Submitted:
16 June 2023
Posted:
19 June 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
1. Foliar diseases caused by fungi and oomycetes
2.1. Early blight
2.2. Late blight
2.3. Septoria leaf spot
2. Management strategies for fungal diseases
3.1. Cultural practices
3.2. Chemical control
3.3. Nanotechnology in plant protection
3.4. Breeding and use of resistant cultivars
3.5. Integrated Disease Management (IDM) for the management of foliar fungal diseases of tomato
3. Crop improvement efforts through molecular and conventional methods
4.1. Early blight
| Trait | Population | QTL | Chr | Position | LOD Score | Additive effect | R2-value (%) | Reference |
|---|---|---|---|---|---|---|---|---|
| Early blight | NC 1CELBR x Fla. 7775 | qEBR-2 | 2 | 16.6-20.0 | 4.2 | -1.42 | 3.8 | [90] |
| qEBR-8 | 8 | 32.4-51.3 | 4.2 | -1.44 | 12.1 | |||
| qEBR-11 | 11 | 44.1-50.9 | 4.0 | -1.44 | 11.7 | |||
| Early blight | - | EB-1.2 | 1 | 85.0 | 5.7 | 87.9 | 4.9 | [70] |
| - | EB-5 | 5 | 64.4 | 10.4 | -126.4 | 11.0 | ||
| - | EB-9 | 9 | 66.9 | 24.0 | 12.0 | 26.4 | ||
| Early blight | NC EBR1 x LA2093 | cLEC73K6b-CT205 | 2 | 1.1-12.2 | 3 | -184.9 | 8 | [91] |
| cTOF19J9-TG-463 | 2 | 46.9-64.9 | 3.4 | -197.4 | 8 | |||
| EB5.1 cLEY-18H8-Ctoc20j21 | 5 | 69.4-81.5 | 5.6 | 283.2 | 18 | |||
| EB6.1 TG274-TG590 | 6 | 14.8-17.3 | 4.6 | -182.2 | 16 | |||
| TG274-cLEN10H12 | 6 | 14.8-29.0 | 3.7 | -224.2 | 10 | |||
| EB9.1 TG348-cTOE10J18 | 9 | 52.8-54.6 | 5.1 | 205.6 | 14 | |||
| TG343-cLED4N20 | 9 | 60.8-69.8 | 3 | 179.7 | 7 | |||
| Late blight | Fla. 8059 X PI 270441 | 02g30527779 | 2 | 11.7 | 0.97 | -0.12 | 3 | [92] |
| 02g30827526 | 2 | 13.7 | 1.95 | -0.17 | 6 | |||
| 2 | 14.7 | 1.87 | -0.17 | 6 | ||||
| 09g66536514 | 9 | 114.9 | 9.37 | -0.76 | 39 | |||
| 09g66864250 | 9 | 116.4 | 10.14 | -0.78 | 42 | |||
| 09g67494653 | 9 | 119.3 | 9.54 | -0.76 | 40 | |||
| Late blight | NC 1CELBR x Fla 7775 | solcap_snp_sl_65677 | 6 | 0 | 2.52 | 0.03 | 2 | [93] |
| solcap_snp_sl_65677 | 6 | 0.01 | 2.52 | 0.03 | 2 | |||
| solcap_snp_sl_11588 | 8 | 0.27 | 2.01 | -0.15 | 8 | |||
| solcap_snp_sl_22830 | 9 | 0.32 | 9.18 | -0.33 | 81 | |||
| CL016855-0847 | 9 | 0.67 | 41.99 | -1.69 | 66 | |||
| solcap_snp_sl_69978 | 9 | 0.67 | 42.44 | -1.72 | 67 | |||
| solcap_snp_sl_8807 | 10 | 0.64 | 4 | -0.44 | 2 | |||
| solcap_snp_sl_1490 | 12 | 0.01 | 3.1 | -0.37 | 2 |
4.2. Late blight
4.3. Septoria leaf spot
4. Potential to improve using modern tools
5.1. Genomic resources
5.2. Genetic transformation
5.3. Genome editing
5. Future prospects
Acknowledgement
References
- FAOSTAT Crop and Livestock Products Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 2 June 2023).
- Abramovitch, R.B.; Kim, Y.J.; Chen, S.; Dickman, M.B.; Martin, G.B. Pseudomonas Type III Effector AvrPtoB Induces Plant Disease Susceptibility by Inhibition of Host Programmed Cell Death. EMBO J 2003, 22, 60–69. [CrossRef]
- Sobczak, M.; Avrova, A.; Jupowicz, J.; Phillips, M.S.; Ernst, K.; Kumar, A. Characterization of Susceptibility and Resistance Responses to Potato Cyst Nematode (Globodera Spp.) Infection of Tomato Lines in the Absence and Presence of the Broad-Spectrum Nematode Resistance Hero Gene. Mol Plant Microbe Interact 2005, 18, 158–168. [CrossRef]
- Zhang, Y.; Lubberstedt, T.; Xu, M. The Genetic and Molecular Basis of Plant Resistance to Pathogens. Journal of Genetics and Genomics 2013, 40, 23–35. [CrossRef]
- Hoagland, L.; Navazio, J.; Zystro, J.; Kaplan, I.; Vargas, J.G.; Gibson, K. Key Traits and Promising Germplasm for an Organic Participatory Tomato Breeding Program in the U.S. Midwest. HortScience 2015, 50, 1301–1308. [CrossRef]
- Adhikari, T.B.; Ingram, T.; Halterman, D.; Louws, F.J. Gene Genealogies Reveal High Nucleotide Diversity and Admixture Haplotypes within Three Alternaria Species Associated with Tomato and Potato. Phytopathology 2020, 110, 1449–1464. [CrossRef]
- Chaerani, R.; Voorrips, R.E. Tomato Early Blight (Alternaria Solani): The Pathogen, Genetics, and Breeding for Resistance. Journal of General Plant Pathology 2006, 72, 335–347. [CrossRef]
- Beattie, A.D.; Scoles, G.J.; Rossnagel, B.G. Identification of Molecular Markers Linked to a Pyrenophora Teres Avirulence Gene. Phytopathology 2007, 97, 842–849. [CrossRef]
- Sherf, A.F.; MacNab, A.A. Vegetable Diseases and Their Control; J. Wiley, 1986; ISBN 978-0-471-05860-1.
