Submitted:
29 June 2023
Posted:
30 June 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
3. Result
3.1. COVID-19 and T1D incidence
3.2. Clinical outcomes and complications of T1D patients during COVID-19
4. Discussion
5. Conclusion
Authors’ contributions
Source of funding
Data Availability
Acknowledgments
Disclosures
Correspondence
Abbreviations
References
- Rabaan, A.A.; Smajlović, S.; Tombuloglu, H.; Ćordić, S.; Hajdarević, A.; Kudić, N.; Al Mutai, A.; Turkistani, S.A.; Al-Ahmed, S.H.; Al-Zaki, N.A.; Al Marshood, M.J.; Alfaraj, A.H.; Alhumaid, S.; Al-Suhaimi, E. SARS-CoV-2 infection and multi-organ system damage: A review. Biomol Biomed. 2023, 23, 37–52. [Google Scholar] [CrossRef]
- Clarke, S.A.; Abbara, A.; Dhillo, W.S. Impact of COVID-19 on the Endocrine System: A Mini-review. Endocrinology. 2022, 163. [Google Scholar]
- Banday, M.Z.; Sameer, A.S.; Nissar, S. Pathophysiology of diabetes: An overview. Avicenna J Med. 2020, 10, 174–188. [Google Scholar]
- Kim, S.H.; Arora, I.; Hsia, D.S.; Knowler, W.C.; LeBlanc, E.; Mylonakis, E.; Pratley, R.; Pittas, A.G. New-Onset Diabetes after COVID-19. The Journal of clinical endocrinology and metabolism. 2023. [Google Scholar]
- Wang, Y.; Guo, H.; Wang, G.; Zhai, J.; Du, B. COVID-19 as a Trigger for type 1 diabetes. The Journal of clinical endocrinology and metabolism 2023. [Google Scholar]
- Muniangi-Muhitu, H.; Akalestou, E.; Salem, V.; Misra, S.; Oliver, N.S.; Rutter, G.A. Covid-19 and Diabetes: A Complex Bidirectional Relationship. Front Endocrinol (Lausanne). 2020, 11, 582936. [Google Scholar]
- Birkebaek, N.H.; Kamrath, C.; Grimsmann, J.M.; Aakesson, K.; Cherubini, V.; Dovc, K.; de Beaufort, C.; Alonso, G.T.; Gregory, J.W.; White, M.; Skrivarhaug, T.; Sumnik, Z.; Jefferies, C.; Hörtenhuber, T.; Haynes, A.; De Bock, M.; Svensson, J.; Warner, J.T.; Gani, O.; Gesuita, R.; Schiaffini, R.; Hanas, R.; Rewers, A.; Eckert, A.J.; Holl, R.W.; Cinek, O. Impact of the COVID-19 pandemic on long-term trends in the prevalence of diabetic ketoacidosis at diagnosis of paediatric type 1 diabetes: an international multicentre study based on data from 13 national diabetes registries. Lancet Diabetes Endocrinol. 2022, 10, 786–794. [Google Scholar]
- Lawrence, C.; Seckold, R.; Smart, C.; King, B.R.; Howley, P.; Feltrin, R.; Smith, T.A.; Roy, R.; Lopez, P. Increased paediatric presentations of severe diabetic ketoacidosis in an Australian tertiary centre during the COVID-19 pandemic. Diabet Med. 2021, 38, e14417. [Google Scholar]
- Li J, Wang X, Chen J, Zuo X, Zhang H, Deng A. COVID-19 infection may cause ketosis and ketoacidosis. Diabetes Obes Metab. 2020, 22, 1935–1941. [Google Scholar] [CrossRef]
