Submitted:
07 May 2023
Posted:
09 May 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Rationale
3. The Aim and Objectives
- To formulate and optimize apomorphine and quetiapine combination therapy.
- To evaluate the pharmaceutical parameters of the developed formulation.
- To evaluate the pharmacological and neuroprotective properties of the formulation in a Parkinson’s disease rat model [5].
4. Materials and Methods
- A.
- Chemicals and reagents:
- B.
- Formulation development:
- C.
- Drug content and dissolution studies:
- D.
- Stability studies:
5. Drugs Selection and Formulation
5.1. Pharmaceutical Parameters [10]
- A.
- Particle size distribution:
- B.
- pH determination:
- C.
- Viscosity measurement:
- D.
- Disintegration time:
5.2. Pharmaceutical Methods [11]
- A.
- Fourier transform infrared (FTIR) spectroscopy:
- B.
- Differential scanning calorimetry (DSC):
- C.
- X-ray powder diffraction (XRD):
- D.
- Scanning electron microscopy (SEM):
5.3. Neurological Parameters [12]
- A.
- Rotarod test:
- B.
- Grid walking test:
- C.
- Apomorphine-induced rotational behaviour:
6. Neuroprotective Effects Evaluation [12]
7. Pharmacological Evaluation [14]
- A.
- Apomorphine-induced rotations:
- B.
- Elevated plus maze test:
- C.
- Catalepsy test:
8. Animal Selection, Animal Group Division, Animal Group Dosing
9. In Vivo Rat Model
10. Development of the Novel Formulation
11. Evaluation of the Novel Formulation
12. Pharmacokinetics Evaluation
1. Absorption:
2. Distribution:
3. Metabolism:
4. Excretion:
13. Efficacy Evaluation
14. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Radaic, A.; Martins-de-Souza, D. The state of the art of nanopsychiatry for schizophrenia diagnostics and treatment. Nanomedicine. 2020, 28, 102222. [Google Scholar] [CrossRef] [PubMed]
- Froelich, A.; Osmałek, T.; Jadach, B.; Puri, V.; Michniak-Kohn, B. Microemulsion-based media in nose-to-brain drug delivery. Pharmaceutics. 2021, 13, 201. [Google Scholar] [CrossRef] [PubMed]
- Hagell, P.; Höglund, A.; Hellqvist, C.; Johansson, E.L.; Löwed, B.; Sjöström, A.C.; et al. Apomorphine formulation may influence subcutaneous complications from continuous subcutaneous apomorphine infusion in Parkinson’s disease. J Neurol. 2020, 267, 3411–7. [Google Scholar] [CrossRef] [PubMed]
- Auffret, M.; Drapier, S.; Vérin, M. Management with apomorphine in Parkinson’s disease. In Diagnosis and Management in Parkinson’s Disease; Elsevier, 2020; pp. 461–75. [Google Scholar]
- Cai, Y.; Reddy, R.D.; Varshney, V.; Chakravarthy, K.V. Spinal cord stimulation in Parkinson’s disease: a review of the preclinical and clinical data and future prospects. Bioelectron Med. 2020, 6, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Agbo, F.; Isaacson, S.H.; Gil, R.; Chiu, Y.Y.; Brantley, S.J.; Bhargava, P.; et al. Pharmacokinetics and comparative bioavailability of apomorphine sublingual film and subcutaneous apomorphine formulations in patients with parkinson’s disease and “OFF” episodes: results of a randomized, three-way crossover, open-label study. Neurol Ther. 2021, 10, 693–709. [Google Scholar] [CrossRef]
- Cesaroni, V.; Blandini, F.; Cerri, S. Dyskinesia and Parkinson’s disease: animal model, drug targets, and agents in preclinical testing. Expert Opin Ther Targets. 2022, 1–15. [Google Scholar] [CrossRef]
