ) = 0 , H 2 q ( 0 ) = 1 λ M = 0 N q λ M . . . λ 1 = 0 λ 2 q λ 1 = G M N + M
Theorem 73. 
1 λ 1 < λ 2 < . . . < λ M N + M q λ 1 + λ 2 + . . . + λ M = q 2 M + 1 G M N + M
Proof. 
λ M = 0 N q M + λ M . . . λ 2 = 0 λ 3 q 2 + λ 2 λ 1 = 0 λ 2 q 1 + λ 1 = q 1 + 2 + . . . + M λ M = 0 N q λ M . . . λ 2 = 0 λ 3 q λ 2 λ 1 = 0 λ 2 q λ 1
Theorem 74. 
A λ 1 < λ 2 < . . . < λ M B q λ 1 + λ 2 + . . . + λ M = q 2 M + 1 + ( A 1 ) M G M B A + 1 , A , B Z
By simply following the definition of product, we can obtain:
Theorem 75. 
i = 1 M ( 1 + q A + i z ) = g = 0 M q 2 g + 1 + A g G g M z g
A=-1 or 1,it’s q-Binomial Theorem: i = 1 M ( 1 + q i 1 z ) = g = 0 M q 2 g G g M z g , i = 1 M ( 1 + q i z ) = g = 0 M q 2 g + 1 G g M z g
If T i + 1 = T i + 1 , D i = 1 , K i = K i q :
B i o f H 1 , 2 , 3 q ( g ) = X i = K i q X i = T = q K i G K i + X T 1 q X T G T i X K 1 , = q K i G K i T i + X K 1 q ( T i X K 1 ) G T i X K 1 , = q K i G K i + X T 1 q 1 + X T G T i K i X T 1
It’s similar to 1.Replace each B i to G 1 B i in H ( g , [ K 1 , K 2 . . . K M ] , P T ) and multiply by q ? to obtain H q ( g ) .
If there is another K i + 1 = K i + 1 ,74 can be used to obtain general formulas.
Theorem 76. 
Expansion of ii: G M + 1 N + M = g = 0 M q ( g + 1 ) g G g M G 1 + g N , G M + 1 + P N + M + P = g = 0 M q ( g + 1 + P ) g G g M G P + 1 + g N + P
Proof. 
S U M q ( N , [ 1 q , 2 q . . . M q ] , [ 1 , 2 . . . M ] ) = M q ! G M + 1 N + M = g = 0 M H 1 q ( g ) G 1 + g N = S U M q ( N , [ M q , . . . , 1 q ] , P T )
H 1 q ( g , T ) = g q + ! , H 1 q ( g , K ) = G 1 M G 1 M 1 . . . G 1 g + 1 q ( M + 1 ) ( M g ) 1 λ 1 < . . . < λ M g M q λ 1 + . . . + λ M g
H 1 q ( g ) M q ! = q 2 g + 1 q ( M + 1 ) ( M g ) 1 λ 1 < . . . < λ M g M q λ 1 + . . . + λ M g q ( 1 + 2 + . . . + M ) = q 2 g + 1 q ( M + 1 ) ( M g ) q 2 M g + 1 G M g M q 2 M + 1 = q ( g + 1 ) g G g M
Theorem 77. 
G M N = g = 0 M ( 1 ) g q g 2 2 G g M 2 M N + M g q 1 2
Proof. 
S U M q ( N + 1 , [ q 1 : ( q 1 ) q 1 , q 2 : ( q 1 ) q 2 . . . q M : ( q 1 ) q M ] , [ 1 , 3 . . . 2 M 1 ] )
= λ M = 0 N q 2 λ M + M . . . λ 2 = 0 λ 3 q 2 λ 2 + 2 λ 1 = 0 λ 2 q 2 λ 1 + 1 = q 2 M + 1 0 λ 1 . . . λ M N q 2 ( λ 1 + . . . + λ M ) = q 2 M + 1 M N + M q 2
B i o f H 3 q ( g ) = q X T 1 ( K i + G 1 X T 1 D i ) = q X T 1 ( q i + G 1 X T 1 q i ( q 1 ) ) = q 2 X T 1 + i = q i + 2 X T , X i = K i q 1 + X T 1 { ( q X T 1 G 1 T i q T i G 1 X T 1 ) D i K i q T i } = q i + 1 + 2 X T 1 = q i 1 + 2 X T , X i = T i
Factor q i is present in all of them here, so q ( 1 + 2 + . . . + M ) can be extracted.
