Altmetrics
Downloads
112
Views
29
Comments
0
A peer-reviewed article of this preprint also exists.
This version is not peer-reviewed
Submitted:
19 May 2023
Posted:
22 May 2023
You are already at the latest version
MSC: 68U10; 62H30; 15A69
Algorithm 1 HGSNMF algorithm. |
Input: Data matrix . The number of neighbors k. The algorithm |
parameters r, p and regularization parameters , . The stopping criterion , and the maximum |
number of iterations maxiter. Let . |
Output: Factors and ; |
1: Initialize and ; |
2: Construct the weight matrix using (3), and calculate the |
matrix , ; |
3: formaxiter do |
4: Update and Update according to (7), (8), respectively. |
5: Compute the objective function value of (4) to denote . |
6: if |
Break and return . |
7: end if |
8: endfor |
PCA | Principal component analysis |
LDA | Linear discriminant analysis |
SVD | Singular value decomposition |
NMF | Nonnegative matrix factorization |
HU | Hyperspectral unmixing |
ONMF | Orthogonal nonnegative matrix tri-factorizators |
GNMF | Graph regularized nonnegative matrix factorization |
DNMF | Graph dual regularization nonnegative matrix factorization |
HNMF | Hypergraph regularized nonnegative matrix factorization |
GSNMF | Graph regularized smooth nonnegative matrix factorization |
HGLNMF | Hypergraph regularized sparse nonnegative matrix factorization |
MHGNMF | nonnegative matrix factorization with mixed hypergraph regularization |
DHPS-NMF | Dual hypergraph regularized partially shared nonnegative matrix factorization |
HGSNMF | Hypergraph regularized smooth nonnegative matrix factorization |
the ACC | Accuracy |
NMI | Normalized mutual information |
MI | Mutual information |
1 | 0 | 0 | |
1 | 0 | 0 | |
0 | 1 | 0 | |
1 | 1 | 0 | |
0 | 1 | 0 | |
0 | 1 | 1 | |
0 | 0 | 1 | |
0 | 0 | 1 | |
fladd | flmlt | fidiv | overall | |
---|---|---|---|---|
NMF | 2+2 | |||
GNMF | 2+2 | 2+2 | ||
HNMF | 2+2 | 2+2 | ||
GSNMF | 2+2 | 2+2 | ||
HGLNMF | 2+2 | 2+2 | ||
HGSNMF | 2+2 | 2+2 |
Data sets | Samples | Features | Classes |
---|---|---|---|
COIL20 | 1440 | 1024 | 20 |
YALE | 165 | 1024 | 15 |
ORL | 400 | 1024 | 40 |
Georgia | 750 | 1024 | 50 |
k | K-means | NMF | GNMF | HNMF | GSNMF | HGLNMF | HGSNMF |
---|---|---|---|---|---|---|---|
4 | 65.13±16.60 | 69.63±15.76 | 72.86±14.86 | 79.53±13.65 | 73.79±13.51 | 79.52±13.64 | |
6 | 67.70±9.79 | 69.65±11.27 | 72.79±10.70 | 80.72±10.58 | 68.63±10.00 | 80.76±10.54 | |
8 | 70.56±5.89 | 69.44±8.78 | 71.53±8.60 | 80.94± 7.35 | 73.55±7.28 | 81.08±7.38 | |