- Lindestam Arlehamn, C.S.; Dhanwani, R.; Pham, J.; Kuan, R.; Frazier, A.; Rezende Dutra, J.; et al. α-Synuclein-specific T cell reactivity is associated with preclinical and early Parkinson’s disease. Nat Commun. 2020, 11, 1875. [Google Scholar] [CrossRef]
- Pires, P.C.; Paiva-Santos, A.C.; Veiga, F. Antipsychotics-Loaded Nanometric Emulsions for Brain Delivery. Pharmaceutics 2022, 14, 2174, s Note: MDPI stays neutral with regard to jurisdictional claims in published …; 2022. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Nguyen, T.T.D.; Tran, N.M.A.; Van Vo, G. Lipid-based nanocarriers via nose-to-brain pathway for central nervous system disorders. Neurochem Res. 2022, 1–22. [Google Scholar] [CrossRef]
- Pires, P.C.; Paiva-Santos, A.C.; Veiga, F. Antipsychotics-Loaded Nanometric Emulsions for Brain Delivery. Pharmaceutics. 2022, 14, 2174. [Google Scholar] [CrossRef]
- Macaulay, K. Sublingual apomorphine therapy as an alternative to complex continuous infusion pumps in advanced Parkinson’s disease treatment: a district nurse-led intervention. Br J Community Nurs. 2022, 27, 328–35. [Google Scholar] [CrossRef] [PubMed]
- Bandopadhyay, R.; Mishra, N.; Rana, R.; Kaur, G.; Ghoneim, M.M.; Alshehri, S.; et al. Molecular mechanisms and therapeutic strategies for levodopa-induced dyskinesia in Parkinson’s disease: a perspective through preclinical and clinical evidence. Front Pharmacol. 2022, 13. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, R.B.; Funguetto-Ribeiro, A.C.; Maciel, T.R.; Fonseca, D.P.; Favarin, F.R.; Nogueira-Librelotto, D.R.; et al. In vivo and in vitro per se effect evaluation of Polycaprolactone and Eudragit® RS100-based nanoparticles. Biomedicine & Pharmacotherapy. 2022, 153, 113410. [Google Scholar]
- Jennings, D.; Huntwork-Rodriguez, S.; Henry, A.G.; Sasaki, J.C.; Meisner, R.; Diaz, D.; et al. Preclinical and clinical evaluation of the LRRK2 inhibitor DNL201 for Parkinson’s disease. Sci Transl Med. 2022, 14, eabj2658. [Google Scholar] [CrossRef] [PubMed]
- Leta, V.; Chaudhuri, K.R.; Milner, O.; Chung-Faye, G.; Metta, V.; Pariante, C.M.; et al. Neurogenic and anti-inflammatory effects of probiotics in Parkinson’s disease: A systematic review of preclinical and clinical evidence. Brain Behav Immun. 2021, 98, 59–73. [Google Scholar] [CrossRef] [PubMed]
- Zylicz, Z. Pharmacological treatment of palliative care patients with Parkinson’s disease. Palliative Medicine in Practice. 2022, 16, 117–22. [Google Scholar] [CrossRef]
- Isaacson, S.H.; Bowling, A.; Zhang, I.; Pappert, E.; Stocchi, F. Investigators C 300 and C 301 S. Motor response with apomorphine sublingual film and levodopa in patients with OFF episodes. Neurodegener Dis Manag. 2022. [Google Scholar]
- Sacristán, H.E.; Serra Fulles, J.A. The Essentials in Parkinson’s Disease. EC Neurology. 2023, 15, 36–67. [Google Scholar]
- Hong, C.T.; Chan, L.; Chen, K.Y.; Lee, H.H.; Huang, L.K.; Yang, Y.C.S.H.; et al. Rifaximin Modifies Gut Microbiota and Attenuates Inflammation in Parkinson’s Disease: Preclinical and Clinical Studies. Cells. 2022, 11, 3468. [Google Scholar] [CrossRef]
- Nim, S.; O’Hara, D.M.; Corbi-Verge, C.; Perez-Riba, A.; Fujisawa, K.; Kapadia, M.; et al. Disrupting the α-synuclein-ESCRT interaction with a peptide inhibitor mitigates neurodegeneration in preclinical models of Parkinson’s disease. Nat Commun. 2023, 14, 2150. [Google Scholar] [CrossRef]