- Kamrath, C.; Rosenbauer, J.; Tittel, S.R.; Warncke, K.; Hirtz, R.; Denzer, C.; Dost, A.; Neu, A.; Pacaud, D.; Holl, R.W. Frequency of Autoantibody-Negative Type 1 Diabetes in Children, Adolescents, and Young Adults During the First Wave of the COVID-19 Pandemic in Germany. Diabetes Care. 2021, 44, 1540–1546. [Google Scholar]
- Kamrath, C.; Rosenbauer, J.; Eckert, A.J.; Pappa, A.; Reschke, F.; Rohrer, T.R.; Mönkemöller, K.; Wurm, M.; Hake, K.; Raile, K.; Holl, R.W. Incidence of COVID-19 and Risk of Diabetic Ketoacidosis in New-Onset Type 1 Diabetes. Pediatrics. 2021, 148. [Google Scholar]
- Mastromauro, C.; Blasetti, A.; Primavera, M.; Ceglie, L.; Mohn, A.; Chiarelli, F.; Giannini, C. Peculiar characteristics of new-onset Type 1 Diabetes during COVID-19 pandemic. Ital J Pediatr. 2022, 48, 26. [Google Scholar]
- Zubkiewicz-Kucharska, A.; Seifert, M.; Stępkowski, M.; Noczyńska, A. Diagnosis of type 1 diabetes during the SARS-CoV-2 pandemic: Does lockdown affect the incidence and clinical status of patients? Adv Clin Exp Med. 2021, 30, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Moher, D.; Shamseer, L.; Clarke, M.; Ghersi, D.; Liberati, A.; Petticrew, M.; Shekelle, P.; Stewart, L.A. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev. 2015, 4, 1. [Google Scholar]
- Cariou, B.; Hadjadj, S.; Wargny, M.; Pichelin, M.; Al-Salameh, A.; Allix, I.; Amadou, C.; Arnault, G.; Baudoux, F.; Bauduceau, B.; Borot, S.; Bourgeon-Ghittori, M.; Bourron, O.; Boutoille, D.; Cazenave-Roblot, F.; Chaumeil, C.; Cosson, E.; Coudol, S.; Darmon, P.; Disse, E.; Ducet-Boiffard, A.; Gaborit, B.; Joubert, M.; Kerlan, V.; Laviolle, B.; Marchand, L.; Meyer, L.; Potier, L.; Prevost, G.; Riveline, J.P.; Robert, R.; Saulnier, P.J.; Sultan, A.; Thébaut, J.F.; Thivolet, C.; Tramunt, B.; Vatier, C.; Roussel, R.; Gautier, J.F.; Gourdy, P. Phenotypic characteristics and prognosis of inpatients with COVID-19 and diabetes: the CORONADO study. Diabetologia. 2020, 63, 1500–1515. [Google Scholar] [PubMed]
- Kamrath, C.; Rosenbauer, J.; Eckert, A.J.; Siedler, K.; Bartelt, H.; Klose, D.; Sindichakis, M.; Herrlinger, S.; Lahn, V.; Holl, R.W. Incidence of Type 1 Diabetes in Children and Adolescents During the COVID-19 Pandemic in Germany: Results From the DPV Registry. Diabetes Care. 2022, 45, 1762–1771. [Google Scholar]
- Jacob, R.; Weiser, G.; Krupik, D.; Takagi, D.; Peled, S.; Pines, N.; Hashavya, S.; Gur-Soferman, H.; Gamsu, S.; Kaplan, O.; Maimon, M.; Oren, S.; Padeh, G.; Shavit, I. Diabetic Ketoacidosis at Emergency Department Presentation During the First Months of the SARS-CoV-2 Pandemic in Israel: A Multicenter Cross-Sectional Study. Diabetes Ther. 2021, 12, 1569–1574. [Google Scholar] [PubMed]
- Dżygało, K.; Nowaczyk, J.; Szwilling, A.; Kowalska, A. Increased frequency of severe diabetic ketoacidosis at type 1 diabetes onset among children during COVID-19 pandemic lockdown: an observational cohort study. Pediatr Endocrinol Diabetes Metab. 2020, 26, 167–175. [Google Scholar] [CrossRef]