H 3 q ( g ) = ( 1 ) g q ( 1 + 2 + . . . + M ) g + 2 ( 1 + 2 + . . . + g ) X i K q 2 X T = ( 1 ) g q 2 M + 1 + g 2 g M q 2
q 2 M + 1 M N + M q 2 = g = 0 M H 3 q ( g ) G 2 M N + 2 M g = q 2 M + 1 g = 0 M ( 1 ) g q g 2 g M q 2 G 2 M N + 2 M g
Definition 17. 
q E M N = 1 λ 1 λ 2 . . λ M N G 1 λ 1 G 1 λ 2 . . . G 1 λ M = S 2 q ( N + M , N )
Theorem 78. ( G 1 N ) M = ( 1 + q + . . . + q N 1 ) M = g = 1 M g q + ! S 2 q ( M , g ) G g N q g
Proof. 
q 1 S U M ( N , [ 1 q , 1 q . . . 1 q ] , [ 1 , 2 . . . M ] ) = ( 1 q + q n 1 q 1 ) = q M ( G 1 n + 1 ) M = q M ( G 1 N ) M
= q 1 q 1 S U M ( N , [ 1 q , 1 q . . . 1 q ] , [ 2 , 3 . . . M ] ) = q 1 g = 0 M 1 H 1 q ( g ) G 1 + g N q g
B i = q 1 + G 1 X T 1 = q 1 G 1 1 + X T 1 = q 1 G 1 1 + X T , X i K q 1 + X T 1 G 1 ( i + 1 ) X K 1 = q X T G 1 1 + X T = q 1 q 1 + X T G 1 1 + X T , X i T
H 1 q ( g , T ) = q ( g + 1 ) ( g + 1 ) q + ! , H 1 q ( g , K ) = q ( M 1 g ) q E M 1 g g + 1
( G 1 N ) M = q M 1 g = 0 M 1 q ( g + 1 ) ( g + 1 ) q + q ( M 1 g ) S 2 q ( M , g + 1 ) ! G 1 + g N q g
Use P S = [ K i + 1 : D i ( q 1 ) ] , P T = [ 1 , 2 . . . M ]
Theorem 79. 
n = 0 N 1 q n i = 1 M ( K i + D i q n ) = g = 0 M H 1 q ( g ) G 1 + g N , B i = K i + q X T D i , X i K q X T ( q X T 1 ) D i , X i T
K i = 1 , D i = q i z S U M ( M + 1 ) = i = 1 M ( 1 + q M i z ) = g = 0 M H 1 q ( g ) G g M q g ( * )
B i = 1 + q X T q i z = 1 + q 1 X K 1 z = 1 + q X K z , X i = K i q X T ( q X T 1 ) q i z , X i = T i
H 1 q ( g ) = q 1 + 2 + . . . + g z g ( q 1 1 ) . . . ( q g 1 ) [ M λ 1 < . . . < λ g 1 q λ 1 + . . . + λ g ] ( 1 + q 1 z ) . . . ( 1 + q ( M g ) z )
( * ) = g = 0 M q 2 g + 1 z g ( q 1 1 ) . . . ( q g 1 ) q 2 g + 1 g ( M + 1 ) G g M ( 1 + q 1 z ) . . . ( 1 + q ( M g ) z ) G g M q g
= g = 0 M q g 2 g ( M + 1 ) 2 M g + 1 z g ( q M 1 ) . . . ( q M g + 1 1 ) ( q 1 + z ) . . . ( q ( M g ) + z ) G g M
Combining q-Binomial Theorem →
Theorem 80. 
g = 0 M q 2 g z g G g M ( q M 1 ) . . . ( q M g + 1 1 ) ( q M g + z ) . . . ( q 1 + z ) = q 2 M + 1 g = 0 M q 2 g z g G g M
Use 79 and induction →
Theorem 81. 
n = 0 N 1 i = 1 M ( K i + D i q n ) = g = 1 M f ( g ) G g N + N K i , f ( g ) = B i = 1 , X i T , X T 1 = 0 q X T 1 ( q X T 1 1 ) D i , X i T , X T 1 > 0 K i , X i K , X T 1 = 0 K i + q X T 1 1 D i , X i K , X T 1 > 0
Theorem 82. 
q M n = g = 0 M G g M i = 0 g 1 ( q n q i ) = q M g = 0 M q g g M q 1 i = 1 g ( q n q i ) = g = 0 M G g M ( 1 ) g q 2 g G M n + M g
Proof. 