- Black, L.L.; Wang, T.C.; Hanson, P.M.; Chen, J.T. Late Blight Resistance in Four Wild Tomato Accessions: Effectiveness in Diverse Locations and Inheritance of Resistance Available online: https://scholar.google.com/scholar?hl=en&as_sdt=0%2C34&q=Late+blight+resistance+in+four+wild+tomato+accessions%3A+effectiveness+in+diverse+locations+and+inheritance+of+resistance.+&btnG= (accessed on 4 June 2023).
- Kemmitt, G. Early Blight of Potato and Tomato. The Plant Health Instructor 2002. [CrossRef]
- Abbasi, P.A.; Cuppels, D.A.; Lazarovits, G. Effect of Foliar Applications of Neem Oil and Fish Emulsion on Bacterial Spot and Yield of Tomatoes and Peppers. Canadian Journal of Plant Pathology 2003, 25, 41–48. [CrossRef]
- Bock, C.H.; Gottwald, T.R.; Parker, P.E.; Ferrandino, F.; Welham, S.; Van Den Bosch, F.; Parnell, S. Some Consequences of Using the Horsfall-Barratt Scale for Hypothesis Testing. Phytopathology 2010, 100, 1030–1041. [CrossRef]
- Biswas, M.K.; Chai, L.; Amar, M.H.; Zhang, X.; Deng, X. xin Comparative Analysis of Genetic Diversity in Citrus Germplasm Collection Using AFLP, SSAP, SAMPL and SSR Markers. Sci Hortic 2011, 129, 798–803. [CrossRef]
- Blanco, A.; Gadaleta, A. and; Simeone, R. Variation for Yield and Quality Components in Durum Wheat Backcross Inbred Lines Derived from Ssp. Dicoccoides. BODENKULTUR (diebodenkultur.boku.ac.at) 2004, 54, 163–170.
- Goodwin, S.B.; Cohen, B.A.; Fry, W.E. Panglobal Distribution of a Single Clonal Lineage of the Irish Potato Famine Fungus. Proceedings of the National Academy of Sciences 1994, 91, 11591–11595. [CrossRef]
- Hohl, H.R.; Iselin, K. Strains of Phytophthora Infestans from Switzerland with A2 Mating Type Behaviour. Transactions of the British Mycological Society 1984, 83, 529–530.
- Fry, W.; Goodwin, S.; Dyer, A.; Matuszak, J.; Drenth, A.; Tooley, P.; Sujkowski, L.; Koh, Y.; Cohen, B.; Spielman, L.; et al. Historical and Recent Migrations of Phytophthora-Infestans - Chronology, Pathways, and Implications. Plant Dis 1993, 77, 653–661. [CrossRef]
- Fry, W.E.; McGrath, M.T.; Seaman, A.; Zitter, T.A.; McLeod, A.; Danies, G.; Small, I.M.; Myers, K.; Everts, K.; Gevens, A.J.; et al. The 2009 Late Blight Pandemic in the Eastern United States – Causes and Results. Plant Dis 2013, 97, 296–306. [CrossRef]
- Fry, W.E. Population Genomics of Phytophthora Infestans. - Google Scholar. Phytopathology 2015, 105.
- Fry, W.E.; Birch, P.R.J.; Judelson, H.S.; Grünwald, N.J.; Danies, G.; Everts, K.L.; Gevens, A.J.; Gugino, B.K.; Johnson, D.A.; Johnson, S.B.; et al. Five Reasons to Consider Phytophthora Infestans a Reemerging Pathogen. Phytopathology 2015, 105, 966–981. [CrossRef]
- Tian, Y.E.; Yin, J.L.; Sun, J.P.; Ma, Y.F.; Wang, Q.H.; Quan, J.L.; Shan, W.X. Population Genetic Analysis of Phytophthora Infestans in Northwestern China. Plant Pathol 2016, 65, 17–25. [CrossRef]
- Fry, W.E. Phytophthora Infestans: The Itinerant Invader; “Late Blight”: The Persistent Disease. Phytoparasitica 2020, 48, 87–94. [CrossRef]
- Schumann, G.L.; D’Arcy, C.J. Late Blight of Potato and Tomato. The Plant Health Instructor 2000. [CrossRef]
- Saville, A.C.; Martin, M.D.; Ristaino, J.B. Historic Late Blight Outbreaks Caused by a Widespread Dominant Lineage of Phytophthora Infestans (Mont.) de Bary. PLoS One 2016, 11, e0168381. [CrossRef]
- Majeed, A.; Muhammad, Z.; Ullah, Z.; Ullah, R.; Ahmad, H. Late Blight of Potato (Phytophthora Infestans) I: Fungicides Application and Associated Challenges. Turkish Journal of Agriculture - Food Science and Technology 2017, 5, 261–266. [CrossRef]
- Botella-Pavía, P.; Rodríguez-Concepción, M. Carotenoid Biotechnology in Plants for Nutritionally Improved Foods. Physiol Plant 2006, 126, 369–381. [CrossRef]
- da Costa, C.A.; Lourenço, V.; Santiago, M.F.; Veloso, J.S.; Reis, A. Molecular Phylogenetic, Morphological, and Pathogenic Analyses Reveal a Single Clonal Population of Septoria Lycopersici with a Narrower Host Range in Brazil. Plant Pathol 2022, 71, 621–633. [CrossRef]
- Broggini, G.A.L.; Galli, P.; Parravicini, G.; Gianfranceschi, L.; Gessler, C.; Patocchi, A. HcrVf Paralogs Are Present on Linkage Groups 1 and 6 of Malus. Genome 2009, 52, 129–138. [CrossRef]
- Blauth ’, S.L.; Ste4ens, J.C.; Churchill ’, G.A.; Mutschler, M.A.; Ste, J.C.; Ens ’, !; Churchill, G.A.; Hall, E. Identification of QTLs Controlling Acylsugar Fatty Acid Composition in an Intraspecific Population of Lycopersicon Pennellii (Corr.) D’Arcy. Theoretical Applied Genetics 1999, 99, 373–381.
