Altmetrics
Downloads
203
Views
109
Comments
0
This version is not peer-reviewed
Submitted:
01 June 2023
Posted:
02 June 2023
You are already at the latest version
Model | Number of bands | TPR | FPR | Acc | Kappa | Runtime(ms) |
1D-CNN | Full band | 0.971 | 0.098 | 0.933 | 0.867 | 23.9 |
20 band | 0.919 | 0.086 | 0.917 | 0.833 | 23.5 | |
10 band | 0.915 | 0.126 | 0.893 | 0.787 | 23.4 | |
5 band | 0.933 | 0.145 | 0.890 | 0.780 | 23.3 | |
3 band | 0.931 | 0.222 | 0.837 | 0.673 | 23.3 | |
2D-CNN | Full band | 0.991 | 0.036 | 0.977 | 0.954 | 30.7 |
20 band | 0.997 | 0.047 | 0.974 | 0.949 | 29.4 | |
10 band | 0.994 | 0.025 | 0.982 | 0.969 | 27.8 | |
5 band | 0.980 | 0.028 | 0.976 | 0.951 | 26 | |
3 band | 0.988 | 0.025 | 0.981 | 0.963 | 25.5 | |
3D-CNN | Full band | 0.976 | 0.066 | 0.954 | 0.909 | 47.1 |
20 band | 0.968 | 0.064 | 0.951 | 0.903 | 33.1 | |
10 band | 0.962 | 0.067 | 0.947 | 0.894 | 31.3 | |
5 band | 0.971 | 0.050 | 0.960 | 0.920 | 29.6 | |
3 band | 0.980 | 0.042 | 0.969 | 0.937 | 28.7 | |
Hypernet [11] | Full band | 0.930 | 0.021 | 0.953 | 0.906 | 33 |
20 band | 0.979 | 0.050 | 0.964 | 0.929 | 31.5 | |
10 band | 0.997 | 0.072 | 0.960 | 0.920 | 30.4 | |
5 band | 0.979 | 0.047 | 0.966 | 0.931 | 26.5 | |
3 band | 0.939 | 0.038 | 0.950 | 0.900 | 24.7 | |
Realtime-1DCNN | Full band | 0.92 | 0.17 | 0.86 | 0.73 | 23.8 |
20 band | 0.907 | 0.269 | 0.793 | 0.586 | 23.4 | |
10 band | 0.871 | 0.169 | 0.850 | 0.700 | 23.2 | |
5 band | 0.98 | 0.08 | 0.96 | 0.91 | 23 | |
3 band | 0.880 | 0.090 | 0.930 | 0.870 | 22.8 | |
Realtime-2DCNN | Full band | 0.990 | 0.037 | 0.977 | 0.954 | 29.1 |
20 band | 1.000 | 0.031 | 0.984 | 0.969 | 28.3 | |
10 band | 1.000 | 0.033 | 0.983 | 0.965 | 25.9 | |
5 band | 1.000 | 0.031 | 0.985 | 0.973 | 24.8 | |
3 band | 0.980 | 0.045 | 0.967 | 0.934 | 24.2 | |
Realtime-3DCNN | Full band | 0.996 | 0.187 | 0.884 | 0.769 | 28.4 |
20 band | 0.948 | 0.073 | 0.937 | 0.874 | 27.9 | |
10 band | 0.997 | 0.077 | 0.957 | 0.914 | 26.9 | |
5 band | 0.985 | 0.060 | 0.961 | 0.922 | 26.3 | |
3 band | 0.988 | 0.050 | 0.969 | 0.937 | 24.4 |
References | Detection target | Spectral range (nm) | Data quantity | Data analysis | Overall accuracy |
---|---|---|---|---|---|
(Jiang et al., 2016) [7] | Aflatoxin | 970-2,570 nm | 149 pcs | PCA+ Threshold | 98.7 |
(Qi et al., 2019) [8] | Aflatoxin | 967-2,499 nm | 2,312 pixels | JSRC+SVM | 98.4 |
(Han & Gao, 2019) [9] | Aflatoxin | 292-865 nm | 146 pcs | CNN | 96 |
(Zou et al., 2019) [12] | Peanut shell maturity | 400-1,000 nm | 540 pcs | LMM+RGB | 91.15 |
(Liu et al., 2020) [11] | Aflatoxin | 400-1000 nm | 1,066 pcs | Unet, Hypernet | 92.07 |
(Qi et al., 2021) [13] | Peanut leaves | RGB | 3,205 images | GoogleNet | 97.59 |
(Xueming et al., 2021) [10] | Aflatoxin | 400-1,000 nm | 150 pcs | SGS+SNV | 94 |
Classification | Normal Peanut | Defect Peanut | Total |
---|---|---|---|