q M n = q 1 S U M ( N , [ 1 , 1 . . . 1 ] : q 1 , [ 1 , 2 . . . M ] ) = g = 0 M H 1 q ( g ) G g n q g = g = 0 M H 2 q ( g ) G g n + g = g = 0 M H 3 q ( g ) G M n + M g q g
B i = 1 + G 1 X T 1 ( q 1 ) = q X T 1 = q X T , X i K q 1 + X T 1 G 1 i X K 1 ( q 1 ) = q X T ( q X T 1 ) , X i T , H 1 q ( g , T ) = ( q 1 ) g g q + ! , H 1 q ( g , K ) = G g M
B i = q ( 1 + X T 1 ) = q 1 q X T , X K q ( 1 + X T 1 ) ( q 1 + X T 1 1 ) = q X T ( q X T 1 ) , X T , H 2 q ( g , T ) = ( q 1 ) g g q ! , H 2 q ( g , K ) = q ( M g ) g M q 1
B i = q X T 1 = q X T , X K q 1 + X T 1 = q X T , X T , H 3 q ( g , T ) = ( 1 ) g q 2 g + 1 , H 3 q ( g , K ) = G g M
Theorem 83. 
k r = 1 N . . . k 2 = 1 k 3 k 1 = 1 k 2 q k 1 + k 2 + . . . + k r q p S U M q ( k 1 , P S , P T ) = q p r S U M q ( N , P S , P T )
Theorem 84. 
k x = 1 N . . . k 2 = 1 k 3 k 1 = 1 k 2 q k 1 + k 2 + . . . + k x q 1 S U M q ( k r , P S , [ 1 , 2 . . . M ] ) = q r x S U M q ( N , P S , [ T i = i + ( r 1 ) ] )
Theorem 85. 
0 n 1 . . . n M N 1 q n 1 + n 2 + . . . + n M ( K + G 1 n 1 D 1 + . . . + G 1 n M D M ) = { q 1 D M + q 2 ( D M + D M + 1 ) + . . . + q M ( D M + D M + 1 + . . . + D 1 ) } G M + 1 N + M 1 + K G M N + M 1
Theorem 86. ( K + q D ) M = ( q 1 ) D g = 0 M 1 ( K + D ) g ( K + q D ) M 1 g + ( K + D ) M
Proof. 
P S = [ K + D , K + D . . . K + D ] : ( q 1 ) D , P T = [ 1 , 2 . . . M ]
B i = K + D q X T , X K q X T ( q X T 1 ) D , X T , H 1 q ( 1 ) = q 1 ( q 1 1 ) D a + b = M 1 , a , b 0 ( K + D ) a ( K + q D ) b , H 1 q ( 0 ) = ( K + D ) M
S U M q 2 S U M q 1 = H 1 q ( 1 ) + H 1 q ( 0 ) G 1 2 H 1 q ( 0 ) = H 1 q ( 1 ) + q H 1 q ( 0 ) = q ( K + q D ) M

7.4. Relationships between H q ( g )

Theorem 87. 
P T = [ 1 , 2 . . . M ] , H 1 q ( g ) = q g ( g + 1 ) k = g M H 2 q ( k ) G g k [3]
Theorem 88. 
P T = [ 1 , 2 . . . M ] , H 1 q ( g ) = k = 0 g H 3 q ( k ) G M g M k q ( g + 1 ) ( g k )
Proof. 
Direct verification when M=1, assuming M holds.
