Submitted:
15 May 2023
Posted:
19 May 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Results
2.1. Phenotypic variation of scab resistance in Japanese apricot accessions
2.2. Population structure of Japanese apricot accessions
2.3. GWAS
2.4. Candidate genes
3. Discussion
4. Materials and Methods
4.1. Plant materials
4.2. Evaluation of scab resistance
4.3. Genome-wide genotyping using the target capture method
4.4. Read processing and SNP calling
4.5. Population structure analysis
4.6. GWAS
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Numaguchi, K.; Akagi, T.; Kitamura, Y.; Ishikawa, R.; Ishii, T. Interspecific Introgression and Natural Selection in the Evolution of Japanese Apricot (Prunus Mume). Plant J. 2020, 104, 1551–1567;. https://doi.org/10.1111/tpj.15020. [CrossRef]
- Ministry of Agriculture, Forestry and Fisheries, Japan THE 96th Statistical Yearbook of Ministry of Agriculture, Forestry and Fisheries. https://www.maff.go.jp/e/data/stat/96th/index.html (archived on 5 May 2023).
- Ministry of Agriculture, Forestry and Fisheries, Japan Survey on Production Dynamics of Specialty Fruit Trees; 2023 (Japanese).
- Fisher, E.E. Venturia Carpophila Sp.Nov., the Ascigerous State of the Apricot Freckle Fungus. Trans. Br. Mycol. Soc. 1961, 44, 337-IN4;. https://doi.org/10.1016/S0007-1536(61)80026-0. [CrossRef]
- Chen, C.; Bock, C.H.; Wood, B.W. Draft Genome Sequence of Venturia Carpophila, the Causal Agent of Peach Scab. Stand. Genom. Sci. 2017, 12, 68;. https://doi.org/10.1186/s40793-017-0280-0. [CrossRef]
- Takeda, T.; Hishiike, M.; Numaguchi, K. Occurrence of QoI-Resistant Strains of Cladosporium Carpophilum Causing Japanese Apricot Scab in Wakayama Prefecture. Ann. Rept. Kansai PI. Prot. 2022, 64, 75–80;. https://doi.org/10.4165/kapps.64.75 (Japanese). [CrossRef]
- Mori, M.; Yamana, T. Occurrence of DMI-Resistant Strains of Venturia Inaequalis Causing Apple Scab in Hokkaido. Annual Report of the Society of Plant Protection of North Japan 2022, 2022, 76–80;. https://doi.org/10.11455/kitanihon.2022.73_76. [CrossRef]
- Tao, R.; Habu, T.; Yamane, H.; Sugiura, A.; Iwamoto, K. Molecular Markers for Self-Compatibility in Japanese Apricot (Prunus Mume). HortScience 2000, 35, 1121–1123;. https://doi.org/10.21273/HORTSCI.35.6.1121. [CrossRef]
- McClure, K.A.; Sawler, J.; Gardner, K.M.; Money, D.; Myles, S. Genomics: A Potential Panacea for the Perennial Problem. Am. J. Bot. 2014, 101, 1780–1790;. https://doi.org/10.3732/ajb.1400143. [CrossRef]
- Verde, I.; Jenkins, J.; Dondini, L.; Micali, S.; Pagliarani, G.; Vendramin, E.; Paris, R.; Aramini, V.; Gazza, L.; Rossini, L.; et al. The Peach v2.0 Release: High-Resolution Linkage Mapping and Deep Resequencing Improve Chromosome-Scale Assembly and Contiguity. BMC Genomics 2017, 18, 225;. https://doi.org/10.1186/s12864-017-3606-9. [CrossRef]
- Alexander, D.H.; Novembre, J.; Lange, K. Fast Model-Based Estimation of Ancestry in Unrelated Individuals. Genome Res. 2009, 19, 1655–1664;. https://doi.org/10.1101/gr.094052.109. [CrossRef]
- Browning, B.L.; Zhou, Y.; Browning, S.R. A One-Penny Imputed Genome from Next-Generation Reference Panels. Am. J. Hum. Genet. 2018, 103, 338–348;. https://doi.org/10.1016/j.ajhg.2018.07.015. [CrossRef]
- Bradbury, P.J.; Zhang, Z.; Kroon, D.E.; Casstevens, T.M.; Ramdoss, Y.; Buckler, E.S. TASSEL: Software for Association Mapping of Complex Traits in Diverse Samples. Bioinformatics 2007, 23, 2633–2635;. https://doi.org/10.1093/bioinformatics/btm308. [CrossRef]
- Barrett, J.C.; Fry, B.; Maller, J.; Daly, M.J. Haploview: Analysis and Visualization of LD and Haplotype Maps. Bioinformatics 2005, 21, 263–265;. https://doi.org/10.1093/bioinformatics/bth457. [CrossRef]
- Mega, K.; Tomita, E.; Kitamura, S.; Saito, S.; Mizukami, S. In The grand dictionary of horticulture.; Aoba, T., Ed.; Shogakukan: Tokyo, 1988; pp. 289–300 (Japanese).