- Ho, J.; Rosolowsky, E.; Pacaud, D.; Huang, C.; Lemay, J.A.; Brockman, N.; Rath, M.; Doulla, M. Diabetic ketoacidosis at type 1 diabetes diagnosis in children during the COVID-19 pandemic. Pediatr Diabetes. 2021, 22, 552–557. [Google Scholar]
- Pietrzak, I.; Michalak, A.; Seget, S.; Bednarska, M.; Beń-Skowronek, I.; Bossowski, A.; Chobot, A.; Dżygało, K.; Głowińska-Olszewska, B.; Górnicka, M.; Horodnicka-Józwa, A.; Jakubek-Kipa, K.; Jarosz-Chobot, P.; Marcinkiewicz, K.; Mazur, A.; Myśliwiec, M.; Nazim, J.; Niechciał, E.; Noczyńska, A.; Rusak, E.; Seifert, M.; Skotarczyk-Kowalska, E.; Skowronek, A.; Szypowska, A.; Wais, P.; Walczak, M.; Wołoszyn-Durkiewicz, A.; Wysocka-Mincewicz, M.; Zubkiewicz-Kucharska, A.; Szadkowska, A. Diabetic ketoacidosis incidence among children with new-onset type 1 diabetes in Poland and its association with COVID-19 outbreak-Two-year cross-sectional national observation by PolPeDiab Study Group. Pediatr Diabetes. 2022, 23, 944–955. [Google Scholar]
- Boboc, A.A.; Novac, C.N.; Ilie, M.T.; Ieșanu, M.I.; Galoș, F.; Bălgrădean, M.; Berghea, E.C.; Ionescu, M.D. The Impact of SARS-CoV-2 Pandemic on the New Cases of T1DM in Children. A Single-Centre Cohort Study. J Pers Med 2021, 11. [Google Scholar]
- Alaqeel, A.; Aljuraibah, F.; Alsuhaibani, M.; Huneif, M.; Alsaheel, A.; Dubayee, M.A.; Alsaedi, A.; Bakkar, A.; Alnahari, A.; Taha, A.; Alharbi, K.; Alanazi, Y.; Almadhi, S.; Khalifah, R.A. The Impact of COVID-19 Pandemic Lockdown on the Incidence of New-Onset Type 1 Diabetes and Ketoacidosis Among Saudi Children. Front Endocrinol (Lausanne). 2021, 12, 669302. [Google Scholar]
- Dilek, S.; Gürbüz, F.; Turan, İ.; Celiloğlu, C.; Yüksel, B. Changes in the presentation of newly diagnosed type 1 diabetes in children during the COVID-19 pandemic in a tertiary center in Southern Turkey. J Pediatr Endocrinol Metab. 2021, 34, 1303–1309. [Google Scholar] [PubMed]
- O'Malley, G.; Ebekozien, O.; Desimone, M.; Pinnaro, C.T.; Roberts, A.; Polsky, S.; Noor, N.; Aleppo, G.; Basina, M.; Tansey, M.; Steenkamp, D.; Vendrame, F.; Lorincz, I.; Mathias, P.; Agarwal, S.; Golden, L.; Hirsch, I.B.; Levy, C.J. COVID-19 Hospitalization in Adults with Type 1 Diabetes: Results from the T1D Exchange Multicenter Surveillance Study. The Journal of clinical endocrinology and metabolism. 2021, 106, e936–e942. [Google Scholar] [CrossRef]
- Bogale, K.T.; Urban, V.; Schaefer, E.; Bangalore Krishna, K. The Impact of COVID-19 Pandemic on Prevalence of Diabetic Ketoacidosis at Diagnosis of Type 1 Diabetes: A Single-Centre Study in Central Pennsylvania. Endocrinol Diabetes Metab. 2021, 4, e00235. [Google Scholar] [CrossRef]