( * ) H 1 q ( P S 1 , P T 1 , g ) = q g G 1 g H 1 q ( g 1 ) + ( K M + 1 + G 1 g D M + 1 ) H 1 q ( g )
= q g G 1 g H 1 q ( g 1 ) x = 0 M H 3 q ( x ) G M g + 1 M x q g ( g 1 x ) + ( K M + 1 + G 1 g D M + 1 ) x = 0 M H 3 q ( x ) G M g M x q ( g + 1 ) ( g x )
( * * ) H 1 q ( P S 1 , P T 1 , g ) = x = 0 M + 1 H 3 q ( P S 1 , P T 1 , x ) G M + 1 g M + 1 x q ( g + 1 ) ( g x )
= x = 0 M H 3 q ( x ) { q M + 2 q X + 1 q 1 D M + 1 K M + 1 q M + 2 } G M + 1 g M x q ( g + 1 ) ( g x 1 ) + x = 0 M H 3 q ( x ) ( K M + 1 + G 1 X D M + 1 ) G M + 1 g M + 1 x q ( g + 1 ) ( g x )
Items containing K M + 1 :
K M + 1 G M + 1 g M + 1 x q ( g + 1 ) ( g x ) q M + 2 K M + 1 G M + 1 g M x q ( g + 1 ) ( g x 1 ) = K M + 1 G M g M x q ( g + 1 ) ( g x )
Items does not contain K M + 1 :
I n ( * ) = q g G 1 g D M + 1 G M g + 1 M x q g ( g 1 x ) + G 1 g D M + 1 G M g M x q ( g + 1 ) ( g x )
D i v i d e b y D M + 1 q g q g ( g 1 x ) ( q 1 ) 1 = ( q g 1 ) G M + 1 g M x + ( q g 1 ) G M g M x q g x = ( q g 1 ) G M + 1 g M + 1 x
I n ( * * ) = q M + 2 q x + 1 q 1 D M + 1 G M + 1 g M x q ( g + 1 ) ( g x 1 ) + G 1 x D M + 1 G M + 1 g M + 1 x q ( g + 1 ) ( g x )
D i v i d e b y D M + 1 q g q g ( g 1 x ) ( q 1 ) 1 = ( q M + 1 x 1 ) G M + 1 g M x + ( q g q g x ) G M + 1 g M + 1 x = ( q g 1 ) G M + 1 g M + 1 x
Theorem 89. ( q M 1 ) . . . ( q M K + 1 1 ) = g = 0 K ( 1 ) g q 2 K g + 1 G g M G M K M g = g = 0 K ( 1 ) g q 2 K g + 1 + ( K g ) ( M K ) G g K
Proof. 
88 and 82 can obtain the first equation, the second equation is derived from 75. □
Similarly, using induction to prove:
Theorem 90. 
P T = [ 1 , 2 . . . M ] , H 2 q ( g ) = k = g M ( 1 ) k + g G g k q k ( k + 1 ) + 2 k g H 1 q ( k )
Theorem 91. 
P T = [ 1 , 2 . . . M ] , H 3 q ( g ) = k = 0 g ( 1 ) k + g G M g M k q g + 1 ( g k ) 2 g k H 1 q ( k )
Theorem 92. 
PT = [1,2...M] and D i = 1 , H 1 q ( g , K ) = F M g K × q E 0 g + F M g 1 K × q E 1 g + . . . + F 0 K × q E M g g
This indicates any g = 0 M a g G Y + g X can be converted to a M M q + ! A S U M q ( N + B , [ K 1 , K 2 . . . K M ] , [ 1 , 2 . . . M ] )
Use 90 , 91 and 68 ,we can obtain the inversion formulas.
Theorem 93. 
If g = 0 M a g G Y + g X = g = 0 M b g G Y + g X + g = g = 0 M c g G Y + M X + M g
  • a g q ( 1 Y ) g = q g ( g + 1 ) k = g M b k G g k = k = 0 g c k G M g M k q ( g + 1 ) ( g k ) q ( 1 Y ) k
  • b g = k = g M ( 1 ) k + g G g k q k ( k + 1 ) + 2 k g a k q ( 1 Y ) k
  • c g q ( 1 Y ) g = k = 0 g ( 1 ) k + g G M g M k q ( g + 1 ) ( g k ) 2 g k a k q ( 1 Y ) k

7.5. Merge and Expand

Theorem 94. 
Necessary and sufficient conditions for merging, 0 < K M :
  • n = 0 M H ( n ) G Y + n X n = 0 M K ( . . . ) G Y + K + n X + K : x = g M ( 1 ) x G g x q x ( x + 1 ) + 2 x g H ( x ) q ( 1 Y ) x = 0 , 0 g < K
  • n = 0 M H ( n ) G Y + n X n = 0 M K ( . . . ) G Y + K + n X + K : x = 0 g ( 1 ) x G M g M x q g + 1 ( g x ) 2 g x H ( x ) q ( 1 Y ) x = 0 , 0 M g < K
  • n = 0 M H ( n ) G Y + n X + n n = 0 M K ( . . . ) G Y + K + n X + K + n : x = g M H ( x ) G g x = 0 , 0 g < K
  • n = 0 M H ( n ) G M + Y X n n = 0 M K ( . . . ) G M + Y K X K n : x = 0 g H ( x ) G M g M x q ( g + 1 ) ( g x ) q ( 1 Y ) x = 0 , 0 M g < K
Y=1,76 →:
Theorem 95. 
x = 0 M ( 1 ) x G g x G x M q 2 x g = 0 , 0 g < M , x = 0 M ( 1 ) x G x M q 2 x = 0
Theorem 96. 