- Ferreira, M.D.; Duarte, J.; Veiga, F.; Paiva-Santos, A.C.; Pires, P.C. Nanosystems for Brain Targeting of Antipsychotic Drugs: An Update on the Most Promising Nanocarriers for Increased Bioavailability and Therapeutic Efficacy. Pharmaceutics. 2023, 15, 678. [Google Scholar] [CrossRef] [PubMed]
- Tall, P.; Qamar, M.A.; Batzu, L.; Leta, V.; Falup-Pecurariu, C.; Ray Chaudhuri, K. Non-oral continuous drug delivery based therapies and sleep dysfunction in Parkinson’s disease. J Neural Transm. 2023, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Quintino, L.; Gubinelli, F.; Sarauskyte, L.; Arvidsson, E.; Davidsson, M.; Lundberg, C.; et al. Automated quantification of neuronal swellings in a preclinical rodent model of Parkinson’s disease detects region-specific changes in pathology. J Neurosci Methods. 2022, 378, 109640. [Google Scholar] [CrossRef] [PubMed]
- Goyal, A.; Gopika, S.; Kumar, A.; Garabadu, D. A Comprehensive Review on Preclinical Evidence-based Neuroprotective Potential of Bacopa monnieri against Parkinson’s Disease. Curr Drug Targets. 2022, 23, 889–901. [Google Scholar] [CrossRef] [PubMed]
- Fabbri, M.; Barbosa, R.; Rascol, O. Off-time Treatment Options for Parkinson’s Disease. Neurol Ther. 2023, 1–34. [Google Scholar]
- Rosenstein, N.A.; Johnson, J.A.; Kirchofer, K.S. Ropinirole has similar efficacy to apomorphine for induction of emesis and removal of foreign and toxic gastric material in dogs. J Am Vet Med Assoc. 2023, 1, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Calabresi, P.; Mechelli, A.; Natale, G.; Volpicelli-Daley, L.; Di Lazzaro, G.; Ghiglieri, V. Alpha-synuclein in Parkinson’s disease and other synucleinopathies: from overt neurodegeneration back to early synaptic dysfunction. Cell Death Dis. 2023, 14, 176. [Google Scholar] [CrossRef]
- Brendza, R.; Gao, X.; Stark, K.L.; Lin, H.; Lee, S.H.; Hu, C.; et al. Anti-α-synuclein c-terminal antibodies block PFF uptake and accumulation of phospho-synuclein in preclinical models of Parkinson’s disease. Neurobiol Dis. 2023, 177, 105969. [Google Scholar] [CrossRef]
- Katunina, E.A.; Blokhin, V.; Nodel, M.R.; Pavlova, E.N.; Kalinkin, A.L.; Kucheryanu, V.G.; et al. Searching for Biomarkers in the Blood of Patients at Risk of Developing Parkinson’s Disease at the Prodromal Stage. Int J Mol Sci. 2023, 24, 1842. [Google Scholar] [CrossRef]
- Espay, A.J.; Okun, M.S. Abandoning the proteinopathy paradigm in parkinson disease. JAMA Neurol. 2023, 80, 123–4. [Google Scholar] [CrossRef]
- Skidmore, S.; Barker, R.A. Challenges in the clinical advancement of cell therapies for Parkinson’s disease. Nat Biomed Eng. 2023, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Sun, Y.; Yu, W.; Tao, Y.; Xia, W.; Liu, Y.; et al. Conformational change of α-synuclein fibrils in cerebrospinal fluid from different clinical phases of Parkinson’s disease. Structure. 2023, 31, 78–87. [Google Scholar] [CrossRef] [PubMed]
- Stocchi, F.; Peckham, E.L.; De Pandis, M.F.; Sciarappa, K.; Kleiman, R.; Agbo, F.; et al. A Randomized Thorough QT Study of Apomorphine Sublingual Film in Patients With Parkinson’s Disease. Clin Pharmacol Drug Dev. 2022, 11, 1068–77. [Google Scholar] [CrossRef] [PubMed]
- Bankiewicz, K.S.; Sanchez-Pernaute, R.; Oiwa, Y.; Kohutnicka, M.; Cummins, A.; Eberling, J. Preclinical models of Parkinson’s disease. Curr Protoc Neurosci. 1999, 9, 4–9. [Google Scholar] [CrossRef] [PubMed]