- Danne, T.; Lanzinger, S.; de Bock, M.; Rhodes, E.T.; Alonso, G.T.; Barat, P.; Elhenawy, Y.; Kershaw, M.; Saboo, B.; Scharf Pinto, M.; Chobot, A.; Dovc, K. A Worldwide Perspective on COVID-19 and Diabetes Management in 22,820 Children from the SWEET Project: Diabetic Ketoacidosis Rates Increase and Glycemic Control Is Maintained. Diabetes Technol Ther. 2021, 23, 632–641. [Google Scholar]
- Mariet, A.S.; Petit, J.M.; Benzenine, E.; Quantin, C.; Bouillet, B. Incidence of new-onset type 1 diabetes during Covid-19 pandemic: A French nationwide population-based study. Diabetes Metab. 2023, 49, 101425. [Google Scholar]
- Trieu, C.; Sunil, B.; Ashraf, A.P.; Cooper, J.; Yarbrough, A.; Pinninti, S.; Boppana, S. SARS-CoV-2 infection in hospitalized children with type 1 and type 2 diabetes. J Clin Transl Endocrinol. 2021, 26, 100271. [Google Scholar]
- Herczeg, V.; Luczay, A.; Ténai, N.; Czine, G.; Tóth-Heyn, P. Anti-SARS-CoV-2 Seropositivity Among Children With Newly Diagnosed Type 1 Diabetes Mellitus: A Case-Control Study. Indian Pediatr. 2022, 59, 809–810. [Google Scholar]
- Ata, A.; Jalilova, A.; Kırkgöz, T.; Işıklar, H.; Demir, G.; Altınok, Y.A.; Özkan, B.; Zeytinlioğlu, A.; Darcan, Ş.; Özen, S.; Gökşen, D. Does COVID-19 predispose patients to type 1 diabetes mellitus? Clin Pediatr Endocrinol. 2022, 31, 33–37. [Google Scholar] [CrossRef]
- Jackson, C.B.; Farzan, M.; Chen, B.; Choe, H. Mechanisms of SARS-CoV-2 entry into cells. Nat Rev Mol Cell Biol. 2022, 23, 3–20. [Google Scholar]
- Bakhtiari, M.; Asadipooya, K. Metainflammation in COVID-19. Endocr Metab Immune Disord Drug Targets. 2022.
- Brojakowska, A.; Narula, J.; Shimony, R.; Bander, J. Clinical Implications of SARS-CoV-2 Interaction With Renin Angiotensin System: JACC Review Topic of the Week. J Am Coll Cardiol. 2020, 75, 3085–3095. [Google Scholar] [CrossRef] [PubMed]
- Hikmet, F.; Méar, L.; Edvinsson, Å.; Micke, P.; Uhlén, M.; Lindskog, C. The protein expression profile of ACE2 in human tissues. Mol Syst Biol. 2020, 16, e9610. [Google Scholar] [CrossRef]
- Liu, F.; Long, X.; Zhang, B.; Zhang, W.; Chen, X.; Zhang, Z. ACE2 Expression in Pancreas May Cause Pancreatic Damage After SARS-CoV-2 Infection. Clin Gastroenterol Hepatol. 2020, 18, 2128–2130e2122. [Google Scholar] [CrossRef]
- Govender, N.; Khaliq, O.P.; Moodley, J.; Naicker, T. Insulin resistance in COVID-19 and diabetes. Prim Care Diabetes. 2021, 15, 629–634. [Google Scholar]
- Oriot, P.; Hermans, M.P. Euglycemic diabetic ketoacidosis in a patient with type 1 diabetes and SARS-CoV-2 pneumonia: case-report and review of the literature. Acta Clin Belg. 2022, 77, 113–117. [Google Scholar] [CrossRef] [PubMed]
- Gorthi RS, Kamel G, Dhindsa S, Nayak RP. COVID-19 Presenting With Diabetic Ketoacidosis: A Case Series. AACE Clin Case Rep. 2021, 7, 6–9. [Google Scholar] [CrossRef]