P=A+T+1-Y,M > A ≥ 0,
g = 0 M G g M G A A + T + g G Y + g X q g ( g + 1 + T P ) = x = 0 A G x + T A + T G M + T M + T + x G Y + M A + x X + M A q x ( x + 1 + T P )
Proof. 
S U M q ( N , [ ( T + 1 ) q , ( T + 2 ) q . . . ( T + M ) q ] , [ T + A + 1 . . . T + A + M ] ) , B i o f H 1 q ( g ) = q ( T + i ) G 1 T + i + X T , X i = K i q X T G 1 T + A + i X T , X i = T i
= g = 0 M G A + T + 1 + g X q g ( 1 + g ) 2 G 1 T + A + 1 . . . G 1 T + A + g × G 1 T + M . . . G 1 T + g + 1 q ( M g ) ( T + M + 1 ) 1 λ 1 < . . . < λ M g M q λ i
= ( q A 1 ) . . . ( q 1 ) ( q 1 ) M g = 0 M G A + T + 1 + g X q g ( 1 + g ) 2 ( M g ) ( T + M + 1 ) + ( M g + 1 ) ( M g ) 2 × ( q T + M 1 ) . . . ( q T + A + 1 1 ) G A A + T + g G g M
= q ( T + A + 1 ) G 1 T + A + 1 . . . q ( T + M ) G 1 T + M S U M q ( N , [ ( T + 1 ) q . . . . ( T + A ) q ] , [ T + M + 1 . . . T + M + A ] )
= q ( M A ) ( T + A + 1 + T + M ) 2 G 1 T + A + 1 . . . G 1 T + M x = 0 A G M + T + 1 + x X + M A q x ( 1 + x ) 2 ( A x ) ( T + A + 1 ) + ( A x + 1 ) ( A x ) 2 × G 1 T + M + 1 . . G 1 T + M + x × G 1 T + A . . . G 1 T + x + 1 G x A
g = 0 M G A + T + 1 + g X q g ( 1 + g ) ( M g ) ( g + M + 1 + 2 T ) 2 G A A + T + g G g M = q ( M A ) ( T + A + 1 + T + M ) 2 x = 0 A G M + T + 1 + x X + M A q x ( 1 + x ) ( A x ) ( x + A + 1 + 2 T ) 2 G M + T M + T + x G x + T A + T
g = 0 M G g M G A A + T + g G A + T + 1 + g X q g ( g + 1 + T ) = x = 0 A G x + T A + T G M + T M + T + x G M + T + 1 + x X + M A q x ( x + 1 + T )
The difference between this and 34 is that M>A is required.
A = 0 g = 0 M G g M G T + 1 + g N q g ( g + 1 + T ) = g = 0 M G g M G T + 1 + M g N q ( M g ) ( M g + 1 + T ) = G T + 1 + M N + M
K = T + 1 + M g = 0 K G g M G K g N q ( M g ) ( K g ) = G K N + M . It’s the q-Vandermorde Theorem.
0 B + A < M , g = 0 M G g M G A A + T + g G B g q g A + 2 g B ( 1 ) g = 0 g = 0 M G g M G A X 1 + g G B g q 2 g g ( A + B ) ( 1 ) g = 0
A and B have symmetry,ii→.
Theorem 97. 
g = 0 M G g M G A X 1 + g G B X 2 + g q 2 g g ( A + B ) ( 1 ) g = 0 , 0 B + A < M
Theorem 98. 
g = 0 M ( 1 ) g G g M G M + K X + g q 2 M + 1 g + ( M g ) K = ( 1 ) M G K X , X + g 0 , K 0
Proof. 