10 | 76.02±7.12 | 70.13±6.95 | 76.01±5.48 | 82.99± 5.84 | 76.36±5.92 | 83.00±5.75 | |
12 | 73.21±4.82 | 70.91±5.50 | 77.12±5.68 | 82.16± 5.03 | 75.70±5.33 | 82.31±5.08 | |
14 | 74.10±4.31 | 70.41±4.66 | 77.06±4.75 | 82.20±4.24 | 76.88±4.63 | 82.21±4.19 | |
16 | 74.85±3.65 | 72.70±4.04 | 79.38±4.52 | 84.05± 3.95 | 79.04±4.27 | 83.99±3.97 | |
18 | 73.28±3.08 | 71.49±3.00 | 78.03±3.65 | 84.61± 3.15 | 79.36±3.47 | 84.70±3.16 | |
20 | 73.83±2.52 | 71.95±2.76 | 79.20±3.05 | 84.08± 2.79 | 78.84±2.76 | 84.05±2.71 | |
Avg. | 72.0 | 71.70 | 76.00 | 82.36 | 75.80 | 82.40 |
k | K-means | NMF | GNMF | HNMF | GSNMF | HGLNMF | HGSNMF |
---|---|---|---|---|---|---|---|
4 | 71.45±14.82 | 72.35±16.50 | 73.41±14.85 | 75.78±17.88 | 75.33±15.74 | 75.77±17.88 | |
6 | 67.05±10.72 | 68.87±11.80 | 69.65±12.61 | 74.42±13.78 | 68.04±10.78 | 74.44±13.78 | |
8 | 64.56±64.56 | 65.39±9.95 | 64.35±10.93 | 71.06±11.77 | 67.36±9.73 | 70.71±11.75 | |
10 | 67.38±9.76 | 63.27±7.96 | 66.76±7.47 | 70.73±10.04 | 67.07±8.44 | 70.61±5.75 | |
12 | 63.73±7.09 | 63.19±7.02 | 66.81±8.30 | 68.63± 8.43 | 65.81±8.43 | 69.00±5.08 | |
14 | 62.48±6.42 | 60.01±6.16 | 65.18±7.57 | 68.04±8.33 | 64.21±7.77 | 68.03±8.18 | |
16 | 61.78±5.69 | 62.18±6.43 | 65.47±7.25 | 69.09±7.62 | 66.03±7.50 | 68.85±7.66 | |
18 | 59.15±6.18 | 59.68± 5.44 | 63.39±6.86 | 69.29±6.51 | 65.84±6.70 | 69.65±6.59 | |
20 | 58.18±5.43 | 59.11±4.60 | 63.86±6.24 | 63.95±6.00 | 68.56±6.34 | 68.19±6.83 | |
Avg. | 63.97 | 63.78 | 66.54 | 70.64 | 67.07 | 70.63 |
k | K-means | NMF | GNMF | HNMF | GSNMF | HGLNMF | HGSNMF |
---|---|---|---|---|---|---|---|
3 | 40.18±23.03 | 28.96±11.71 | 28.81±12.06 | 36.08±12.82 | 37.80±16.40 | 36.12±12.89 | |
5 | 35.72±12.87 | 38.23±10.25 | 38.48±10.02 | 39.37±8.83 | 40.01±10.61 | 39.35±8.85 | |
7 | 38.38±6.51 | 38.17±7.57 | 39.07±6.84 | 39.33±6.46 | 39.38±5.23 | 42.32±7.39 | |
9 | 41.80±3.87 | 40.56±5.00 | 38.93±5.05 | 38.85±4.88 | 39.18±5.23 | 40.21±4.35 | |
11 | 39.80±4.40 | 41.82±4.45 | 42.05±4.25 | 43.88± 4.30 | 44.08±4.62 | 44.04±4.61 | |
13 | 44.13±4.63 | 44.17±3.03 | 44.59±3.43 | 44.24±3.12 | 44.53±2.80 | 44.29±3.07 | |
14 | 44.34±3.84 | 43.27±2.92 | 43.31±3.10 | 44.21± 3.39 | 44.82±3.02 | 44.21±3.32 | |
15 | 44.48±2.92 | 43.91±2.90 | 44.36±2.72 | 45.37± 2.38 | 45.32±2.62 | 45.47±2.35 | |
Avg. | 41.76 | 40.07 | 40.04 | 41.40 | 41.84 | 41.51 |
k | K-means | NMF | GNMF | HNMF | GSNMF | HGLNMF | HGSNMF |
---|---|---|---|---|---|---|---|
3 | 62.24±14.91 | 59.30±8.16 | 59.12±8.11 | 61.49±8.20 | 62.64±11.14 | 61.91±8.61 | |