- Benyakhlef, S.; Abdellaoui, W.; Tahri, A.; Rouf, S.; Latrech, H. Diabetic Ketoacidosis at Onset of Pediatric Type-1 Diabetes Triggered by Covid-19: An Original Case Report. Cureus. 2021, 13, e13958. [Google Scholar] [CrossRef]
- Nielsen-Saines, K.; Li, E.; Olivera, A.M.; Martin-Blais, R.; Bulut, Y. Case Report: Insulin-Dependent Diabetes Mellitus and Diabetic Keto-Acidosis in a Child With COVID-19. Front Pediatr. 2021, 9, 628810. [Google Scholar] [CrossRef]
- Soliman, A.T.; Al-Amri, M.; Alleethy, K.; Alaaraj, N.; Hamed, N.; De Sanctis, V. Newly-onset type 1 diabetes mellitus precipitated by COVID-19 in an 8-month-old infant. Acta Biomed. 2020, 91, ahead of print. [Google Scholar]
- Albuali, W.H.; AlGhamdi, N.A. Diabetic ketoacidosis precipitated by atypical coronavirus disease in a newly diagnosed diabetic girl. J Taibah Univ Med Sci. 2021, 16, 628–631. [Google Scholar] [CrossRef] [PubMed]
- Aly, H.H.; Fouda, E.M.; Kotby, A.A.; Magdy, S.M.; Rezk, A.R.; Nasef, M.W.A. COVID-19-Related Multisystem Inflammatory Syndrome in Children Presenting With New-Onset Type 1 Diabetes in Severe Ketoacidosis: A Case Series. Diabetes Care. 2022, 45, 983–989. [Google Scholar] [CrossRef] [PubMed]
- Parappil, P.; Ghimire, S.; Saxena, A.; Mukherjee, S.; John, B.M.; Sondhi, V.; Sengupta, P.; Acharya, S. New-onset diabetic ketoacidosis with purpura fulminans in a child with COVID-19-related multisystem inflammatory syndrome. Infect Dis (Lond). 2022, 54, 522–528. [Google Scholar] [CrossRef] [PubMed]
- Genç, S.; Evren, B.; Bozbay, A.; Aydın, E.; Genç, Ö.; Şahin, I. COULD COVID-19 TRIGGER TYPE 1 DIABETES? PRESENTATION OF COVID-19 CASE PRESENTED WITH DIABETIC KETOACIDOSIS. Acta Endocrinol (Buchar). 2021, 17, 532–536. [Google Scholar] [CrossRef]
- Halioti, A.; Kitinou, M.; Chalioti, V.M.; Chaliotis, G. SARS-CoV-2 Unmasks Type 1 Diabetes Mellitus With an Episode of Diabetic Ketoacidosis. J Med Cases. 2022, 13, 432–437. [Google Scholar] [CrossRef]
- Taşkaldıran, I.; Nar, A. A case of new-onset autoimmune type 1 diabetes mellitus following COVID-19 infection. Endocr Metab Immune Disord Drug Targets. 2023. [CrossRef]
- Ganakumar, V.; Jethwani, P.; Roy, A.; Shukla, R.; Mittal, M.; Garg, M.K. Diabetic ketoacidosis (DKA) in type 1 diabetes mellitus (T1DM) temporally related to COVID-19 vaccination. Diabetes & metabolic syndrome. 2022, 16, 102371. [Google Scholar]
- Lin, R.; Lin, Y.W.; Chen, M.H. Fulminant Type 1 Diabetes Mellitus after SARS-CoV-2 Vaccination: A Case Report. Vaccines (Basel). 2022, 10. [Google Scholar] [CrossRef]
- Edwin, H.V.; Antony, C.S. An update on COVID-19: SARS-CoV-2 variants, antiviral drugs, and vaccines. Heliyon. 2023.
- 51. von Delft A, Hall MD, Kwong AD, Purcell LA, Saikatendu KS, Schmitz U, Tallarico JA, Lee AA. Accelerating antiviral drug discovery: lessons from COVID-19. Nat Rev Drug Discov 2023, 1–19.