S U M q ( N , [ ( T + 1 ) q , ( T + 2 ) q . . . ( T + M ) q ] , [ T + K + M + 1 , T + K + M + 2 . . . T + K + 2 M ] )
H 1 q ( g ) = q g ( 1 + g ) 2 ( M g ) ( T + M + 1 ) + 2 M g + 1 × G 1 T + K + M + 1 . . . G 1 T + K + M + g × G 1 T + M . . . G 1 T + 1 + g × G 1 T + M + 1 G g M
H 2 q ( 0 ) = g = 0 M ( 1 ) g H 1 q ( g ) q g ( g + 1 ) + g ( g 1 ) 2 ( T + K + M ) g = ( 1 ) M q M ( T + 1 + T + M ) G 1 K + M G 1 K + M 1 . . . G 1 K + 1
( 1 ) M G 1 K + M . . . G 1 K + 1 = g = 0 M ( 1 ) g q 2 M g + 1 + ( M g ) K × G 1 T + K + M + g . . . G 1 T + K + M + 1 × G 1 T + M . . . G 1 T + 1 + g × G g M
( 1 ) M G K T + K + M = g = 0 M ( 1 ) g q 2 M g + 1 + ( M g ) K × G M + K T + K + M + g G g M

7.6. Matrix of S U M q ( N )

Let P = N + T M M , Q = N 1 , corresponding to the three forms,define A 1 , 2 , 3 q ( P , Q , M ) =
G Q P G Q M P G Q + M P + M G Q P + M , G Q P G Q P + M G Q + M P + M G Q + M P + 2 M , G Q P + M G Q M P G Q + M P + 2 M G Q P + M
Theorem 99. 
A 2 q ( P , Q , M ) = A 2 q ( P , P Q , M ) = G Q P G 0 P G Q + 1 P + 2 G 1 P + 2 . . . G Q + M P + 2 M G M P + 2 M q ( P + 1 ) + 2 ( P + 2 ) + . . . + M ( P + M )
A 2 q ( P , 0 , M ) = q ( P + 1 ) + 2 ( P + 2 ) + . . . + M ( P + M ) , A 2 q ( P , 1 , M ) = G M + 1 P + M q ( P + 1 ) + 2 ( P + 2 ) + . . . + M ( P + M )
Theorem 100. 
A 1 , 3 q ( P , Q , M ) = G Q P G 0 P G Q + 1 P + 2 G 1 P + 2 . . . G Q + M P + 2 M G M P + 2 M q Q 2 M + 1

8. Multi-parameter Formal Calculation

2-parameters Formal Calculation calculate nested sum of K i + 1 n D 1 , i + 2 n D 2 , i .
S U M ( N , [ K 1 ] , [ T 1 , 1 = 1 : D 1 , 1 ] , [ T 2 , 1 = 1 : D 2 , 1 ] ) = n = 0 N 1 ( K 1 + D 1 , 1 n + D 2 , 1 2 n )
S U M ( N , [ K 1 , K 2 ] , [ T 1 , 1 : D 1 , 1 , T 1 , 2 = T 1 , 1 + 2 p : D 1 , 2 ] , [ T 2 , 1 = T 1 , 1 : D 2 , 1 , T 2 , 2 = T 1 , 2 : D 2 , 2 ] )
= n = 0 N 1 ( K 2 + D 1 , 2 n + D 2 , 2 2 n ) p S U M ( N , [ K 1 ] , [ T 1 , 1 : D 1 , 1 ] , [ T 2 , 1 : D 2 , 1 ] )
Recursive define S U M ( N , P S , P T 1 , P T 2 ) . There is always T i = T 1 , i = T 2 , i
Use the Form: ( K 1 + T 1 , 1 + T 2 , 1 ) ( K 2 + T 1 , 2 + T 2 , 2 ) . . . ( K M + T 1 , M + T 2 , M )
Use T 1 to represent the set { T 1 , 1 , T 1 , 2 . . . T 1 , M }, T 2 to represent the set { T 2 , 1 , T 2 , 2 . . . T 2 , M }.
Definition 18. 
X( P T 1 )=Number of { X 1 . . . X M } T 1 , X( P T 2 )=Number of { X 1 . . . X M } T 2 ,X(PT)=X( P T 1 )+2X( P T 2 )
Definition 19. 
X P T 1 =Number of { X 1 . . . X i } T 1 , X P T 2 =Number of { X 1 . . . X i } T 2 , X P T = X P T 1 + 2 X P T 2
Theorem 101. 