5 | 50.24±10.66 | 54.15 ±8.92 | 53.78±8.27 | 54.95±7.83 | 54.82±9.04 | 54.84±7.82 | |
7 | 49.43±6.26 | 47.40±6.33 | 46.92±6.90 | 47.21±6.81 | 46.65±6.14 | 47.44±6.62 | |
9 | 44.40±7.02 | 43.12±4.87 | 42.48±5.45 | 42.15±4.74 | 42.81±5.49 | 43.68±4.98 | |
11 | 39.12±4.80 | 41.37±5.06 | 41.74±4.65 | 43.43±5.00 | 43.07±5.29 | 43.50±5.12 | |
13 | 40.41±4.81 | 41.18±3.73 | 41.11±4.10 | 40.76±3.83 | 41.05±3.61 | 40.78±3.91 | |
14 | 39.46±4.26 | 39.05±4.21 | 38.27±3.72 | 39.92±4.21 | 40.03±3.75 | 39.94±4.22 | |
15 | 38.52±3.30 | 38.72±3.51 | 38.67±3.21 | 40.25±3.39 | 39.52±3.14 | 40.44±3.24 | |
Avg. | 45.41 | 45.76 | 45.34 | 46.31 | 46.24 | 46.46 |
k | K-means | NMF | GNMF | HNMF | GSNMF | HGLNMF | HGSNMF |
---|---|---|---|---|---|---|---|
5 | 66.24±12.00 | 67.18±12.07 | 68.81±11.16 | 68.58±12.77 | 66.51±13.18 | 68.97±13.01 | |
10 | 70.22±6.63 | 73.59±5.90 | 72.11±6.70 | 71.95±5.92 | 72.39±6.59 | 73.29±6.55 | |
15 | 68.46±4.21 | 75.23±5.01 | 76.14±5.18 | 75.26±5.62 | 75.67±5.27 | 75.26±5.62 | |
20 | 69.87±4.75 | 74.21±4.34 | 74.44±4.78 | 75.24±4.25 | 75.49±3.76 | 75.46±4.19 | |
25 | 71.13±3.48 | 75.51±2.69 | 75.88±3.13 | 76.03±3.29 | 76.10±3.17 | 76.06±3.12 | |
30 | 71.03±2.81 | 75.34±3.12 | 75.55±2.81 | 74.60±2.67 | 74.69±2.65 | 75.88±2.80 | |
35 | 71.07±1.82 | 75.07±2.23 | 74.96±2.06 | 74.46±1.87 | 75.85±2.18 | 74.52±1.91 | |
40 | 71.45±2.06 | 75.05±1.90 | 75.26±1.82 | 74.54±1.87 | 75.40±1.91 | 74.54±1.91 | |
Avg. | 69.93 | 73.90 | 74.35 | 73.85 | 74.11 | 73.99 |
k | K-means | NMF | GNMF | HNMF | GSNMF | HGLNMF | HGSNMF |
---|---|---|---|---|---|---|---|
5 | 67.32±14.91 | 68.12±12.11 | 68.76±12.31 | 68.70±12.27 | 67.36±12.72 | 68.97±13.01 | |
10 | 62.72±10.66 | 65.85±9.86 | 64.05±7.87 | 64.59±7.22 | 64.46±7.82 | 65.42±7.50 | |
15 | 56.19±5.80 | 63.55±6.85 | 64.84±6.96 | 63.99±7.44 | 64.59±7.32 | 63.99±7.44 | |
20 | 55.29±6.25 | 61.21±5.83 | 61.56±6.21 | 62.44±5.87 | 62.67±5.30 | 62.52±5.57 | |
25 | 54.15±4.50 | 60.58±3.98 | 61.01±4.84 | 61.31±4.66 | 61.16±4.96 | 61.32±4.80 | |
30 | 52.52±4.29 | 58.57±4.67 | 58.88±4.52 | 58.07±4.42 | 58.38±4.28 | 59.50±4.20 | |
35 | 51.30±3.20 | 57.83±3.62 | 57.22±3.46 | 56.95±3.28 | 57.05±3.21 | 58.35±4.06 | |
40 | 50.68±3.43 | 56.57±3.39 | 56.73±3.15 | 55.88±3.32 | 57.20±3.46 | 55.88±3.37 | |
Avg. | 56.27 | 61.57 | 61.86 | 61.42 | 62.03 | 61.57 |
k | K-means | NMF | GNMF | HNMF | GSNMF | HGLNMF | HGSNMF |
---|---|---|---|---|---|---|---|
5 | 67.05±11.33 | 59.40±11.79 | 63.00±12.27 | 60.93±11.93 | 64.46±10.83 | 60.99±11.94 | |