- McDonald, B.A.; Stukenbrock, E.H. Rapid Emergence of Pathogens in Agro-Ecosystems: Global Threats to Agricultural Sustainability and Food Security. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 2016, 371, 20160026;. https://doi.org/10.1098/rstb.2016.0026. [CrossRef]
- Papp, D.; Gao, L.; Thapa, R.; Olmstead, D.; Khan, A. Field Apple Scab Susceptibility of a Diverse Malus Germplasm Collection Identifies Potential Sources of Resistance for Apple Breeding. CABI Agric. Biosci. 2020, 1, 16;. https://doi.org/10.1186/s43170-020-00017-4. [CrossRef]
- Kitamura Y.; Takeda T.; Numaguchi K.; Tsuchida Y.; Negoro K.; Hayashi K.; Iwamoto K.; Hishiike M.; Naka K.; Shimazu K. Breeding of scab-resistant Japanese apricot (Prunus mume Sieb. et Zucc.) “Seiko” and evaluation of possibility for fungicide-saving cultivation. Bulletin of the Wakayama Prefectural Experiment Stations of Agriculture, Forestry and Fisheries 2018, 27–35 (Japanese).
- Numaguchi K.; Kitamura Y.; Takeda T.; Shimomura Y.; Tsunaki K.; Kashiwamoto T.; Shimazu K.; Hishiike M.; Iwamoto K.; Negoro K.; et al. Breeding of Japanese apricot (Prunus mume Sieb. et Zucc.) ‘Seishu.’ Bulletin of the Wakayama Prefectural Experiment Stations of Agriculture, Forestry and Fisheries 2021, 73–85 (Japanese).
- Korte, A.; Farlow, A. The Advantages and Limitations of Trait Analysis with GWAS: A Review. Plant Methods 2013, 9, 29;. https://doi.org/10.1186/1746-4811-9-29. [CrossRef]
- Jones, D.A.; Jones, J.D.G. The Role of Leucine-Rich Repeat Proteins in Plant Defences. In Advances in Botanical Research; Andrews, J.H., Tommerup, I.C., Callow, J.A., Eds.; Academic Press, 1997; Vol. 24, pp. 89–167.
- Takahashi, A.; Casais, C.; Ichimura, K.; Shirasu, K. HSP90 Interacts with RAR1 and SGT1 and Is Essential for RPS2-Mediated Disease Resistance in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 2003, 100, 11777–11782;. https://doi.org/10.1073/pnas.2033934100. [CrossRef]
- Weis, C.; Pfeilmeier, S.; Glawischnig, E.; Isono, E.; Pachl, F.; Hahne, H.; Kuster, B.; Eichmann, R.; Hückelhoven, R. Co-Immunoprecipitation-Based Identification of Putative BAX INHIBITOR-1-Interacting Proteins Involved in Cell Death Regulation and Plant–Powdery Mildew Interactions. Mol. Plant Pathol. 2013, 14, 791–802;. https://doi.org/10.1111/mpp.12050. [CrossRef]
- Van Damme, M.; Huibers, R.P.; Elberse, J.; Van den Ackerveken, G. Arabidopsis DMR6 Encodes a Putative 2OG-Fe(II) Oxygenase That Is Defense-Associated but Required for Susceptibility to Downy Mildew. Plant J. 2008, 54, 785–793;. https://doi.org/10.1111/j.1365-313X.2008.03427.x. [CrossRef]
- Xu, C.; Luo, F.; Hochholdinger, F. LOB Domain Proteins: Beyond Lateral Organ Boundaries. Trends Plant Sci. 2016, 21, 159–167;. https://doi.org/10.1016/j.tplants.2015.10.010. [CrossRef]
- Minamikawa, M.F.; Takada, N.; Terakami, S.; Saito, T.; Onogi, A.; Kajiya-Kanegae, H.; Hayashi, T.; Yamamoto, T.; Iwata, H. Genome-Wide Association Study and Genomic Prediction Using Parental and Breeding Populations of Japanese Pear (Pyrus Pyrifolia Nakai). Sci Rep 2018, 8, 11994;. https://doi.org/10.1038/s41598-018-30154-w. [CrossRef]
- Minamikawa, M.F.; Nonaka, K.; Kaminuma, E.; Kajiya-Kanegae, H.; Onogi, A.; Goto, S.; Yoshioka, T.; Imai, A.; Hamada, H.; Hayashi, T.; et al. Genome-Wide Association Study and Genomic Prediction in Citrus: Potential of Genomics-Assisted Breeding for Fruit Quality Traits. Sci Rep 2017, 7, 4721;. https://doi.org/10.1038/s41598-017-05100-x. [CrossRef]
- Roth, M.; Muranty, H.; Di Guardo, M.; Guerra, W.; Patocchi, A.; Costa, F. Genomic Prediction of Fruit Texture and Training Population Optimization towards the Application of Genomic Selection in Apple. Hortic Res 2020, 7, 1–14;. https://doi.org/10.1038/s41438-020-00370-5. [CrossRef]
- Li, Y.-L.; Weng, J.-C.; Hsiao, C.-C.; Chou, M.-T.; Tseng, C.-W.; Hung, J.-H. PEAT: An Intelligent and Efficient Paired-End Sequencing Adapter Trimming Algorithm. BMC Bioinform. 2015, 16, S2;. https://doi.org/10.1186/1471-2105-16-S1-S2. [CrossRef]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A Flexible Trimmer for Illumina Sequence Data. Bioinformatics 2014, 30, 2114–2120;. https://doi.org/10.1093/bioinformatics/btu170. [CrossRef]
- Li, H. Aligning Sequence Reads, Clone Sequences and Assembly Contigs with BWA-MEM. arXiv:1303.3997 [q-bio] 2013.