S U M ( N , P S , P T 1 , P T 2 )
= g = 0 2 M H 1 ( g ) T M M + 1 + g N + T M M , B i = K i + X P T D 1 , i + 2 X P T D 2 , i , X i = K i ( T i i + X P T ) D 1 , i + ( T i i + X P T ) ( X P T 1 ) D 2 , i , X i = T 1 , i 2 T i i + X P T D 2 , i , X i = T 2 , i
= g = 0 2 M H 2 ( g ) T M M + 1 + g N + T M M + g , B i = K i ( T i i + X P T + 1 ) D 1 , i + 2 T i i + X P T + 2 D 2 , i , X i = K i ( T i i + X P T ) D 1 , i ( T i i + X P T ) ( T i i + X P T + 1 ) D 2 , i , X i = T 1 , i 2 T i i + X P T D 2 , i , X i = T 2 , i
= g = 0 2 M H 3 ( g ) T M + M + 1 N + T M + M g , B i = K i + X P T 1 D 1 , i + 2 X P T 1 D 2 , i , X i = K i 2 K i + ( T i + i 1 2 X P T 1 ) D 1 , i + ( T i + i X P T 1 ) D 2 , i , X i = T 1 , i K i ( T i + i 1 X P T 1 ) D 1 , i + 2 T i + i X P T 1 D 2 , i , X i = T 2 , i
According to this way, it can be extended to multi-parameter S U M ( N ) and S U M q ( N ) . This formula is complex and has not been studied in terms of analysis yet.

9. A theorem of symmetry

In this section, T i i .
17 H 1 ( g , P T , P T ) = i = 1 M T i g M = i = 1 M T i g , M g M .Promoted it:Set T come from p Source: S 1 , S 2 . . . S p .
Definition 20. 
D i f f ( S x , S x ) = 0 , D i f f ( S x , S y ) = D i f f ( S y , S x ) = 1 , x > y
Definition 21. 
D i f f ( T i , T j ) = D i f f ( S x , S y ) , T i S x , T j S y
Definition 22. 
W ( g 1 , g 2 . . . g p , [ T 1 , T 2 . . . T M ] ) = g 1 + g 2 + . . . + g p = M , g i = | S i | i = 1 M ( T i + j < i D i f f ( T j , T i ) )
In set T, g 1 come from S 1 , g 2 comes from S 2 ... g M comes from S M .
Theorem 102. 
W ( g 1 , g 2 . . . g p , [ T 1 , T 2 . . . T M ] ) = i = 1 M T i g 1 , g 2 , . . . , g M M
Definition 23. 
W q ( g 1 , g 2 . . . g p , [ T 1 , T 2 . . . T M ] ) = g i + g 2 + . . . + g p = M , g i = | S i | i = 1 M G 1 T i + j < i D i f f ( T j , T i ) q j < i , D i f f ( T j , T i ) = 1 1
Definition 24. 
G g 1 , g 2 . . . g p M = ( q M 1 ) ( q M 1 1 ) . . . ( q 1 1 ) i = 0 p ( q g i 1 ) ( q g i 1 1 ) . . . ( q i 1 ) , g 1 + g 2 + . . . + g p = M
Theorem 103. 
W q ( g 1 , g 2 . . . g p , [ T 1 , T 2 . . . T M ] ) = ( i = 1 M G 1 T i ) G g 1 , g 2 . . . g p M , T i i
Proof. 
W ( 1 , 1 , [ T 1 , T 2 ] ) = G 1 T 1 G 1 T 2 + 1 + G 1 T 1 G 1 T 2 1 q = G 1 T 1 G 1 T 2 G 1 2 .Holds
Suppose W q ( g 1 , g 2 , P T ) holds, W q ( g 1 , g 2 + 1 , [ P T , T M + 1 ] ) = T M + 1 S o u r c e 1 + T M + 1 S o u r c e 2
= W q ( g 1 , g 2 , P T ) G 1 T M + 1 + g 1 + W q ( g 1 1 , g 2 + 1 , P T ) G 1 T M + 1 ( g 2 + 1 ) q g 2 + 1
= ( i = 1 M G 1 T i ) G g 1 , g 2 M G 1 T M + 1 + g 1 + ( i = 1 M G 1 T i ) G g 1 1 , g 2 + 1 M G 1 T M + 1 ( g 2 + 1 ) q g 2 + 1
Just need to prove: G g 1 M G 1 T M + 1 + g 1 + G g 1 1 M G 1 T M + 1 ( M g 1 + 1 ) q M g 1 + 1 = G 1 T M + 1 G g 1 M + 1
( R i g h t s i d e ) × ( q M g 1 + 1 1 ) G g 1 M = ( q T M + 1 1 + . . . + q + 1 ) ( q M + 1 1 ) = ( 1 )
( L e f t s i d e ) × ( q M g 1 + 1 1 ) G g 1 M = ( q M g 1 + 1 1 ) G 1 T M + 1 + g 1 + ( q g 1 1 ) G 1 T M + 1 ( M g 1 + 1 ) q M g 1 + 1
= ( q M g 1 + 1 1 ) ( q T M + 1 + g 1 1 + . . . + q + 1 ) + ( q g 1 1 ) ( q T M + 1 1 + . . . + q M g 1 + 2 + q M g 1 + 1 ) = ( 2 )
(1)-(2)=0→It’s holds when p=2.
