Submitted:
31 May 2023
Posted:
01 June 2023
Read the latest preprint version here
Abstract
Keywords:
1. Introduction
2. Methodology
3. Results and Discussions
3.1. S-PARAMETERS
3.1.1. Diversity Gain and Envelop Correlation Coefficient
3.2. Gain of an antenna
4. Conclusion
References
- Abubaker Ahmed Elobied, Xue-Xia Yang, Ningjie Xie, Steven Gao, "Dual-Band 2 × 2 MIMO Antenna with Compact Size and High Isolation Based on Half-Mode SIW", International Journal of Antennas and Propagation, vol. 2020, Article ID 2965767, 11 pages, 2020. [CrossRef]
- S. Zhang, K. Zhao, Z. Ying and S. He, "Adaptive Quad-Element Multi-Wideband Antenna Array for User-Effective LTE MIMO Mobile Terminals," in IEEE Transactions on Antennas and Propagation, vol. 61, no. 8, pp. 4275-4283, Aug. 2013. [CrossRef]
- Liu, X., Zhang, J., Xi, H., Yang, X., Sun, L. and Gan, L., 2022. A Compact Four-band High-isolation Quad-port MIMO Antenna for 5G and WLAN Applications. AEU-International Journal of Electronics and Communications, p.154294. [CrossRef]
- Elfergani, I., Hussaini, A. S., Abd-Alhameed, R., See, C., Child, M., & Rodriguez, J. (2012). Design of a compact tuned antenna system for mobile MIMO applications.
- J. Dong, S. Wang, and J. Mo, "Design of a Twelve-Port MIMO Antenna System for Multi- Mode 4G/5G Smartphone Applications Based on Characteristic Mode Analysis," in IEEE Access, vol. 8, pp. 90751-90759, 2020. [CrossRef]
- Z. Li, Z. Du, M. Takahashi, K. Saito, and K. Ito, “Reducing mutual coupling of MIMO antennas with parasitic elements for mobile terminals,” IEEE Trans. Antennas Propag., vol. 60, no. 2, pp. 473–481, Feb. 2012. [CrossRef]
- Li, M., Jiang, L. & Yeung, K. L. A general and systematic method to design neutralization lines for isolation enhancement in MIMO antenna arrays. IEEE Trans. Vehicular Technol. (2020). [CrossRef]
- M. Ikram, M. S. Sharawi, A. Shamim, and A. Sebak, “A multiband dualstandard MIMO antenna system based on monopoles (4G) and connected slots (5G) for future smart phones,” Microw. Opt. Technol. Lett., vol. 60, no. 6, pp. 1468–1476, Jun. 2018. [CrossRef]
- Q. Sun, B. Sun, L. Sun, W. Huang, and Q. Ren, “Broadband two-element array with hybrid decoupling structures for multimode mobile terminals,” IEEE AntennasWireless Propag. Lett., vol. 14, pp. 1431–1434, 2015. [CrossRef]
- S. Wang and Z. Du, “A dual-antenna system for LTE/WWAN/WLAN/WiMAX smartphone applications,” IEEE Antennas Wireless Propag. Lett., vol. 14, pp. 1443–1446, 2015. [CrossRef]
- J. Dong, X. Yu, and L. Deng, “A decoupled multiband dual-antenna system forWWAN/LTE smartphone applications,” IEEE Antennas Wireless Propag. Lett., vol. 16, pp. 1528–1532, 2017.
- Z. An and M. He, “A Multiband Dual-Antenna System for MIMO Operation in Mobile Terminals,” Appl. Comput. Electromagn. Soc. J., vol. 34, no. 10, pp. 1529–1534, Oct. 2019.
- K. Yu, Y. Li, and X. Liu, “Mutual coupling reduction of a MIMO antenna array using 3D novel meta material structures,” Appl. Comput. Electromagn. Soc. J., vol. 33, no. 7, pp. 758–763, 2018.