- Jin, H.; Kanthasamy, A.; Ghosh, A.; Anantharam, V.; Kalyanaraman, B.; Kanthasamy, A.G. Mitochondria-targeted antioxidants for treatment of Parkinson’s disease: preclinical and clinical outcomes. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease. 2014, 1842, 1282–94. [Google Scholar] [CrossRef] [PubMed]
- Kalia L V, Kalia SK, Lang AE. Disease-modifying strategies for Parkinson’s disease. Movement Disorders. 2015, 30, 1442–50. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Gao, Y.; Zhao, Z.; Rodrigues, D.; Tanner, E.E.L.; Ibsen, K.; et al. A deep eutectic-based, self-emulsifying subcutaneous depot system for apomorphine therapy in Parkinson’s disease. Proceedings of the National Academy of Sciences. 2022, 119, e2110450119. [Google Scholar] [CrossRef] [PubMed]
- Hauser, R.A.; Ondo, W.G.; Zhang, I.; Bowling, A.; Navia, B.; Pappert, E.; et al. Dose Optimization of Apomorphine Sublingual Film for OFF Episodes in Parkinson’s Disease: Is the Prophylactic Use of an Antiemetic Necessary? J Parkinsons Dis. (Preprint):1–12.
- Thijssen, E.; Den Heijer, J.M.; Puibert, D.; Van Brummelen, E.M.J.; Naranda, T.; Groeneveld, G.J. Safety and pharmacokinetics of multiple dosing with inhalable apomorphine (AZ-009), and its efficacy in a randomized crossover study in Parkinson’s disease patients. Parkinsonism Relat Disord. 2022, 97, 84–90. [Google Scholar] [CrossRef]
- Castillo-Torres, S.A.; Lees, A.J.; Merello, M. Intermittent apomorphine use for off period rescue in Parkinson’s Disease: a pragmatic review of over three decades of clinical experience. Mov Disord Clin Pract. 2023, 10, 190–208. [Google Scholar] [CrossRef]
- Martin, V.; Knecht, C.; Duerlinger, S.; Richter, B.; Ladinig, A. A Pig Model to Assess Skin Lesions after Apomorphine Application. Biomedicines. 2023, 11, 1244. [Google Scholar] [CrossRef]
- Borkar, N.; Holm, R.; Yang, M.; Müllertz, A.; Mu, H. In vivo evaluation of lipid-based formulations for oral delivery of apomorphine and its diester prodrugs. Int J Pharm. 2016, 513, 211–7. [Google Scholar] [CrossRef] [PubMed]
- Koller, W.; Stacy, M. Other formulations and future considerations for apomorphine for subcutaneous injection therapy. Neurology. 2004, 62, S22–6. [Google Scholar] [CrossRef] [PubMed]
- Müller, T. An evaluation of subcutaneous apomorphine for the treatment of Parkinson’s disease. Expert Opin Pharmacother. 2020, 21, 1659–65. [Google Scholar] [CrossRef] [PubMed]
- Mohee, A.; Bretsztajn, L.; Eardley, I. The evaluation of apomorphine for the treatment of erectile dysfunction. Expert Opin Drug Metab Toxicol. 2012, 8, 1447–53. [Google Scholar] [CrossRef]
- Jacobs, D.M.; Marder, K.; Cote, L.J.; Sano, M.; Stern, Y.; Mayeux, R. Neuropsychological characteristics of preclinical dementia in Parkinson’s disease. Neurology. 1995, 45, 1691–6. [Google Scholar] [CrossRef]
- Solari, N.; Bonito-Oliva, A.; Fisone, G.; Brambilla, R. Understanding cognitive deficits in Parkinson’s disease: lessons from preclinical animal models. Learning & Memory. 2013, 20, 592–600. [Google Scholar]
- Meissner, W.G.; Frasier, M.; Gasser, T.; Goetz, C.G.; Lozano, A.; Piccini, P.; et al. Priorities in Parkinson’s disease research. Nat Rev Drug Discov. 2011, 10, 377–93. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