W q ( g 1 , g 2 + g 3 , [ T 1 , T 2 . . . T M ] ) = ( i = 1 M G 1 T i ) G g 1 , g 2 + g 3 g 1 + g 2 + g 3
Every product has g 2 + g 3 factors come from S o u r c e 2 ,divide them to g 2 × S o u r c e 2 + g 3 × S o u r c e 3
g 1 -factors are invariant, ( g 2 + g 3 )-factors are variant.
( v a r i a n t f a c t o r s ) = W q ( g 2 , g 3 , [ X 1 , X 2 . . . X g 2 + g 3 ] ) = i = 1 g 2 + g 3 G 1 X i G g 2 , g 3 g 2 + g 3
W q ( g 1 , g 2 , g 3 , [ T 1 , T 2 . . . T M ] ) = ( i = 1 M G 1 T i ) G g 1 , g 2 + g 3 g 1 + g 2 + g 3 G g 2 , g 3 g 2 + g 3 = ( i = 1 M G 1 T i ) G g 1 , g 2 , g 3 g 1 + g 2 + g 3
e g : W q ( 1 , 2 , [ 1 , 2 , 3 ] ) = S 1 S 2 S 2 + S 2 S 1 S 2 + S 2 S 2 S 1 = G 1 1 G 1 3 G 1 4 + G 1 1 G 1 1 q G 1 4 + G 1 1 G 1 2 G 1 1 q 2 = G 1 1 G 1 2 G 1 3 G 1 , 2 3
e g : W h e n W q ( 1 , 2 , [ 1 , 2 , 3 ] ) c h a n g e s t o W q ( 1 , 1 , 1 , [ 1 , 2 , 3 ] )
= S 1 S 2 S 3 + S 1 S 3 S 2 + S 2 S 1 S 3 + S 3 S 1 S 2 + S 2 S 3 S 1 + S 3 S 2 S 1
= G 1 1 { G 1 3 G 1 5 + G 1 3 G 1 3 q } + G 1 1 q { G 1 1 G 1 5 + G 1 1 G 1 3 q } + G 1 1 q 2 { G 1 1 G 1 3 + G 1 1 G 1 1 q }
= G 1 1 { G 1 3 G 1 4 G 1 , 1 2 } + G 1 1 q { G 1 1 G 1 4 G 1 , 1 2 } + G 1 1 q 2 { G 1 1 G 1 2 G 1 , 1 2 } = G 1 1 G 1 2 G 1 3 G 1 , 2 3 × G 1 , 1 2 = G 1 1 G 1 2 G 1 3 G 1 , 1 , 1 3

References

  1. Peng, Ji. Redefining the shape of numbers and three forms of calculation. Open Access Library Journal 2021, 8, 1–22. [Google Scholar] [CrossRef]
  2. Peng, Ji. Further study of the shape of the numbers and more calculation formulas. Open Access Library Journal 2021, 8, 1–27. [Google Scholar] [CrossRef]
  3. Peng, Ji. Application and popularization of formal calculation. Open Access Library Journal 2022, 9, 1–21. [Google Scholar] [CrossRef]
  4. QI Deng-Ji. A new explicit expression for the eulerian numbers. Journal of Qingdao University of Science and Technology: Natural Science Edition 2012, 33, 4.
  5. QI Deng-Ji. Associated stirling number of the first kind. Journal of Qingdao University of Science and Technology: Natural Science Edition 2015, 36, 5.
  6. P. Karasik. Butler.S. A note on nested sums. Journal of Integer Sequences 2010, 13, 4.
  7. Jonathan, I. Hall. Tingyao Xiong, Hung-Ping Tsao. General eulerian numbers and eulerian polynomials. Hindawi Publishing Corporation Journal of Mathematics 2015, 18. [Google Scholar]
  8. Alfred Wünsche. Generalized eulerian numbers. Advances in Pure Mathematics 2018, 8, 335–361. [CrossRef]
  9. P.A. MacMahon. The indices of permutations and the derivation therefrom of functions of a single variable associated with the permutations of any assemblage of objects. American Journal of Mathematics 1913, 35, 281–322. [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated