Altmetrics
Downloads
114
Views
49
Comments
0
A peer-reviewed article of this preprint also exists.
† These authors contributed equally to this work.
This version is not peer-reviewed
Submitted:
09 May 2023
Posted:
10 May 2023
You are already at the latest version
Type | 2017 | 2018 | 2019 | 2020 | 2021 | |
---|---|---|---|---|---|---|
Classical swine fever | Cases | 925 | 2277 | 101 | 161 | 43 |
Deaths | 312 | 1299 | 50 | 58 | 22 | |
Cullings | 42 | 3669 | 179 | 269 | 18 | |
Porcine reproductive and respiratory syndrome | Cases | 625 | 1033 | 3576 | 351 | 2267 |
Deaths | 323 | 526 | 2099 | 128 | 644 | |
Cullings | 0 | 822 | 1567 | 121 | 56 | |
Swine erysipelas | Cases | 11299 | 10087 | 3162 | 2125 | 2708 |
Deaths | 2812 | 3176 | 884 | 393 | 495 | |
Cullings | 30 | 2040 | 445 | 218 | 221 | |
Swine pasteurellosis | Cases | 18897 | 14948 | 10572 | 9491 | 41123 |
Deaths | 3923 | 3335 | 3991 | 2821 | 5057 | |
Cullings | 51 | 2431 | 1726 | 1467 | 4225 | |
African swine fever | Cases | 0 | 8127 | 12192 | 1249 | 1124 |
Deaths | 0 | 5706 | 8104 | 978 | 1008 | |
Cullings | 0 | 804248 | 280888 | 12156 | 2443 | |
Foot and mouth disease | Cases | 67 | 388 | 0 | 40 | 4 |
Deaths | 0 | 2 | 0 | 1 | 4 | |
Cullings | 144 | 2302 | 0 | 248 | 29 |
Type | Indicator | Unit | Calculation method |
---|---|---|---|
Hazard | Morbidity rate | % | Ratio of cases to pig inventory due to the epidemic |
Mortality rate | % | Ratio of deaths to cases due to the epidemic | |
Culling rate | % | Ratio of cullings to pig inventory due to the epidemic | |
Vulnerability | Breeding density | Heads/ha | Ratio of pig inventory to grain cultivation area |
Industrial structure | % | Ratio of pig industry output to total agricultural output | |
Prevention and control foundation | Heads/person | Ratio of pig inventory to the number of staff in the township animal husbandry and veterinary station |
Province | Risk | Hazard (%) | Vulnerability (heads/ha, %, heads/person) | Risks properties |
||||||
---|---|---|---|---|---|---|---|---|---|---|
Hazard | Morbidity rate | Mortality rate | Culling rate | Vulnerability | Breeding density | Industrial structure | Prevention and control foundation | |||
Beijing | 0.682 | 0.799 | 0.011 | 57.589 | 1.711 | 0.435 | 9.312 | 7.146 | 665.138 | High |
Tianjin | 0.245 | 0.216 | 0.008 | 48.812 | 0.271 | 0.306 | 4.770 | 9.643 | 3564.858 | Medium |
Hebei | 0.104 | 0.052 | 0.001 | 44.684 | 0.008 | 0.214 | 2.666 | 11.241 | 3619.070 | Lower |
Shanxi | 0.163 | 0.169 | 0.004 | 62.037 | 0.205 | 0.148 | 1.682 | 9.254 | 1850.031 | Lower |
Inner Mongolia | 0.125 | 0.127 | 0.002 | 86.695 | 0.040 | 0.122 | 0.722 | 4.973 | 1091.762 | Lower |