10 | 60.25±8.93 | 61.24±8.51 | 57.48±10.50 | 61.59±10.12 | 57.63±10.67 | 65.91±9.15 | |
15 | 64.64±5.32 | 60.57±4.39 | 62.46±4.85 | 61.89±5.12 | 64.02±5.72 | 61.99±5.02 | |
20 | 67.12±4.30 | 60.60±3.71 | 62.58±3.91 | 60.98±3.81 | 64.44±3.18 | 61.08±3.82 | |
25 | 66.30±3.31 | 59.31±2.73 | 61.35±2.62 | 61.33±3.22 | 64.83±2.98 | 61.32±3.68 | |
30 | 66.01±3.13 | 60.26±2.56 | 63.20±2.25 | 60.52±3.04 | 64.61±2.97 | 60.47±2.99 | |
35 | 65.10±2.13 | 59.93±2.33 | 63.3±1.80 | 59.21±2.21 | 63.27±2.37 | 59.20±2.22 | |
40 | 66.06±2.20 | 59.58±2.34 | 62.84±1.82 | 58.61±2.38 | 63.57±1.98 | 58.62±2.48 | |
45 | 66.17±1.35 | 59.99±1.75 | 62.92±1.55 | 58.22±1.90 | 62.92±1.66 | 58.25±1.99 | |
50 | 66.36±1.32 | 59.05±1.56 | 62.11±1.51 | 58.19±1.33 | 63.18±1.24 | 58.19±1.25 | |
Avg. | 66.26 | 59.90 | 62.50 | 59.74 | 63.69 | 59.77 |
k | K-means | NMF | GNMF | HNMF | GSNMF | HGLNMF | HGSNMF |
---|---|---|---|---|---|---|---|
5 | 68.73±11.50 | 66.68±10.96 | 69.52±11.15 | 68.00±10.33 | 69.76±10.50 | 67.68±10.47 | |
10 | 61.71±8.56 | 57.79±8.48 | 59.25±8.44 | 55.73±9.09 | 59.07±8.94 | 55.83±9.23 | |
15 | 55.38±6.27 | 53.33±4.41 | 55.05±5.38 | 55.07±5.41 | 56.08±6.15 | 55.21±5.38 | |
20 | 55.14±5.07 | 50.55±4.58 | 52.30±4.60 | 50.22±4.45 | 54.93±4.36 | 50.37±4.40 | |
25 | 51.82±4.40 | 46.8¡¤±3.59 | 48.50±3.42 | 48.25±4.38 | 52.10±4.09 | 48.311±4.30 | |
30 | 49.67±4.12 | 45.20±3.49 | 48.31±3.13 | 45.82±3.48 | 50.17±3.82 | 45.68±3.33 | |
35 | 47.80±3.28 | 43.78±3.12 | 47.09±2.92 | 42.57±3.03 | 47.19±3.31 | 42.53±3.02 | |
40 | 47.88±3.28 | 41.93±2.95 | 45.35±2.81 | 40.47±3.26 | 46.27±3.02 | 40.41±3.45 | |
45 | 47.39±2.26 | 41.07±2.52 | 43.93±2.44 | 38.53±2.49 | 44.34±2.50 | 38.58±2.59 | |
50 | 46.18±2.19 | 38.94±2.22 | 42.14±2.40 | 37.24±1.92 | 43.78±2.32 | 37.26±1.90 | |
Avg. | 53.17 | 48.61 | 51.14 | 48.19 | 52.37 | 48.19 |
k | NMF | GNMF | HNMF | GSNMF | HGLNMF | HGSNMF |
---|---|---|---|---|---|---|
3 | 1.15 | 2.51 | 3.14 | 4.08 | 3.15 | |
11 | 9.21 | 20.75 | 21.31 | 35.62 | 14.77 | |
13 | 17.63 | 41.12 | 42.18 | 67.89 | 28.70 | |
14 | 20.64 | 49.80 | 46.75 | 80.06 | 35.45 | |
15 | 22.52 | 55.35 | 54.18 | 96.94 | 43.62 |
k | NMF | GNMF | HNMF | GSNMF | HGLNMF | HGSNMF |
---|---|---|---|---|---|---|
10 | 25.39 | 47.79 | 35.77 | 69.7 | 45.07 | |
15 | 40.36 | 94.57 | 67.58 | 134.67 | 88.01 | |
20 | 56.96 | 123.30 | 89.73 | 183.88 | 120.07 | |
25 | 90.97 | 233.04 | 151.94 | 312.03 | 201.96 | |
30 | 114.43 | 343.62 | 196.97 | 429.94 | 214.84 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 MDPI (Basel, Switzerland) unless otherwise stated