Training amount | 237 | 240 | 477 |
Testing amount | 540 | 540 | 1080 |
Total | 777 | 780 | 1557 |
Classification | Normal Peanut | Defect Peanut | Total |
---|---|---|---|
Training amount | 350 | 350 | 700 |
Testing amount | 1000 | 1000 | 2000 |
Total | 1350 | 1350 | 2700 |
Analysis method | Important band |
---|---|
PCA 20 Band | 726.33,729.06,731.79,759.14,761.88,764.62,767.36,770.11, 789.33,792.08,794.84,797.59,800.34,803.1, 805.85,838.98,847.29,852.83, 850.06, 863.92 |
PCA 10 Band | 726,729,731,759,761,764,767,770,789,792, |
PCA 5 Band | 726,729,731,759,761 |
PCA 3 Band | 726,729,731 |
Analysis method | Important band |
---|---|
20 Band | 854, 843, 929, 914, 959, 968, 965, 952, 944, 937, 905, 895, 886, 876, 865, 826, 813, 802, 789, 776 |
10 Band | 854, 843, 929, 914, 959, 968, 965, 952, 944, 937 |
5 Band | 854, 843, 929, 914, 959 |
3 Band | 854, 843, 929 |
Model | Number of bands | TPR | FPR | Acc | Kappa | Runtime(ms) |
---|---|---|---|---|---|---|
1D-CNN | Full band | 0.92 | 0.29 | 0.83 | 0.67 | 44.2 |
20 bands | 0.937 | 0.002 | 0.967 | 0.935 | 35.4 | |
10 bands | 0.924 | 0.024 | 0.962 | 0.908 | 32.8 | |
5 bands | 0.913 | 0.023 | 0.956 | 0.907 | 31.1 | |
3 bands | 0.91 | 0.03 | 0.954 | 0.904 | 30.7 | |
2D-CNN | Full band | 0.94 | 0.07 | 0.971 | 0.940 | 58 |
20 bands | 0.959 | 0.004 | 0.977 | 0.956 | 32.6 | |
10 bands | 0.956 | 0.062 | 0.977 | 0.933 | 28.6 | |
5 bands | 0.957 | 0.011 | 0.973 | 0.941 | 26.9 | |
3 bands | 0.94 | 0.07 | 0.96 | 0.93 | 26 | |
3D-CNN | Full band | 0.990 | 0.170 | 0.910 | 0.820 | 61 |
20 bands | 0.980 | 0.013 | 0.983 | 0.967 | 37 | |
10 bands | 0.967 | 0.035 | 0.981 | 0.961 | 32.8 | |
5 bands | 0.961 | 0.068 | 0.978 | 0.957 | 30.5 | |
3 bands | 1.0 | 0.05 | 0.97 | 0.94 | 29.3 | |
Hypernet [11] | Full band | 0.14 | 0.93 | 0.85 | 54.5 | |
20 bands | 0.964 | 0.0736 | 0.9444 | 0.888 | 32.3 | |
10 bands | 0.9634 | 0.1020 | 0.9277 | 0.855 | 29.6 | |
5 bands | 0.98787 | 0.07692 | 0.9527 | 0.90546 | 25.7 | |
3 bands | 0.9875 | 0.1 | 0.938 | 0.87 | 25.4 | |
Realtime-1DCNN | Full band | 0.92307 | 0.1764 | 0.86666 | 0.73333 | 51.2 |
20 bands | 1.0 | 0.150 | 0.9111 | 0.82222 | 23.4 | |
10 bands | 0.98 | 0.07 | 0.96 | 0.922 | 23.2 | |
5 bands | 0.976 | 0.077 | 0.958 | 0.91 | 23 | |
3 bands | 0.8823 | 0.09 | 0.9333 | 0.866666 | 22.8 | |
Realtime-2DCNN | Full band | 0.96 | 0.1 | 0.94 | 0.85 | 51.8 |
20 bands | 0.98 | 0.04 | 0.93 | 0.87 | 31.4 | |
10 bands | 0.98 | 0.07 | 0.9505 | 0.90 | 28 | |
5 bands | 0.961 | 0.068 | 0.978 | 0.957 | 26 | |
3 bands | 1 | 0.06 | 0.96 | 0.92 | 25.2 | |
Realtime-3DCNN | Full band | 0.99 | 0.17 | 0.91 | 0.82 | 72.1 |
20 bands | 0.99 | 0.05 | 0.966 | 0.933 | 34.4 | |
10 bands | 0.99 | 0.05 | 0.966 | 0.933 | 32.3 | |
5 bands | 0.961 | 0.068 | 0.978 | 0.957 | 29.3 | |
3 bands | 1 | 0.07 | 0.95 | 0.91 | 24.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 MDPI (Basel, Switzerland) unless otherwise stated