- Brevini, T.; Maes, M.; Webb, G.J.; John, B.V.; Fuchs, C.D.; Buescher, G.; Wang, L.; Griffiths, C.; Brown, M.L.; Scott, W.E.; 3rd Pereyra-Gerber, P.; Gelson, W.T.H.; Brown, S.; Dillon, S.; Muraro, D.; Sharp, J.; Neary, M.; Box, H.; Tatham, L.; Stewart, J.; Curley, P.; Pertinez, H.; Forrest, S.; Mlcochova, P.; Varankar, S.S.; Darvish-Damavandi, M.; Mulcahy, V.L.; Kuc, R.E.; Williams, T.L.; Heslop, J.A.; Rossetti, D.; Tysoe, O.C.; Galanakis, V.; Vila-Gonzalez, M.; Crozier, T.W.M.; Bargehr, J.; Sinha, S.; Upponi, S.S.; Fear, C.; Swift, L.; Saeb-Parsy, K.; Davies, S.E.; Wester, A.; Hagström, H.; Melum, E.; Clements, D.; Humphreys, P.; Herriott, J.; Kijak, E.; Cox, H.; Bramwell, C.; Valentijn, A.; Illingworth, C.J.R.; Dahman, B.; Bastaich, D.R.; Ferreira, R.D.; Marjot, T.; Barnes, E.; Moon, A.M.; Barritt ASt Gupta, R.K.; Baker, S.; Davenport, A.P.; Corbett, G.; Gorgoulis, V.G.; Buczacki, S.J.A.; Lee, J.H.; Matheson, N.J.; Trauner, M.; Fisher, A.J.; Gibbs, P.; Butler, A.J.; Watson, C.J.E.; Mells, G.F.; Dougan, G.; Owen, A.; Lohse, A.W.; Vallier, L.; Sampaziotis, F. FXR inhibition may protect from SARS-CoV-2 infection by reducing ACE2. Nature 2022. [Google Scholar] [CrossRef]
- John, B.V.; Bastaich, D.; Webb, G.; Brevini, T.; Moon, A.; Ferreira, R.D.; Chin, A.M.; Kaplan, D.E.; Taddei, T.H.; Serper, M.; Mahmud, N.; Deng, Y.; Chao, H.H.; Sampaziotis, F.; Dahman, B. Ursodeoxycholic acid is associated with a reduction in SARS-CoV-2 infection and reduced severity of COVID-19 in patients with cirrhosis. J Intern Med. 2023, 293, 636–647. [Google Scholar] [CrossRef] [PubMed]
- Leach, D.A.; Mohr, A.; Giotis, E.S.; Cil, E.; Isac, A.M.; Yates, L.L.; Barclay, W.S.; Zwacka, R.M.; Bevan, C.L.; Brooke, G.N. The antiandrogen enzalutamide downregulates TMPRSS2 and reduces cellular entry of SARS-CoV-2 in human lung cells. Nat Commun. 2021, 12, 4068. [Google Scholar] [CrossRef]
- Cheema, H.A.; Rehman, A.U.; Elrashedy, A.A.; Mohsin, A.; Shahid, A.; Ehsan, M.; Ayyan, M.; Ismail, H.; Almas, T. Antiandrogens for the treatment of COVID-19 patients: A meta-analysis of randomized controlled trials. J Med Virol. 2023, 95, e28740. [Google Scholar] [CrossRef]
- Fels, B.; Acharya, S.; Vahldieck, C.; Graf, T.; Käding, N.; Rupp, J.; Kusche-Vihrog, K. Mineralocorticoid receptor-antagonism prevents COVID-19-dependent glycocalyx damage. Pflugers Arch. 2022, 1–8. [Google Scholar] [CrossRef]
- Abbasi, F.; Adatorwovor, R.; Davarpanah, M.A.; Mansoori, Y.; Hajiani, M.; Azodi, F.; Sefidbakht, S.; Davoudi, S.; Rezaei, F.; Mohammadmoradi, S.; Asadipooya, K. A Randomized Trial of Sitagliptin and Spironolactone With Combination Therapy in Hospitalized Adults With COVID-19. J Endocr Soc. 2022, 6, bvac017. [Google Scholar] [CrossRef]