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R. The Sequence Alignment/Map Format and SAMtools. Bioinformatics 2009, 25, 2078–2079;. https://doi.org/10.1093/bioinformatics/btp352. [CrossRef]
- Auwera G.A.; O’Connor B.D. Genomics in the cloud : using docker, GATK, and WDL in terra; O’Reilly Media, 2020.
- Danecek, P.; Auton, A.; Abecasis, G.; Albers, C.A.; Banks, E.; DePristo, M.A.; Handsaker, R.E.; Lunter, G.; Marth, G.T.; Sherry, S.T.; et al. The Variant Call Format and VCFtools. Bioinformatics 2011, 27, 2156–2158;. https://doi.org/10.1093/bioinformatics/btr330. [CrossRef]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.R.; Bender, D.; Maller, J.; Sklar, P.; de Bakker, P.I.W.; Daly, M.J.; et al. PLINK: A Tool Set for Whole-Genome Association and Population-Based Linkage Analyses. Am. J. Hum. Genet. 2007, 81, 559–575;. https://doi.org/10.1086/519795. [CrossRef]
- Minh, B.Q.; Schmidt, H.A.; Chernomor, O.; Schrempf, D.; Woodhams, M.D.; von Haeseler, A.; Lanfear, R. IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era. Mol. Biol. Evol. 2020, 37, 1530–1534;. https://doi.org/10.1093/molbev/msaa015. [CrossRef]
- Kalyaanamoorthy, S.; Minh, B.Q.; Wong, T.K.F.; von Haeseler, A.; Jermiin, L.S. ModelFinder: Fast Model Selection for Accurate Phylogenetic Estimates. Nat. Methods 2017, 14, 587–589;. https://doi.org/10.1038/nmeth.4285. [CrossRef]
- Minh, B.Q.; Nguyen, M.A.T.; von Haeseler, A. Ultrafast Approximation for Phylogenetic Bootstrap. Mol. Biol. Evol. 2013, 30, 1188–1195;. https://doi.org/10.1093/molbev/mst024. [CrossRef]



| Year | 2016 | 2017 | 2018 | 2019 |
| 2016 | 0.62 a | 0.56 | 0.54 | |
| 2017 | 5.28E-09 b | 0.52 | 0.59 | |
| 2018 | 2.83E-07 | 1.03E-06 | 0.76 | |
| 2019 | 6.28E-04 | 1.18E-04 | 2.24E-09 |
| Year | 2016 | 2017 | 2018 | 2019 |
| 2016 | 0.61 a | 0.55 | 0.55 | |
| 2017 | 1.01E-08 b | 0.56 | 0.63 | |
| 2018 | 4.02E-07 | 5.98E-08 | 0.79 | |
| 2019 | 4.95E-04 | 3.07E-04 | 1.92E-10 |
| Chr. | Position | LD blocka | Candidate gene | Gene description (Phytozome 13)b |
| 2 | 23000599 | NA | Prupe.2G190600 | NA |
| 8 | 19895234 | 19895155- 19903433 |
Prupe.8G217900 | Protein kinase domain (Pkinase) // Leucine Rich Repeat (LRR_1) // Leucine rich repeat N-terminal domain (LRRNT_2) |
| Prupe.8G218000 | NA | |||
| 8 | 19956845 | NA | Prupe.8G219000 | TETRATRICOPEPTIDE REPEAT PROTEIN, TPR |
| 8 | 20009405 | 20009216- 20009426 |
Prupe.8G220100 | Leucine Rich Repeat (LRR_1) |
| 8 | 20095763 | NA | Prupe.8G221600 | RIBOPHORIN II |
| 8 | 20311602 | 20306531- 20311602 |
Prupe.8G226500 | OXIDOREDUCTASE, 2OG-FE II OXYGENASE FAMILY PROTEIN |
| Prupe.8G226600 | OXIDOREDUCTASE, 2OG-FE II OXYGENASE FAMILY PROTEIN | |||
| Prupe.8G226700 | OXIDOREDUCTASE, 2OG-FE II OXYGENASE FAMILY PROTEIN | |||
| 8 | 20392183 20396172 20396173 |
20377283- 20396173 |
Prupe.8G227300 | LOB DOMAIN-CONTAINING PROTEIN 17-RELATED |
| Prupe.8G227400 | LOB DOMAIN-CONTAINING PROTEIN 17-RELATED | |||
| Prupe.8G227500 | LOB DOMAIN-CONTAINING PROTEIN 16 | |||
| Prupe.8G227600 | POLY [ADP-RIBOSE] POLYMERASE 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