Liaoning | 0.337 | 0.361 | 0.006 | 79.015 | 0.607 | 0.286 | 3.515 | 7.948 | 4311.222 | Higher |
Jilin | 0.112 | 0.109 | 0.001 | 94.091 | 0.008 | 0.118 | 1.546 | 12.988 | 1880.681 | Lower |
Heilongjiang | 0.210 | 0.239 | 0.011 | 75.542 | 0.191 | 0.147 | 0.933 | 8.784 | 2933.775 | Medium |
Shanghai | 0.260 | 0.178 | 0.013 | 32.667 | 0.119 | 0.435 | 6.905 | 8.685 | 5227.565 | Medium |
Jiangsu | 0.181 | 0.159 | 0.007 | 42.542 | 0.163 | 0.227 | 2.361 | 6.062 | 3178.426 | Lower |
Zhejiang | 0.268 | 0.188 | 0.016 | 40.561 | 0.053 | 0.438 | 5.389 | 6.182 | 7218.300 | Medium |
Anhui | 0.143 | 0.095 | 0.003 | 47.968 | 0.065 | 0.244 | 1.809 | 13.809 | 7132.609 | Lower |
Fujian | 0.263 | 0.120 | 0.003 | 31.824 | 0.192 | 0.566 | 9.852 | 6.784 | 5339.400 | Medium |
Jiangxi | 0.268 | 0.266 | 0.031 | 24.120 | 0.011 | 0.271 | 3.871 | 11.822 | 4223.106 | Medium |
Shandong | 0.097 | 0.006 | 0.000 | 11.930 | 0.004 | 0.289 | 3.329 | 9.222 | 5167.191 | Low |
Henan | 0.167 | 0.052 | 0.001 | 42.100 | 0.009 | 0.412 | 3.646 | 11.618 | 10664.556 | Lower |
Hubei | 0.172 | 0.109 | 0.011 | 19.854 | 0.023 | 0.305 | 4.685 | 13.005 | 4659.298 | Lower |
Hunan | 0.165 | 0.074 | 0.004 | 22.738 | 0.060 | 0.358 | 7.447 | 19.646 | 4234.683 | Lower |
Guangdong | 0.159 | 0.017 | 0.001 | 7.127 | 0.027 | 0.460 | 8.356 | 9.164 | 3984.721 | Lower |
Guangxi | 0.257 | 0.170 | 0.015 | 31.939 | 0.061 | 0.439 | 7.550 | 9.288 | 4472.878 | Medium |
Hainan | 0.367 | 0.086 | 0.004 | 48.855 | 0.010 | 0.962 | 10.731 | 6.892 | 21086.396 | Higher |
Chongqing | 0.234 | 0.218 | 0.021 | 44.552 | 0.030 | 0.269 | 5.420 | 13.460 | 1967.587 | Medium |
Sichuan | 0.176 | 0.118 | 0.009 | 34.724 | 0.041 | 0.300 | 6.116 | 14.810 | 2537.777 | Lower |
Guizhou | 0.141 | 0.071 | 0.002 | 47.281 | 0.022 | 0.289 | 5.047 | 11.799 | 2991.554 | Lower |
Yunnan | 0.190 | 0.105 | 0.008 | 38.250 | 0.009 | 0.370 | 6.924 | 16.610 | 4722.945 | Lower |
Tibet | 0.282 | 0.329 | 0.020 | 20.625 | 0.415 | 0.183 | 2.202 | 1.402 | 136.941 | Medium |
Shaanxi | 0.165 | 0.140 | 0.005 | 43.802 | 0.162 | 0.219 | 2.777 | 8.630 | 2868.769 | Lower |
Gansu | 0.160 | 0.153 | 0.010 | 53.074 | 0.055 | 0.174 | 2.092 | 5.427 | 1123.462 | Lower |
Qinghai | 0.248 | 0.281 | 0.021 | 89.753 | 0.042 | 0.178 | 2.360 | 4.014 | 434.220 | Medium |
Ningxia | 0.118 | 0.104 | 0.003 | 61.702 | 0.047 | 0.149 | 1.130 | 3.150 | 1031.313 | Lower |
Xinjiang | 0.170 | 0.176 | 0.005 | 42.524 | 0.246 | 0.157 | 1.521 | 2.798 | 571.617 | Lower |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 MDPI (Basel, Switzerland) unless otherwise stated