- Broman, K.W.; Wu, H.; Sen, Ś.; Churchill, G.A. R/Qtl: QTL Mapping in Experimental Crosses. Bioinformatics 2003, 19, 889–890. [CrossRef]
- Hardy, O.J.; Vekemans, X. Spagedi: A Versatile Computer Program to Analyse Spatial Genetic Structure at the Individual or Population Levels. Mol Ecol Notes 2002, 2, 618–620. [CrossRef]
- Bohs, L.; Olmstead, R.G. Phylogenetic Relationships in Solanum (Solanaceae) Based on NdhF Sequences. Syst Bot 1997, 22, 5–17. [CrossRef]
- Brommonschenkel, S.H.; Frary, A.; Frary, A.; Tanksley, S.D. The Broad-Spectrum Tospovirus Resistance Gene Sw-5 of Tomato Is a Homolog of the Root-Knot Nematode Resistance Gene Mi. Mol Plant Microbe Interact 2000, 13, 1130–1138. [CrossRef]
- Broome, C.R.; Terrel, E.E.; Reveal, J.L. Proposal to Conserve Lycopersicon Esculentum Milleras the Scientific Name of the Tomato.; 1983.
- Brumfield, R.T.; Beerli, P.; Nickerson, D.A.; Edwards, S. V. The Utility of Single Nucleotide Polymorphisms in Inferences of Population History. Trends Ecol Evol 2003, 18, 249–256. [CrossRef]
- Broun, P.; Tanksley, S.D. Characterization and Genetic Mapping of Simple Repeat Sequences in the Tomato Genome. Molecular and General Genetics 1996, 250, 39–49. [CrossRef]
- Pandey, A.; Devkota, A.; Yadegari, Z.; Dumenyo, K.; Taheri, A. Antibacterial Properties of Citric Acid/β-Alanine Carbon Dots against Gram-Negative Bacteria. Nanomaterials 2021, 11. [CrossRef]
- Charles Brummer, E.; Casler, M.D. Improving Selection in Forage, Turf, and Biomass Crops Using Molecular Markers. Molecular Breeding of Forage and Turf 2009, 193–210. [CrossRef]
- Brummer, E.C.; Graef, G.L.; Orf, J.; Wilcox, J.R.; Shoemaker, R.C. Mapping QTL for Seed Protein and Oil Content in Eight Soybean Populations. Crop Sci 1997, 37, 370–378. [CrossRef]
- Yadav, A.; Yadav, K. Nanoparticle-Based Plant Disease Management: Tools for Sustainable Agriculture. Nanotechnology in the Life Sciences 2018, 29–61. [CrossRef]
- Kim, J.S.; Kuk, E.; Yu, K.N.; Kim, J.H.; Park, S.J.; Lee, H.J.; Kim, S.H.; Park, Y.K.; Park, Y.H.; Hwang, C.Y.; et al. Antimicrobial Effects of Silver Nanoparticles. Nanomedicine 2007, 3, 95–101. [CrossRef]
- Bonnema, G.; Hontelez, J.; Verkerk, R.; Zhang, Y.Q.; Van Daelen, R.; Van Kammen, A.; Zabel, P. An Improved Method of Partially Digesting Plant Megabase DNA Suitable for YAC Cloning: Application to the Construction of a 5.5 Genome Equivalent YAC Library of Tomato. The Plant Journal 1996, 9, 125–133. [CrossRef]
- Derbalah, A.; Shenashen, M.; Hamza, A.; Mohamed, A.; El Safty, S. Antifungal Activity of Fabricated Mesoporous Silica Nanoparticles against Early Blight of Tomato. Egyptian Journal of Basic and Applied Sciences 2018, 5, 145–150. [CrossRef]
- Safarpour, H.; Safarnejad, M.R.; Tabatabaei, M.; Mohsenifar, A.; Rad, F.; Basirat, M.; Shahryari, F.; Hasanzadeh, F. Development of a Quantum Dots FRET-Based Biosensor for Efficient Detection of Polymyxa Betae. Canadian Journal of Plant Pathology 2012, 34, 507–515. [CrossRef]
- Brusca, J. Inheritance of Tomato Late Blight Resistance from’Richter’s Wild Tomato’and Evaluation of Late Blight Resistance Gene Combinations in Adapted Fresh Market Tomato. 2003.
