Submitted:
11 May 2023
Posted:
12 May 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
3. Results
3.1. Environmental Noise Study
3.2. Acoustic analysis of Intelligibility
3.2.1. Objective analysis
3.2.2. Subjective Analysis
3.2.3. Effects of Psychoacoustic Parameters
4. Discussion
5. Conclusions
6. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Seddigh A, Berntson E, Jönsson F, Danielson CB, Westerlund H. The effect of noise absorption variation in open-plan of-fices: A field study with a cross-over design. Journal of Environmental Psychology [Internet]. 2015 Dec 1; 44:34–44). [CrossRef]
- Patel R. Architectural Acoustics: A guide to integrated thinking. Routledge; 2020. (p. 305).
- Isbert AC. Diseño acústico de espacios arquitectónicos. Universitat Politècnica de Catalunya. Iniciativa Digital Politècnica; 2004. (p. 436).
- Jahncke H. Open-plan office noise: The susceptibility and suitability of different cognitive tasks for work in the presence of irrelevant speech. Noise and Health [Internet]. 2012 Jan 11; 14(61):315. [CrossRef]
- Jones D, J. Macken W. Auditory Babble and Cognitive Efficiency: Role of Number of Voices and Their Location. Journal of Experimental Psychology: Applied. 1995 Sep 1; 1:216–26. [CrossRef]
- Morrison RL, Macky KA. The demands and resources arising from shared office spaces. Applied Ergonomics [Internet]. 2017 Apr 1; 60:103–15. [CrossRef]
- Haapakangas A, Hallman DM, Mathiassen SE, Jahncke H. Self-rated productivity and employee well-being in activi-ty-based offices: The role of environmental perceptions and workspace use. Building and Environment [Internet]. 2018 Nov 1; 145:115–24. [CrossRef]
- Acun V, Yilmazer S. A grounded theory approach to investigate the perceived soundscape of open-plan offices. Applied Acoustics [Internet]. 2018 Feb 1; 131:28–37. [CrossRef]
- Yadav M, Kim J, Cabrera D, de Dear R. Auditory distraction in open-plan office environments: The effect of multi-talker acoustics. Applied Acoustics [Internet]. 2017 Nov 1; 126:68–80. [CrossRef]
- Renz T, Leistner P, Liebl A. Auditory distraction by speech: Can a babble masker restore working memory performance and subjective perception to baseline? Applied Acoustics [Internet]. 2018 Aug 1; 137:151–60. [CrossRef]
- Mama Y, Fostick L, Icht M. The impact of different background noises on the Production Effect. Acta Psychologica [Internet]. 2018 Apr 1; 185:235–42. [CrossRef]
- Braat-Eggen E, Poll MK v. d., Hornikx M, Kohlrausch A. Auditory distraction in open-plan study environments: Effects of background speech and reverberation time on a collaboration task. Applied Acoustics [Internet]. 2019 Nov 1; 154:148–60. [CrossRef]
- Yadav M, Cabrera D. Two simultaneous talkers distract more than one in simulated multi-talker environments, regardless of overall sound levels typical of open-plan offices. Applied Acoustics [Internet]. 2019 May 1; 148:46–54. [CrossRef]
- Golmohammadi R, Aliabadi M, Nezami T. An Experimental Study of Acoustic Comfort in Open Space Banks Based on Speech Intelligibility and Noise Annoyance Measures. Archives of Acoustics [Internet]. 2017; Vol. 42, No. 2. [CrossRef]
- Sommerhoff J, Rosas C. Evaluación de la inteligibilidad del habla en español. Estudios filológicos [Internet]. 2007 Sep 1; (42):215–25. [CrossRef]
- Tang Y, Arnold C, Cox TJ. A Study on the Relationship between the Intelligibility and Quality of Algorithmically-Modified Speech for Normal Hearing Listeners. Journal of Otorhinolaryngology, Hearing and Balance Medicine [Internet]. 2018 Jun; 1(1):5. [CrossRef]
- Hidalgo J, Sommerhoff J, Rosas C. Elaboración de un corpus de logatomos fonéticamente balanceados para la evaluación de la inteligibilidad de la palabra en español. Síntesis Tecnológica [Internet]. 2017 Nov 16; 4(2):37–49. [CrossRef]
- ISO STANDARDS. ISO 3382-3:2012 [Internet]. ISO. 2017. Available from: https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/04/65/46520.html.