- Zhang, J.; Dong, J.; Martin, M.; He, M.; Gongol, B.; Marin, T.L.; Chen, L.; Shi, X.; Yin, Y.; Shang, F.; Wu, Y.; Huang, H.Y.; Zhang, J.; Zhang, Y.; Kang, J.; Moya, E.A.; Huang, H.D.; Powell, F.L.; Chen, Z.; Thistlethwaite, P.A.; Yuan, Z.Y.; Shyy, J.Y. AMP-activated Protein Kinase Phosphorylation of Angiotensin-Converting Enzyme 2 in Endothelium Mitigates Pulmonary Hypertension. Am J Respir Crit Care Med. 2018, 198, 509–520. [Google Scholar] [CrossRef]
- Sharma, S.; Ray, A.; Sadasivam, B. Metformin in COVID-19: A possible role beyond diabetes. Diabetes Res Clin Pract. 2020, 164, 108183. [Google Scholar] [CrossRef]
- Malhotra, A.; Hepokoski, M.; McCowen, K.C.; J, Y.J.S. ACE2, Metformin, and COVID-19. iScience. 2020, 23, 101425. [Google Scholar] [CrossRef]
- Bramante, C.T.; Huling, J.D.; Tignanelli, C.J.; Buse, J.B.; Liebovitz, D.M.; Nicklas, J.M.; Cohen, K.; Puskarich, M.A.; Belani, H.K.; Proper, J.L.; Siegel, L.K.; Klatt, N.R.; Odde, D.J.; Luke, D.G.; Anderson, B.; Karger, A.B.; Ingraham, N.E.; Hartman, K.M.; Rao, V.; Hagen, A.A.; Patel, B.; Fenno, S.L.; Avula, N.; Reddy, N.V.; Erickson, S.M.; Lindberg, S.; Fricton, R.; Lee, S.; Zaman, A.; Saveraid, H.G.; Tordsen, W.J.; Pullen, M.F.; Biros, M.; Sherwood, N.E.; Thompson, J.L.; Boulware, D.R.; Murray, T.A. Randomized Trial of Metformin, Ivermectin, and Fluvoxamine for Covid-19. The New England journal of medicine. 2022, 387, 599–610. [Google Scholar] [CrossRef]
- Bramante, C.T.; Buse, J.B.; Liebovitz, D.M.; Nicklas, J.M.; Puskarich, M.A.; Cohen, K.; Belani, H.K.; Anderson, B.J.; Huling, J.D.; Tignanelli, C.J.; Thompson, J.L.; Pullen, M.; Wirtz, E.L.; Siegel, L.K.; Proper, J.L.; Odde, D.J.; Klatt, N.R.; Sherwood, N.E.; Lindberg, S.M.; Karger, A.B.; Beckman, K.B.; Erickson, S.M.; Fenno, S.L.; Hartman, K.M.; Rose, M.R.; Mehta, T.; Patel, B.; Griffiths, G.; Bhat, N.S.; Murray, T.A.; Boulware, D.R. Outpatient treatment of COVID-19 and incidence of post-COVID-19 condition over 10 months (COVID-OUT): a multicentre, randomised, quadruple-blind, parallel-group, phase 3 trial. Lancet Infect Dis. 2023. [CrossRef] [PubMed]
- Nag, S.; Mandal, S.; Mukherjee, O.; Mukherjee, S.; Kundu, R. DPP-4 Inhibitors as a savior for COVID-19 patients with diabetes. Future Virol 2023. [Google Scholar] [CrossRef]
- Al-Kuraishy, H.M.; Al-Gareeb, A.I.; Qusty, N.; Alexiou, A.; Batiha, G.E. Impact of Sitagliptin on Non-diabetic Covid-19 Patients. Current molecular pharmacology. 2022, 15, 683–692. [Google Scholar] [PubMed]
- Davarpanah, M.A.; Adatorwovor, R.; Mansoori, Y.; Ramsheh, F.S.R.; Parsa, A.; Hajiani, M.; Faramarzi, H.; Kavuluru, R.; Asadipooya, K. Combination of spironolactone and sitagliptin improves clinical outcomes of outpatients with COVID-19: a prospective cohort study. J Endocrinol Invest. 2023. [CrossRef] [PubMed]


| Author, Journal, Year, Country and time of study | Study design and population | Sample size | Age | Sex (Male number and percentage) | Death, DKA or New Onset Type 1 Diabetes (NT1D) | Comments | |