- Fukamachi, K.; Konishi, Y.; Nomura, T. Disease Control of Phytophthora Infestans Using Cyazofamid Encapsulated in Poly Lactic-Co-Glycolic Acid (PLGA) Nanoparticles. Colloids Surf A Physicochem Eng Asp 2019, 577, 315–322. [CrossRef]
- Ali, M.; Kim, B.; Belfield, K.D.; Norman, D.; Brennan, M.; Ali, G.S. Inhibition of Phytophthora Parasitica and P. Capsici by Silver Nanoparticles Synthesized Using Aqueous Extract of Artemisia Absinthium. Phytopathology 2015, 105, 1183–1190. [CrossRef]
- Bella, P.; Ialacci, G.; Licciardello, G.; Rosa, R.; Catara, V. CHARACTERIZATION OF ATYPICAL CLAVIBACTER MICHIGANENSIS Subsp. MICHIGANENSIS POPULATIONS IN GREENHOUSE TOMATOES IN ITALY. Journal of Plant Pathology 2012. [CrossRef]
- Kanhed, P.; Birla, S.; Gaikwad, S.; Gade, A.; Seabra, A.B.; Rubilar, O.; Duran, N.; Rai, M. In Vitro Antifungal Efficacy of Copper Nanoparticles against Selected Crop Pathogenic Fungi. Mater Lett 2014, 115, 13–17. [CrossRef]
- Kumari, M.; Pandey, S.; Bhattacharya, A.; Mishra, A.; Nautiyal, C.S. Protective Role of Biosynthesized Silver Nanoparticles against Early Blight Disease in Solanum Lycopersicum. Plant Physiology and Biochemistry 2017, 121, 216–225. [CrossRef]
- Gardner, R.G. NC EBR-1 and NC EBR-2 Early Blight Resistant Tomato Breeding Lines. HortScience 1988, 23, 779–781. [CrossRef]
- Gardner, R.G.; Shoemaker, P.B. “Mountain Supreme” Early Blight-Resistant Hybrid Tomato and Its Parents, NC EBR-3 and NC EBR-4. HortScience 1999.
- Gardner, R.G. Greenhouse Disease Screen Facilitates Breeding Resistance to Tomato Early Blight. HortScience 1990, 25, 222–223. [CrossRef]
- Gardner, R.G. “Plum Dandy”, a Hybrid Tomato, and Its Parents, NC EBR-5 and NC EBR-6. HortScience 2000, 35, 962–963.
- Gardner, R.G.; Panthee, D.R. ‘Plum Regal’ Fresh-Market Plum Tomato Hybrid and Its Parents, NC 25P and NC 30P. HortScience 2010, 45, 824–825. [CrossRef]
- Gardner, R.G.; Panthee, D.R. ‘Mountain Magic’: An Early Blight and Late Blight-Resistant Specialty Type F1 Hybrid Tomato. HortScience 2012, 47, 299–300. [CrossRef]
- Panthee, D.R. ‘Mountain Regina’: Multiple Disease Resistant Fresh-Market Hybrid Tomato and Its Parents, NC 1LF and NC 2LF. HortScience 2021, 56, 736–738. [CrossRef]
- Panthee, D.R.; Gardner, R.G. ‘Mountain Bebe’: Hybrid Grape Tomato and Its Parents NC 7 Grape and NC 8 Grape. HortScience 2022, 57, 444–446. [CrossRef]
- Panthee, D.R. ‘Mountain Crown’: Late Blight and Tomato Mosaic Virus-Resistant Plum Hybrid Tomato and Its Parent, NC 1 Plum. HortScience 2020, 55, 2056–2057. [CrossRef]
- Peirce, L.C. Linkage Tests with Ph Conditioning Resistance to Race 0, Phytophthora Infestans. . Report of the Tomato Genetics Cooperative 1971, 21, 30.
- Moreau, P.; Thoquet, P.; Olivier, J.; Laterrot, H.; Grimsley, N. Genetic Mapping of Ph-2, a Single Locus Controlling Partial Resistance to Phytophthora Infestans in Tomato. Molecular Plant Microbe Interaction 1998, 11, 259–269. [CrossRef]
- Gallegly, M.E. Resistance to the Late Blight Fungus in Tomato. Proceedings of Plant Science Seminar, Camden, New Jersey 1960. 1960.
- Goodwin, S.B.; Schneider, R.E.; Fry, W.E. Use of Cellulose-Acetate Electrophoresis for Rapid Identification of Allozyme Genotypes of Phytophthora Infestans. Plant Dis 1995, 79, 1181–1185. [CrossRef]
- Chunwongse, J.; Chunwongse, C.; Black, L.; Hanson, P. Molecular Mapping of the Ph-3 Gene for Late Blight Resistance in Tomato. J Hortic Sci Biotechnol 2002, 77, 281–286. [CrossRef]
- Panthee, D.R.; Gardner, R.G. ‘Mountain Merit’: A Late Blight-Resistant Large-Fruited Tomato Hybrid. HortScience 2010, 45, 1547–1548. [CrossRef]
- Panthee, D.R.; Gardner, R.G. ‘Mountain Rouge’: A Pink-Fruited, Heirloom-Type Hybrid Tomato and Its Parent Line NC 161L. HortScience 2014, 49, 1463–1464. [CrossRef]
- Anderson, T.; Dejong, D.; Glos, M.; Bojanowski, J.B.; Mutschler, M. Mapping Campbell 1943 Stem Early Blight Resistance and Adding an Additional Source of Foliar Early Blight Resistance to Cornell Fungal Resistant Tomato Line. Ithaca, NY: Cornell University 2019.
- Mutschler, M.A.; McGrath, M. VEGEdge : Cornell Cooperative Extension. 2019.