- AlOmani, A., El-Rayes, K. & Altuwaim, A. Optimizing the use of acoustic materials in office buildings. Sci Rep 11, 20652 (2021). [CrossRef]
- Steeneken HJM, Houtgast T. Phoneme-group specific octave-band weights in predicting speech intelligibility. Speech Communication [Internet]. 2002 Nov 1; 38(3):399–411. [CrossRef]
- Chevret P. Release from masking of speech intelligibility due to fluctuating ambient noise in open-plan offices. Applied Acoustics [Internet]. 2016 Jan 1; 101:156–67. [CrossRef]
- Brocolini L, Parizet E, Chevret P. Effect of masking noise on cognitive performance and annoyance in open-plan offices. Applied Acoustics [Internet]. 2016 Dec 15; 114:44–55. [CrossRef]
- Roskams M, Haynes B. An experience sampling approach to the workplace environment survey. Facilities [Internet]. 2019 Jan 1; 38(1/2):72–85. [CrossRef]
- Braat-Eggen E, Reinten J, Hornikx M, Kohlrausch A. The influence of background speech on a writing task in an open-plan study environment. Building and Environment [Internet]. 2020 Feb 1; 169:106586. [CrossRef]
- NOM-011-STPS-2001, Condiciones de seguridad e higiene en los centros de trabajo donde se genere ruido [Internet]. 2002. Available from: http://asinom.stps.gob.mx:8145/upload/noms/Nom-011.pdf.
- Cabrera D, Yadav M, Protheroe D. Critical methodological assessment of the distraction distance used for evaluating room acoustic quality of open-plan offices. Applied Acoustics [Internet]. 2018 Nov 1; 140:132–42. [CrossRef]
- Hongisto V, Varjo J, Leppämäki H, Oliva D, Hyönä J. Work performance in private office rooms: The effects of sound insulation and sound masking. Building and Environment [Internet]. 2016 Aug 1; 104:263–74. [CrossRef]
- Sendra JJ. El problema de las condiciones acústicas en las Iglesias: principios y propuestas para la rehabilitación. Universidad de Sevilla; 1997. 148 p.
- Howard D, Angus J. Acoustics and Psychoacoustics. CRC Press; 2013. 497 p.
- Trocka-Leszczynska E, Jablonska J. Contemporary architectural design of offices in respect of acoustics. Applied Acoustics [Internet]. 2021 Jan 1; 171:107541. [CrossRef]
- Nowoświat A, Olechowska M. Experimental Validation of the Model of Reverberation Time Prediction in a Room. Buildings [Internet]. 2022 Mar 1; 12(3):347. [CrossRef]
- Park CJ, Haan CH. Initial Study on the Reverberation Time Standard for the Korean Middle and High School Classrooms Using Speech Intelligibility Tests. Buildings [Internet]. 2021 Aug; 11(8):354. [CrossRef]
- Wenmaekers R. Spatial decay rate of speech in open-plan offices: the use of D2,S and Lp,A,S,4m as building requirements. 2015;6.
- Hongisto V, Keränen J. Comfort Distance—A Single-Number Quantity Describing Spatial Attenuation in Open-Plan Offices. Applied Sciences [Internet]. 2021 Jan; 11(10):4596. [CrossRef]
- Torre IG, Luque B, Lacasa L, Kello CT, Hernández-Fernández A. On the physical origin of linguistic laws and lognormality in speech. R Soc open sci [Internet]. 2019 Aug; 6(8):191023. [CrossRef]
- Torre I, Lacasa L, Kello C, Luque B, Hernández-Fernández A. Log-normal distribution in acoustic linguistic units. 2019.