- M.-Y. Li, Y.-L. Ban, Z.-Q. Xu, J. Guo, and Z.-F. Yu, “Tri-polarized 12-antenna MIMO array for future 5G smartphone applications,” IEEE Access, vol. 6, pp. 6160–6170, 2018. [CrossRef]
- Zhu, F.-G., Xu, J.-D. & Xu, Q. Reduction of mutual coupling between closely-packed antenna elements using defected ground structure. Electron. Lett. 45, 601–602 (2012). [CrossRef]
- Suntives, A. & Abhari, R. Miniaturization and isolation improvement of a multiple-patch antenna system using electromagnetic bandgap structures. Microw. Opt. Technol. Lett. 55, 1609–1612 (2013). [CrossRef]
- Adamiuk, G., Beer, S., Wiesbeck, W. & Zwick, T. Dual-orthogonal polarized antenna for UWB-IR technology. IEEE Antennas Wireless Propag. Lett. 8, 981–984 (2009). [CrossRef]
- Iqbal, A., Saraereh, O. A., Ahmad, A. W. & Bashir, S. Mutual coupling reduction using F-shaped stubs in UWB-MIMO antenna. IEEE Access. 6, 2755–22759 (2017). [CrossRef]
- Pandit, S., Mohan, A., Ray, P. A compact planar MIMO monopole antenna with reduced mutual coupling for WLAN applications using ELC resonator. in Proc. IEEE Microw. Conf. (APMC), pp. 1–4 (2016).
- Verma, A.K., Nakkeeran, R., Vardhan, R.K. Design of 2x2 single-sided wrench-shaped UWB MIMO antenna with high isolation. in Proc. IEEE Int. Conf. Circuit, Power Comput. Technol. (ICCPCT), pp. 1–3 (2016).
- Cui, L., J. Guo, Y. Liu, and C. Sim, “An 8-element dual-band MIMO antenna with decoupling stub for 5G smartphone applications,” IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 10, 2095–2099, Oct. 2019. [CrossRef]
- Li, Y., C. Sim, Y. Luo, and G. Yang, “High isolation 3.5 GHz eight antenna MIMO array using balanced open-slot antenna element for 5G smartphones,” IEEE Transactions on Antenna and Propagation, Vol. 67, No. 6, 3820–3830, 2019. [CrossRef]
- Li, S., Da Xu, L. & Zhao, S. 5G Internet of Tings: A survey. J. Ind. Inf. Integr. 10, 1–9 (2018).
- Corzo, D., Tostado-Blazquez, G. & Baran, D. Flexible electronics: Status, challenges and opportunities. Front. Electron. 1, 1–13 (2020). [CrossRef]
- Marasco, I. et al. Compact and fexible meander antenna for surface acoustic wave sensors. Microelectron. Eng. 227, 111322 (2020).
- Niro, G. et al. Design of a surface acoustic wave resonator for sensing platforms. IEEE International Symposium on Medical Measurements and Applications (MeMeA) 1–6 (2020).
- Marasco, I., Niro, G., Mastronardi, V.M. et al. A compact evolved antenna for 5G communications. Sci Rep 12, 10327 (2022). [CrossRef]
- Jiang, W., Y. Cui, B. Liu, W. Hu, and Y. Xi, “A dual-band MIMO antenna with enhanced isolation for 5G smartphone applications,” IEEE Access, Vol. 7, 112554–112563, 2019. [CrossRef]
- Thakur, Vishakha & Jaglan, Naveen & Dev Gupta, Samir. (2020). Design of a Dual-Band 12- Element MIMO Antenna Array for 5G Mobile Applications. Progress In Electromagnetics Research Letters. 95. 73-81. [CrossRef]
- J. Kurvinen, H. Khknen, A. Lehtovuori, J. Ala- Laurinaho and V. Vi- ikari, “Co-designed mm- wave and LTE handset antennas,” IEEE Trans. Antennas Propag., vol. 67, no. 3, pp. 1545-1553, March 2019. [CrossRef]
- Y. L. Ban, C. Li, C. Y. D. Sim, G. Wu, and K.-L. Wong, “4G/5G multiple antennas for future multi-mode smartphone applications,” IEEE Access, vol. 4, pp. 2981-2988, July 2016. [CrossRef]
- M. Y. Li, Y. L. Ban, Z. Q Xu, G.Wu, C. Sim, K. Kang, and Z. F. Yu, “Eight-port orthogonally dual-polarized antenna array for 5G smartphone applications,” IEEE Trans. Antennas Propag., vol. 64, no. 6, pp. 3820-3830, June 2016. [CrossRef]
- Zhao and Z. Ren “Multiple-input and multiple- output antenna system with self-isolated antenna element for fifth generation mobile terminals” Microw. Opt. Technol. Lett., vol 61, no. 1, pp. 20-27, Jan. 2019.