- Anderson, T.A.; Zitter, S.M.; De Jong, D.M.; Francis, D.M.; Mutschler, M.A. Cryptic Introgressions Contribute to Transgressive Segregation for Early Blight Resistance in Tomato. Theor Appl Genet 2021, 134, 2561–2575. [CrossRef]
- Foolad, M.R.; Subbiah, P.; Ghangas, G.S. Parent-Offspring Correlation Estimate of Heritability for Early Blight Resistance in Tomato, Lycopersicon Esculentum Mill. Euphytica 2002, 126, 291–297. [CrossRef]
- Foolad, M.R.; Lin, G.Y. Heritability of Early Blight Resistance in a Lycopersicon Esculentum×Lycopersicon Hirsutum Cross Estimated by Correlation between Parent and Progeny. Plant Breeding 2001, 120, 173–177. [CrossRef]
- Foolad, M.R.; Zhang, L.P.; Khan, A.A.; Niño-Liu, D.; Lin, G.Y. Identification of QTLs for Early Blight (Alternaria Solani) Resistance in Tomato Using Backcross Populations of a Lycopersicon Esculentum × L. Hirsutum Cross. Theoretical and Applied Genetics 2002, 104, 945–958. [CrossRef]
- Zhang, L.P.; Lin, G.Y.; Niño-Liu, D.; Foolad, M.R. Mapping QTLs Conferring Early Blight (Alternaria Solani) Resistance in a Lycopersicon Esculentum x L. Hirsutum Cross by Selective Genotyping. Molecular Breeding 2003, 12, 3–19. [CrossRef]
- Foolad, M.R.; Merk, H.L.; Ashrafi, H. Genetics, Genomics and Breeding of Late Blight and Early Blight Resistance in Tomato. Critical Reviews in Plant Sciences 2008, 27, 75–107. [CrossRef]
- Andrus, C.F.; Reynard, G.B. Resistance to Septoria Leaf Spot and Its Inheritance in Tomatoes. Phytopathology 1945, 35, 16–24.
- Locke, S.B. Resistance to Early Blight and Septoria Leaf Spot in the Genus Lycopersicon. Phytopathology 1949, 39, 829–836.
- Joshi, B. Molecular Tagging of Resistance Genes to Septoria Leaf Spot and Late Blight in Tomato (Solanum Lycopersicum L.). 2011.
- Paret, M.L.; Dufault, N.; Momol, T.; Marois, J.; Olson, S. Integrated Disease Management for Vegetable Crops in Florida. EDIS 2012, 2012. [CrossRef]
- Bubeck, D.M.; Carlone, M.R.; Fox, R.L.; Hoffbeck, M.D.; Segebart, R.L.; Stucker, D.S. Breeding Progress Measured in Eight Elite Inbred Families. Maydica 2006, 51, 141–149.
- Singh, V.K.; Singh, A.K.; Kumar, A. Disease Management of Tomato through PGPB: Current Trends and Future Perspective. 3 Biotech 2017, 7, 1–10. [CrossRef]
- Bombarely, A.; Menda, N.; Tecle, I.Y.; Buels, R.M.; Strickler, S.; Fischer-York, T.; Pujar, A.; Leto, J.; Gosselin, J.; Mueller, L.A. The Sol Genomics Network (Solgenomics.Net): Growing Tomatoes Using Perl. Nucleic Acids Res 2011, 39, D1149–D1155. [CrossRef]
- Nash, A.F.; Gardner, R.G. Tomato Early Blight Resistance in a Breeding Line Derived from Lycopersicon Hirsutum PI 126445. Plant Dis 1988.
- Nash, A.F.; Gardner, R.G. Heritability of Tomato Early Blight Resistance Derived from Lycopersicon Hirsutum P.I. 126445. Journal of the American Society for Horticultural Science 1988, 113, 264–268. [CrossRef]
- Chaerani, R.; Smulders, M.J.M.; Van Der Linden, C.G.; Vosman, B.; Stam, P.; Voorrips, R.E. QTL Identification for Early Blight Resistance (Alternaria Solani) in a Solanum Lycopersicum × S. Arcanum Cross. Theoretical and Applied Genetics 2007, 114, 439–450. [CrossRef]
- Adhikari, P.; Oh, Y.; Panthee, D.R. Current Status of Early Blight Resistance in Tomato: An Update. Int J Mol Sci 2017, 18. [CrossRef]
- Rao, E.S.; Munshi, A.D.; Sinha, P.; Rajkumar Genetics of Rate Limiting Disease Reaction to Alternaria Solani in Tomato. Euphytica 2008, 159, 123–134. [CrossRef]
- Gardner, R.G.; Panthee, D.R. NC 1 CELBR and NC 2 CELBR: Early Blight and Late Blight-Resistant Fresh Market Tomato Breeding Lines. HortScience 2010, 45, 975–976. [CrossRef]
- Bihon, W.; Ognakossan, K.E.; Tignegre, J.B.; Hanson, P.; Ndiaye, K.; Srinivasan, R. Evaluation of Different Tomato (Solanum Lycopersicum L.) Entries and Varieties for Performance and Adaptation in Mali, West Africa. Horticulturae 2022, Vol. 8, Page 579 2022, 8, 579. [CrossRef]
- Adhikari, T.B.; Siddique, M.I.; Louws, F.J.; Sim, S.-C.; Panthee, D.R. Molecular Mapping of Quantitative Trait Loci for Resistance to Early Blight in Tomatoes. Front Plant Sci 2023, 14, 1684. [CrossRef]
- Beavis, W.D. QTL Analyses: Power, Precision, and Accuracy. Molecular Dissection of Complex Traits 1998, 145–162. [CrossRef]
- Carvalho, L.J.C.B.; Schaal, B.A. Assessing Genetic Diversity in the Cassava (Manihot Esculenta Crantz) Germplasm Collection in Brazil Using PCR-Based Markers. Euphytica 2001, 120, 133–142. [CrossRef]