- Molesworth BRC, Burgess M, Wilkinson J. Can babble and broadband noise present in air transportation induce learned helplessness? A laboratory-based study with university students. Applied Acoustics [Internet]. 2020 Jan 1; 157:107016. [CrossRef]
- Zoghbi-Manrique-de-Lara P, Sharifiatashgah M. An Affective Events Model of the Influence of the Physical Work Environment on Interpersonal Citizenship Behavior. Revista de Psicologia del Trabajo y de Las Organizaciones [Internet]. 2020 Mar 1; 36(1):27–37. [CrossRef]
- Midha S, Maior HA, Wilson ML, Sharples S. Measuring Mental Workload Variations in Office Work Tasks using fNIRS. International Journal of Human-Computer Studies [Internet]. 2021 Mar 1; 147:102580. [CrossRef]
- Radun J, Maula H, Rajala V, Scheinin M, Hongisto V. Speech is special: The stress effects of speech, noise, and silence during tasks requiring concentration. Indoor Air [Internet]. 2021; 31(1):264–74. [CrossRef]
- Altomonte S, Allen J, Bluyssen P, Brager G, Heschong L, Loder A, et al. Ten questions concerning well-being in the built environment. Building and Environment [Internet]. 2020 May 13; 106949. [CrossRef]
- Aries MBC, Beute F, Fischl G. Assessment protocol and effects of two dynamic light patterns on human well-being and performance in a simulated and operational office environment. Journal of Environmental Psychology [Internet]. 2020 Jun 1; 69:101409. [CrossRef]
- Golmohammadi R, Darvishi E, Faradmal J, Poorolajal J, Aliabadi M. Attention and short-term memory during occupational noise exposure considering task difficulty. Applied Acoustics [Internet]. 2020 Jan 15; 158:107065. [CrossRef]
- Glean AA, Gatland SD, Elzeyadi I. Visualization of Acoustic Comfort in an Open-Plan, High-Performance Glass Building. Buildings [Internet]. 2022 Mar; 12(3):338–1998. [CrossRef]



| Speech Intelligibility | Speech Transmission Index RASTI | Percentage Articulation Loss of Consonants (%Alcons) |
|---|---|---|
| Bad | 0 – 0.30 | 27 – 46.5 |
| Poor | 0.30 – 0.45 | 12 – 24.2 |
| Fair | 0.45 – 0.60 | 5.3 – 11. 4 |
| Good | 0.60 – 0.75 | 1.6 – 4.8 |
| Excellent | 0.75 – 1 | 0 – 1. 4 |
| Factors | STI effects | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| Point | SPL Zone | Type of sound | Condition | Type of effect | β Coefficient |
p value | Effect Size (d) | Mean | Stand Desv | Category | |
| ON | S | 0.079 | < 0.001 | 0.19 | Insignificant | 0.71 | 0.144 | Good | |||
| ON | Out area | I | -0.0499 | < 0.001 | 0 | Insignificant | 0.67 | 0.133 | Good | ||
| ON | Both area | I | 0.048 | < 0.001 | 0 | Insignificant | 0.76 | 0.147 | Excellent | ||
| 3 | Stable | ON | Out area | I | -0.1279 | 0.044 | 0.57 | Medium | 0.61 | 0.085 | Good |
| 5 | Changes | S | 0.0692 | 0.029 | -0.56 | Medium | 0.77 | 0.157 | Excellent | ||
| 8 | Changes | ON | I | -0.0673 | 0.034 | -0.06 | Insignificant | 0.66 | 0.152 | Good | |
| Changes | ON | Out area | I | 0.1533 | 0.001 | 0.24 | Small | 0.76 | 0.161 | Excellent | |
| 10 | Changes | ON | Out area | I | -0.109 | 0.015 | 0.6 | Medium | 0.53 | 0.074 | Fair |
| 12 | Stable | S | -0.0924 | 0.004 | 0.56 | Medium | 0.59 | 0.16 | Fair | ||
| 13 | Stable | S | -0.0894 | 0.005 | 0.56 | Medium | 0.59 | 0.181 | Fair | ||
| 16 | Stable | ON | I | -0.0637 | 0.044 | -0.06 | Insignificant | 0.7 | 0.167 | Good | |
| Factors | % ALCons effects | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| Point | SPL Zone | Type of sound | Condition | Type of effect | Coefficient | p value | Effect Size (d) | Mean | Stand Desv | Category | |
| ON | S | -0.4358 | < 0.001 | 1 | Large | 1.84 | 0.52 | Good | |||
| ON | Out area | I | 0.2807 | < 0.001 | 0.41 | Medium | 5.69 | 0.1 | Fair | ||
| ON | Both area | I | -0.2816 | < 0.001 | 1 | Large | 3.24 | 0.7358 | Good | ||
| 3 | Stables | ON | Out area | I | 0.738 | 0.029 | 1 | Large | 6.91 | 0.95 | Fair |
| 5 | Changes | S | -0.381 | 0.024 | 1 | Large | 3.71 | 1.59 | Good | ||
| 8 | Changes | ON | I | 0.37 | 0.028 | 0.82 | Large | 6.82 | 1.88 | Fair | |
| Changes | ON | Out area | I | -0.831 | 0.001 | 1 | Large | 4.09 | 0.8527 | Good | |
| 10 | Changes | S | 0.348 | 0.039 | 0.73 | Medium | 7.96 | 2.82 | Fair | ||
| Changes | ON | Out area | I | 0.556 | 0.02 | 0.93 | Large | 10.59 | 0.98 | Fair | |
| 12 | Stables | S | 0.51 | 0.003 | 1 | Large | 9.78 | 2.12 | Fair | ||
| 13 | Stables | S | 0.455 | 0.007 | 1 | Large | 10.21 | 2.47 | Fair | ||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