- Z. Ren, A. Zhao and S. Wu, “Dual-Band MIMO Antenna System for 5G Mobile Terminals,” 2019 13th European Conference on Antennas and Propagation (EuCAP), Krakow, Poland, pp. 1-4, 2019.
- Andrews Christina Malathi and Dhanasingh Thiripurasundari, "Compact 2×1 MIMO Antenna System for LTE Band," Progress In Electromagnetics Research C, Vol. 75, 63-73, 2017.
- F. Alexa, B. Bardeanu and D. Vatau, "MIMO antenna system for LTE," 2013 36th International Conference on Telecommunications and Signal Processing (TSP), Rome, Italy, 2013, pp. 294-298. [CrossRef]
- Qualcomm. (Sep. 2015). Making the Best Use of Licensed and Unlicensed Spectrum. [Online]. Available: https://www.qualcomm.com/media/documents/files/making-the-best-use-of-unlicensed-spectrumpresentation.pdf.
- IMT-2020 (5G) Promotion Group. (Feb. 2015). White Paper on 5G Concept. [Online]. Available: http://www.imt-2020.org.cn/zh/ documents/download/4.
- SK Telecom. (Oct. 2014).SK Telecom 5G White Paper.[Online]. Available:http://www.sktelecom.com/img/pds/press/SKT-5G%20White%20Paper_V1.0_Eng.pdf.
- H. Xu et al., “A compact and low-profile loop antenna with six resonant modes for LTE smartphone,” IEEE Trans. Antennas Propag., vol. 64, no. 9, pp. 3743–3751, Sep. 2016. [CrossRef]
- H. Zou, Y. Li, C.-Y.-D. Sim, and G. Yang, “Design of 8 × 8 dual-band MIMO antenna array for 5G smartphone applications,” Int. J. RF Microw. Comput.-Aided Eng., vol. 28, no. 9, p. e21420, 2018.
- J. L. Guo, L. Cui, C. Li, and B. H. Sun, “Side-edge frame printed eight-port dual-band antenna array for 5G smartphone applications,” IEEE Trans. Antennas Propag., vol. 66, no. 12, pp. 7412–7417, Dec. 2018. [CrossRef]
- Y. Li, C.-Y.-D. Sim, Y. Luo, and G. Yang, “Metal-frame-integrated eight-element multiple-input multiple-output antenna array in the long term evolution bands 41/42/43 for fifth generation smartphones,” Int. J. RF Microw. Comput.-Aided Eng., vol. 29, no. 1, Jan. 2019, Art. no. e21495.
- H. Wang, R. Zhang, Y. Luo, and G. Yang, “Compact eight-element antenna array for triple-band MIMO operation in 5G mobile terminals,” IEEE Access, vol. 8, pp. 19433–19449, 2020. [CrossRef]
- Y. Li, C.-Y.-D. Sim, Y. Luo, and G. Yang, “12-port 5G massive MIMO antenna array in sub-6 GHz mobile handset for LTE bands 42/43/46 applications,” IEEE Access, vol. 6, pp. 344–354, Oct. 2017.
- N. Jaglan, S. D. Gupta, and M. S. Sharawi, “18 element massive MIMO/diversity 5G smartphones antenna design for sub-6 GHz LTE bands 42/43 applications,” IEEE Open J. Antennas Propag., vol. 2, pp. 533–545, 2021.