- Panthee, D.R.; Piotrowski, A.; Ibrahem, R. Mapping Quantitative Trait Loci (QTL) for Resistance to Late Blight in Tomato. International Journal of Molecular Sciences 2017, Vol. 18, Page 1589 2017, 18, 1589. [CrossRef]
- Akhtar, K.P.; Ullah, N.; Saleem, M.Y.; Iqbal, Q.; Asghar, M.; Khan, A.R. Evaluation of Tomato Genotypes for Early Blight Disease Resistance Caused by Alternaria Solani in Pakistan. Journal of Plant Pathology 2019, 101, 1159–1170. [CrossRef]
- Singh, A.K.; Rai, N.; Singh, R.K.; Saha, S.; Rai, R.K.; Singh, R.P. Genetics of Resistance to Early Blight Disease in Crosses of Wild Derivatives of Tomato. Sci Hortic 2017, 219, 70–78. [CrossRef]
- IOP Conf Ser Earth Environ Sci 2020, 482. [CrossRef]
- Oliveira, M.D.M.; Varanda, C.M.R.; Félix, M.R.F. Induced Resistance during the Interaction Pathogen x Plant and the Use of Resistance Inducers. Phytochem Lett 2016, 15, 152–158. [CrossRef]
- Tripathi, D.; Raikhy, G.; Kumar, D. Chemical Elicitors of Systemic Acquired Resistance—Salicylic Acid and Its Functional Analogs. Curr Plant Biol 2019, 17, 48–59. [CrossRef]
- Camejo, D.; Martí, M.D.C.; Nicolás, E.; Alarcón, J.J.; Jiménez, A.; Sevilla, F. Response of Superoxide Dismutase Isoenzymes in Tomato Plants (Lycopersicon Esculentum) during Thermo-Acclimation of the Photosynthetic Apparatus. Physiol Plant 2007, 131, 367–377. [CrossRef]
- Belkhadir, Y.; Nimchuk, Z.; Hubert, D.A.; Mackey, D.; Dangl, J.L. Arabidopsis RIN4 Negatively Regulates Disease Resistance Mediated by RPS2 and RPM1 Downstream or Independent of the NDR1 Signal Modulator and Is Not Required for the Virulence Functions of Bacterial Type III Effectors AvrRpt2 or AvrRpm1. Plant Cell 2004, 16, 2822–2835. [CrossRef]
- Zhang, C.; Liu, L.; Zheng, Z.; Sun, Y.; Zhou, L.; Yang, Y.; Cheng, F.; Zhang, Z.; Wang, X.; Huang, S.; et al. Fine Mapping of the Ph-3 Gene Conferring Resistance to Late Blight (Phytophthora Infestans) in Tomato. Theor Appl Genet 2013, 126, 2643–2653. [CrossRef]
- Zhang, C.; Liu, L.; Wang, X.; Vossen, J.; Li, G.; Li, T.; Zheng, Z.; Gao, J.; Guo, Y.; Visser, R.G.F.; et al. The Ph-3 Gene from Solanum Pimpinellifolium Encodes CC-NBS-LRR Protein Conferring Resistance to Phytophthora Infestans. Theor Appl Genet 2014, 127, 1353. [CrossRef]
- Robbins, M.D.; Masud, M.A.T.; Panthee, D.R.; Gardner, R.G.; Francis, D.M.; Stevens, M.R. Marker-Assisted Selection for Coupling Phase Resistance to Tomato Spotted Wilt Virus and Phytophthora Infestans (Late Blight) in Tomato. HortScience 2010, 45, 1424–1428. [CrossRef]
- Foolad, M.R.; Panthee, D.R. Marker-Assisted Selection in Tomato Breeding. CRC Crit Rev Plant Sci 2012, 31, 93–123. [CrossRef]
- Brouwer, D.J.; St. Clair, D.A. Fine Mapping of Three Quantitative Trait Loci for Late Blight Resistance in Tomato Using near Isogenic Lines (NILs) and Sub-NILs. Theoretical and Applied Genetics 2004, 108, 628–638. [CrossRef]
- Brouwer, D.; Jones, E.; Genome, D.C.-; 2004, undefined QTL Analysis of Quantitative Resistance to Phytophthora Infestans (Late Blight) in Tomato and Comparisons with Potato. Genome 2004, 47, 475–492. [CrossRef]
- Haggard, J.E.; Johnson, E.B.; St. Clair, D.A. Linkage Relationships among Multiple QTL for Horticultural Traits and Late Blight (P. Infestans) Resistance on Chromosome 5 Introgressed from Wild Tomato Solanum Habrochaites. G3: Genes, Genomes, Genetics 2013, 3, 2131–2146. [CrossRef]
- Haggard, J.E.; Johnson, E.B.; St. Clair, D.A. Multiple QTL for Horticultural Traits and Quantitative Resistance to Phytophthora Infestans Linked on Solanum Habrochaites Chromosome 11. G3: Genes, Genomes, Genetics 2015, 5, 219–233. [CrossRef]
- Johnson, E.B.; Erron Haggard, J.; St.Clair, D.A. Fractionation, Stability, and Isolate-Specificity of QTL for Resistance to Phytophthora Infestans in Cultivated Tomato (Solanum Lycopersicum). G3: Genes, Genomes, Genetics 2012, 2, 1145–1159. [CrossRef]
- Li, J.; Liu, L.; Bai, Y.; Finkers, R.; Wang, F.; Du, Y.; Yang, Y.; Xie, B.; Visser, R.G.F.; van Heusden, A.W. Identification and Mapping of Quantitative Resistance to Late Blight (Phytophthora Infestans) in Solanum Habrochaites LA1777. Euphytica 2011, 179, 427–438. [CrossRef]
- Haggard, J.E.; St.Clair, D.A. Combining Ability for Phytophthora Infestans Quantitative Resistance from Wild Tomato. Crop Sci 2015, 55, 240–254. [CrossRef]
- Smart, C.D.; Tanksley, S.D.; Mayton, H.; Fry, W.E. Resistance to Phytophthora Infestans in Lycopersicon Pennellii. Plant Dis 2007, 91, 1045–1049. [CrossRef]
