Altmetrics
Downloads
84
Views
21
Comments
0
A peer-reviewed article of this preprint also exists.
Submitted:
29 June 2023
Posted:
30 June 2023
You are already at the latest version
Ref. No. | Models and techniques | Regression/ Classification |
Service/ Application |
Dimensionality reduction methods and techniques |
---|---|---|---|---|
[10] | NN, Recurrent Neural Network (RNN) with Long Short-Term Memory (LSTM) neurons, Random Forest (RF), SVM |
Classification | C-V2X | Maximum Dependency (MD) algorithm |
[11] | LSTM; k-medoids classification, Epanechnikov Kerne, Moving average functions |
Regression and Classification |
Delay-sensitive V2X Applications in Mobile Cloud/Edge Computing Systems |
- |
[12] | Mathematical models | Regression | M2M uplink communication | - |
[13] | Logistic Regression (LR), SVM, Decision Tree (DT) | Classification | Operational 4G Networks Services | Random Forest |
[14] | Artificial Neural Networks, Decision Tree, Ensemble modeling: Bagging technique with a Decision Tree | Regression | IIoT | Lag features, Window features |
[15] | Mathematical models, PPM, virtual queues | Regression | Real time services | - |
[16] | Mathematical models, PPM, virtual queues | Regression | Real time services | - |
[17] | Multivariate linear regression technique | Regression | LTE services | - |
[18] | Logistic regression, Random forest, Light gradient-boosting machine (LightGBM), Ensemble | Classification | 4G and 5G services | - |
Mean | StDev | Var | Min | Median | Max | Skewness | Kurtosis |
---|---|---|---|---|---|---|---|
4.1503 | 2.6520 | 7.0329 | 1.8081 | 3.2516 | 25.8282 | 2.81 | 10.17 |
Rank | Independent variable or Predictor | Predictor weighting coefficients for individual values of k | ||
---|---|---|---|---|
k=10 | k=15 | k=20 | ||
1 | DL.16QAM.TB.Retrans | 0.0061 | 0.0065 | 0.007 |
2 | DL.QPSK.TB.Retrans | 0.006 | 0.0064 | 0.0067 |
3 | Cell_Traffic_Volume_UL | 0.0041 | 0.0044 | 0.0045 |
4 | DL_PRB_Usage_Rate | 0.0037 | 0.004 | 0.0043 |
5 | Cell_Traffic_Volume_DL | 0.0033 | 0.0035 | 0.0038 |
6 | UL_Average_Interference | 0.0028 | 0.0031 | 0.0033 |
7 | DL.64QAM.TB.Retrans | 0.0027 | 0.0028 | 0.0029 |
8 | Cell | 0.0024 | 0.0025 | 0.0027 |
9 | UL_IBLER | 0.001 | 0.001 | 0.0012 |
10 | UL_ReTrans_Rate | 0.0009 | 0.001 | 0.0011 |
11 | Cell_Uplink_Average_Throughput | 0.0006 | 0.0006 | 0.0007 |
12 | Average_UL_User_Throughput | 0.0001 | 0.0001 | 0.0001 |
13 | Average_CQI | -0.0008 | -0.0008 | -0.0009 |
14 | DL_ReTrans_Rate | -0.0013 | -0.0013 | -0.0014 |
15 | DL_IBLER | -0.0015 | -0.0016 | -0.0017 |
16 | Cell_Downlink_Average_Throughput | -0.0019 | -0.002 | -0.0021 |
17 | Average_DL_User_Throughput | -0.0027 | -0.0029 | -0.003 |
Model | RE | Correlation |
---|---|---|
1. k-NN | 0.109 | 0.944 |
2. NN | 0.159 | 0.917 |
3. SVM | 0.205 | 0.893 |
An approach to optimization of a set of input variables | ML model selected | Number of inputs | RE | Kolmogorov-Smirnov | ||
---|---|---|---|---|---|---|
Statistic | df | Sig. | ||||
RReliefF algorithm | k-NN | 6 | 0.109 | 0.188 | 31143 | 0.000 |
Backward selection via the recursive feature elimination algorithm | k-NN | 4 | 0.041 | 0.191 | 31143 | 0.000 |
Pareto 80/20 rule | k-NN | 11 | 0.049 | 0.189 | 31143 | 0.000 |
N | 31143 |
Chi-Square | 268.019 |
df | 2 |
Asymp. Sig. | 0.000 |
Pairs for comparison | |||
---|---|---|---|
RReliefF - Pareto 80/20 rule | Backward selection via the recursive feature elimination - RReliefF | Backward selection via the recursive feature elimination - Pareto 80/20 rule | |
Z | -3.077 | -7.848 | -18.727 |
Asymp. Sig. (2-tailed) | 0.002 | 0.000 | 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 MDPI (Basel, Switzerland) unless otherwise stated