- J. Huang, G. Dong, J. Cai, H. Li, and G. Liu, “A quad-port dualband MIMO antenna array for 5G smartphone applications,” Electronics, vol. 10, no. 5, p. 542, Feb. 2021. [CrossRef]
- J. Huang, G. Dong, Q. Cai, Z. Chen, L. Li, and G. Liu, “Dual-band MIMO antenna for 5G/WLAN mobile terminals,” Micromachines, vol. 12, no. 5, p. 489, Apr. 2021. [CrossRef]
- D. Serghiou, M. Khalily, V. Singh, A. Araghi, and R. Tafazolli, “Sub-6 GHz dual-band 8 × 8 MIMO antenna for 5G smartphones,” IEEE Antennas Wireless Propag. Lett., vol. 19, no. 9, pp. 1546–1550, Sep. 2020. [CrossRef]
- L. Cui, J. Guo, Y. Liu, and C.-Y.-D. Sim, “An 8-element dual-band MIMO antenna with decoupling stub for 5G smartphone applications,” IEEE Antennas Wireless Propag. Lett., vol. 18, no. 10, pp. 2095–2099, Oct. 2019. [CrossRef]
- M. S. Sharawi, "Printed Multi-Band MIMO Antenna Systems and Their Performance Metrics [Wireless Corner]," in IEEE Antennas and Propagation Magazine, vol. 55, no. 5, pp. 218-232, Oct. 2013. [CrossRef]
- Y. Li, C. -Y. -D. Sim, Y. Luo and G. Yang, "12-Port 5G Massive MIMO Antenna Array in Sub-6GHz Mobile Handset for LTE Bands 42/43/46 Applications," in IEEE Access, vol. 6, pp. 344-354, 2018. [CrossRef]









| Parameter | Value () | Parameter | Value () | Parameter | Value () |
|---|---|---|---|---|---|
| S | 150 | S | 70 | gap | 22 |
| fl | 16.5 | fw | 2.43 | pw | 3.5 |
| pw | 7 | pw | 5 | pl | 9 |
| pl | 1.785 | pl | 1 | pl | 1 |
| pl | 1 | gap1 | 12.8 | gap2 | 15 |
| gap3 | 9.15 | gap4 | 15.15 | gcw1 | 9.99 |
| gcw2 | 8 | gcl1 | 1.5 | gcl | 1.7 |
| Reference | Bandwidth (GHz) | Isolation (-dB) | ECC | Total Efficiency (%) | Radiator size in () | Impedance Bandwidth (%) | Peak Channel Capacity () |
|---|---|---|---|---|---|---|---|
| [Proposed] | 3.4-3.6,3.550-3.7 (-6dB) | >10 | <0.19 | >67 | 0.17 × 0.05 × 0.01 | 5.71 | 45 (10 × 10) |
| [41] | 3.4-3.6,5.15-5.925 (-6dB) | >12 | <0.1 | >50 | 0.17 × 0.05 × 0.01 | 19.71 | 38.8 (8 × 8) |
| [42] | 3.4-3.6,4.8-5.1 (-6dB) | >12 | <0.1 | 40-85 | 0.17 × 0.03 × 0.01 | 11.77 | 38.5 (8 × 8) |
| [43] | 2.496-2.69, 3.4-3.8 (-6dB) | >10.5 | <0.2 | 44-66 | 0.02 × 0.17 × 0.01 | 18.59 | 38.3 (8 × 8) |
| [44] | 3.35-3.82, 4.79-6.2 (-6dB) | >10.5 | <0.12 | >43 | 0.17 × 0.03 × 0.01 | 41.77 | 37.6 (8 × 8) |
| [45] | 3.4-3.8, 5.15-5.925 (-6dB) | >12 | <0.15 | 41-79 | 0.13 × 0.04 × 0.01 | 25.11 | 29.5 (6 × 6) |
| [46] | 3.4-3.6, 3.6-3.8 (-10dB) | >20 | <0.01 | >87 | 0.11 × 0.04 × 0.02 | 11.11 | 81 (18 × 18) |
| [47] | 3.4-3.6, 4.8-5 (-10dB) | >16.5 | <0.01 | 82-85 | 0.16 × 0.07 × 0.01 | 9.79 | Not Mentioned (4 × 4) |
| [48] | 3.3-3.8, 4.8-5, 5.15-5.35, 5.725-5.85 (-10dB) | >15 | <0.02 | >70 | 0.16 × 0.07 × 0.01 | 24.02 | Not Mentioned (4 × 4) |
| [49] | 3.1-3.85, 4.8-6 (-10dB) | >17 | <0.06 | 65-71 | 0.20 × 0.05 × 0.01 | 36.17 | 39 (8 × 8) |
| [50] | 3.3-4.2, 4.8-5.0 (-6dB) | >10 | <0.12 | 53.8-79.1 | 0.21 × 0.07 × 0.01 | 28.10 | 39.5 (8 × 8) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