- Hanson, P.; Lu, S.F.; Wang, J.F.; Chen, W.; Kenyon, L.; Tan, C.W.; Tee, K.L.; Wang, Y.Y.; Hsu, Y.C.; Schafleitner, R.; et al. Conventional and Molecular Marker-Assisted Selection and Pyramiding of Genes for Multiple Disease Resistance in Tomato. Sci Hortic 2016, 201, 346–354. [CrossRef]
- Wang, Y.Y.; Chen, C.H.; Hoffmann, A.; Hsu, Y.C.; Lu, S.F.; Wang, J.F.; Hanson, P. Evaluation of the Ph-3 Gene-Specific Marker Developed for Marker-Assisted Selection of Late Blight-Resistant Tomato. Plant Breeding 2016, 135, 636–642. [CrossRef]
- Sullenberger, M.T.; Jia, M.; Gao, S.; Ashrafi, H.; Foolad, M.R. Identification of Late Blight Resistance Quantitative Trait Loci in Solanum Pimpinellifolium Accession PI 270441. Plant Genome 2022, 15, e20251. [CrossRef]
- Ohlson, E.W.; Ashrafi, H.; Foolad, M.R. Identification and Mapping of Late Blight Resistance Quantitative Trait Loci in Tomato Accession PI 163245. Plant Genome 2018, 11, 180007. [CrossRef]
- Kimura, S.; Sinha, N. Tomato (Solanum Lycopersicum): A Model Fruit-Bearing Crop. Cold Spring Harb Protoc 2008, 2008, pdb.emo105. [CrossRef]
- Joshi, B.K.; Louws, F.J.; Yencho, G.C.; Sosinski, B.R.; Arellano, C.; Panthee, D.R. Molecular Markers for Septoria Leaf Spot (Septoria Lycopersicii Speg.) Resistance in Tomato (Solanum Lycopersicum L.). Nepal Journal of Biotechnology 2015, 3, 40–47. [CrossRef]
- Blum, E.; Liu, K.; Mazourek, M.; Yoo, E.Y.; Jahn, M.; Paran, I. Molecular Mapping of the C Locus for Presence of Pungency in Capsicum. Genome 2002, 45, 702–705. [CrossRef]
- Zitter, T.A.; Mutschler-Chu, M.A. Choosing LB, EB and SLS Resistant Tomato Varieties for 2014 What Tomato Growers Need to Know About Foliar Disease Resistance Issues? Cornell University: Cooperative Extension 2013.
- Satelis, J.F.; Boiteux, L.S.; Reis, A. Resistance to Septoria Lycopersici in Solanum (Section Lycopersicon) Species and in Progenies of S. Lycopersicum × S. Peruvianum. Sci Agric 2010, 67, 334–341. [CrossRef]
- Camejo, D.; Nicolás, E.; Torres, W.; Alarcón, J.J. Differential Heat-Induced Changes in the CO2 Assimilation Rate and Electron Transport in Tomato (Lycopersicon Esculentum Mill.). The Journal of Horticultural Sciences and Biotechnology 2010, 85, 137–143. [CrossRef]
- Sato, S.; Tabata, S.; Hirakawa, H.; Asamizu, E.; Shirasawa, K.; Isobe, S.; Kaneko, T.; Nakamura, Y.; Shibata, D.; Aoki, K.; et al. The Tomato Genome Sequence Provides Insights into Fleshy Fruit Evolution. Nature 2012 485:7400 2012, 485, 635–641. [CrossRef]
- Rothan, C.; Diouf, I.; Causse, M. Trait Discovery and Editing in Tomato. The Plant Journal 2019, 97, 73–90. [CrossRef]
- Alwala, S.; Suman, A.; Arro, J.A.; Veremis, J.C.; Kimbeng, C.A. Target Region Amplification Polymorphism (TRAP) for Assessing Genetic Diversity in Sugarcane Germplasm Collections. Crop Sci 2006, 46, 448–455. [CrossRef]
- Albuquerque, P.; Caridade, C.M.R.; Rodrigues, A.S.; Marcal, A.R.S.; Cruz, J.; Cruz, L.; Santos, C.L.; Mendes, M. V.; Tavares, F. Evolutionary and Experimental Assessment of Novel Markers for Detection of Xanthomonas Euvesicatoria in Plant Samples. PLoS One 2012, 7, e37836. [CrossRef]
- Liu, S.; Yeh, C.T.; Tang, H.M.; Nettleton, D.; Schnable, P.S. Gene Mapping via Bulked Segregant RNA-Seq (BSR-Seq). PLoS One 2012, 7, e36406. [CrossRef]
- Chen, Y.; Lun, A.T.L.; Smyth, G.K. Differential Expression Analysis of Complex RNA-Seq Experiments Using EdgeR. Statistical Analysis of Next Generation Sequencing Data 2014, 51–74. [CrossRef]
- Suresh, B.V.; Roy, R.; Sahu, K.; Misra, G.; Chattopadhyay, D. Tomato Genomic Resources Database: An Integrated Repository of Useful Tomato Genomic Information for Basic and Applied Research. PLoS One 2014, 9, e86387. [CrossRef]
- Yano, K.; Aoki, K.; Shibata, D. Genomic Databases for Tomato. Plant Biotechnology 2007, 24, 17–25. [CrossRef]
- Matsukura, C.; Aoki, K.; Fukuda, N.; Mizoguchi, T.; Asamizu, E.; Saito, T.; Shibata, D.; Ezura, H. Comprehensive Resources for Tomato Functional Genomics Based on the Miniature Model Tomato Micro-Tom. Curr Genomics 2008, 9, 436–443. [CrossRef]
- Barone, A.; Matteo, A.; Carputo, D.; Frusciante, L. High-Throughput Genomics Enhances Tomato Breeding Efficiency. Curr Genomics 2009, 10, 1. [CrossRef]
- Campbell, J.K.; Rogers, R.B.; Lila, M.A.; Erdman, J.W. Biosynthesis of 14C-Phytoene from Tomato Cell Suspension Cultures (Lycopersicon Esculentum) for Utilization in Prostate Cancer Cell Culture Studies. J Agric Food Chem 2006, 54, 747–755. [CrossRef]
- Shi, R.; Panthee, D.R. Transcriptome-Based Analysis of Tomato Genotypes Resistant to Bacterial Spot (Xanthomonas Perforans) Race T4. International Journal of Molecular Sciences 2020, Vol. 21, Page 4070 2020, 21, 4070. [CrossRef]
- Kim, M.; Nguyen, T.T.P.; Ahn, J.H.; Kim, G.J.; Sim, S.C. Genome-Wide Association Study Identifies QTL for Eight Fruit Traits in Cultivated Tomato (Solanum Lycopersicum L.). Hortic Res 2021, 8, 203. [CrossRef]
- Casa, A.M.; Pressoir, G.; Brown, P.J.; Mitchell, S.E.; Rooney, W.L.; Tuinstra, M.R.; Franks, C.D.; Kresovich, S. Community Resources and Strategies for Association Mapping in Sorghum. Crop Sci 2008, 48, 30–40. [CrossRef]
- Wang, X.; Gao, L.; Jiao, C.; Stravoravdis, S.; Hosmani, P.S.; Saha, S.; Zhang, J.; Mainiero, S.; Strickler, S.R.; Catala, C.; et al. Genome of Solanum Pimpinellifolium Provides Insights into Structural Variants during Tomato Breeding. Nature Communications 2020 11:1 2020, 11, 1–11. [CrossRef]
- Gao, L.; Gonda, I.; Sun, H.; Ma, Q.; Bao, K.; Tieman, D.M.; Burzynski-Chang, E.A.; Fish, T.L.; Stromberg, K.A.; Sacks, G.L.; et al. The Tomato Pan-Genome Uncovers New Genes and a Rare Allele Regulating Fruit Flavor. Nature Genetics 2019, 51, 1044–1051. [CrossRef]
- Gonda, I.; Ashrafi, H.; Lyon, D.A.; Strickler, S.R.; Hulse-Kemp, A.M.; Ma, Q.; Sun, H.; Stoffel, K.; Powell, A.F.; Futrell, S.; et al. Sequencing-Based Bin Map Construction of a Tomato Mapping Population, Facilitating High-Resolution Quantitative Trait Loci Detection. Plant Genome 2019, 12, 180010. [CrossRef]
- Chetty, V.J.; Ceballos, N.; Garcia, D.; Narváez-Vásquez, J.; Lopez, W.; Orozco-Cárdenas, M.L. Evaluation of Four Agrobacterium Tumefaciens Strains for the Genetic Transformation of Tomato (Solanum Lycopersicum L.) Cultivar Micro-Tom. Plant Cell Rep 2013, 32, 239–247. [CrossRef]
- Arshad, W.; Haq, I.U.; Waheed, M.T.; Mysore, K.S.; Mirza, B. Agrobacterium-Mediated Transformation of Tomato with RolB Gene Results in Enhancement of Fruit Quality and Foliar Resistance against Fungal Pathogens. PLoS One 2014, 9, e96979. [CrossRef]
- Khan, R.S.; Nakamura, I.; Mii, M. Development of Disease-Resistant Marker-Free Tomato by R/RS Site-Specific Recombination. Plant Cell Rep 2011, 30, 1041–1053. [CrossRef]
- Catanzariti, A.M.; Lim, G.T.T.; Jones, D.A. The Tomato I-3 Gene: A Novel Gene for Resistance to Fusarium Wilt Disease. New Phytologist 2015, 207, 106–118. [CrossRef]
- Kaplanoglu, E.; Kolotilin, I.; Menassa, R.; Donly, C. Plastid Transformation of Micro-Tom Tomato with a Hemipteran Double-Stranded RNA Results in RNA Interference in Multiple Insect Species. Int J Mol Sci 2022, 23, 3918. [CrossRef]
- Čermák, T.; Gasparini, K.; Kevei, Z.; Zsögön, A. Genome Editing to Achieve the Crop Ideotype in Tomato. Methods in Molecular Biology 2021, 2264, 219–244. [CrossRef]
- Nagamine, A.; Takayama, M.; Ezura, H. Genetic Improvement of Tomato Using Gene Editing Technologies. J Hortic Sci Biotechnol 2022, 98, 1–9. [CrossRef]
- Barka, G.D.; Lee, J. Advances in S Gene Targeted Genome-Editing and Its Applicability to Disease Resistance Breeding in Selected Solanaceae Crop Plants. Bioengineered 2022, 13, 14646–14666. [CrossRef]
- Bhargava, A.; Shukla, S.; Ohri, D. Evaluation of Foliage Yield and Leaf Quality Traits in Chenopodium Spp. in Multiyear Trials. Euphytica 2007, 153, 199–213. [CrossRef]
- Hong, Y.; Meng, J.; He, X.; Zhang, Y.; Liu, Y.; Zhang, C.; Qi, H.; Luan, Y. Editing Mir482b and Mir482c Simultaneously by Crispr/Cas9 Enhanced Tomato Resistance to Phytophthora Infestans. Phytopathology 2021, 111, 1008–1016. [CrossRef]
- Tiwari, J.K.; Singh, A.K.; Behera, T.K. CRISPR/Cas Genome Editing in Tomato Improvement: Advances and Applications. Front Plant Sci 2023, 14. [CrossRef]




| Country | Production (million tons) | Area ('000 ha) | Yield (ton/ha) | World production (%) |
|---|---|---|---|---|
| China | 64.9 | 1111.5 | 58.4 | 34.7 |
| India | 20.6 | 812.0 | 25.3 | 11.0 |
| Turkey | 13.2 | 181.9 | 72.6 | 7.1 |
| USA | 12.2 | 110.4 | 110.7 | 6.5 |
| Egypt | 6.7 | 170.9 | 39.4 | 3.6 |
| Italy | 6.2 | 99.8 | 62.6 | 3.3 |
| Iran | 5.8 | 129.1 | 44.8 | 3.1 |
| Spain | 4.3 | 55.5 | 77.8 | 2.3 |
| Mexico | 4.1 | 84.9 | 48.7 | 2.2 |
| Brazil | 3.8 | 52.0 | 72.2 | 2.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