| Niels H Birkebaek, Lancet Diabetes Endocrinol. 2022 Nov, Australia, Austria, Czechia, Denmark, Germany, Italy, Luxembourg, New Zealand, Norway, Slovenia, Sweden, USA [Colorado], and Wales [7] | International multicenter study, from 13 national diabetes registries, children and adolescents diagnosed with T1D (104290 children and adolescents) | 8209 in 2020 | 9.9 | 4521 (55%) | 39.4% in 2020 (DKA at T1D Diagnosis) |
There was an exacerbation of DKA prevalence in T1D patients during COVID-19 pandemic | |
| 8853 in 2021 | 9.5 | 4941 (55.8%) | 38.9% in 2021 (DKA at T1D Diagnosis) |
||||
| 87228 in 2006-2019 | 9.5 | 47066 (54%) | 27.3% (23775) DKA at T1D Diagnosis | ||||
| C. Lawrence, Diabet Med. 2021 Jan, Australia [8] | Retrospective cohort study, children <18 with the initial diagnosis of T1D | 11 (Mar-May 2020) | 8 | 27% | 73% DKA 45% severe DKA |
11 NT1D | A significant increase in the severe DKA at presentation of new-onset T1D during the COVID-19 |
| 42 (Mar-May 2015-2019) | 7.9-10.2 | 33-63% | 26% DKA 5% severe DKA |
9 (6-10) NT1D | |||
| Juyi Li, Diabetes Obes Metab. 2020 Oct, China [9] | Retrospective cohort study, hospitalized patients with COVID-19 | 658 | 57.3 | 297 (45.14%) | 64 (9.7%) death 3 (0.005%) DKA |
COVID-19 infection caused ketosis or ketoacidosis COVID-19 induced diabetic ketoacidosis in diabetic patients Ketosis increased the length of hospital stay and mortality |
|
| Cariou, et al; the CORONADO study. Diabetologia 2020, French [15] | Multicenter observational study, diabetic patients hospitalized for COVID-19 | 1317 |
69.8 | 855 (64.9%) | 10.6% death | 41 (3.1%) NT1D | No increased death in T1D No death in type 1 diabetes patients younger than 65 years |
| 1166 T2D (88.5%) |
1.00 OR for death | ||||||
| 39 T1D (3%) | 0.44 OR for death |
||||||
| Anne-Sophie Mariet, et al. Diabetes Metab. 2023 May, French [27] | Nationwide retrospective cohort study in three periods: week 2 of 2019 to week 12 of 2020, weeks 12−19 of 2020, week 19 of 2020 to week 52 of 2021 (after lockdown) | 7,995,449 |
1 - 35 | T1D hospitalizations: 6114 in 2019 6051 in2020 6593 in 2021 |
No significant increase in the hospitalizations rate for new-onset T1D during the COVID-19 pandemic in 2020 and 2021 The severity of T1D at diagnosis was not exaggerated during COVID-19 pandemic |
||
| Clemens Kamrath, Diabetes Care. 2021 Jul. Germany [10] | Multicenter cohort study, German Diabetes Registry, new onset T1D between March 1 and June 30 | 1,072 in 2020 |
10.0 | 430 (58.7%) | 6.6% (5.1-8.4) NT1D 7.2% (6.5-8.0) NT1D |
Not significant increase in new onset autoantibody-negative type 1 diabetes in children, adolescents, and young adults during the pandemic No increased susceptibility to DKA in autoantibody-negative type 1 diabetes before or during the pandemic |
|
| 8,349 (2011 – 2019) | 10.1 | 3033 (53.9%) | |||||
| Clemens Kamrath, Pediatrics. 2021 Sep. Germany [11] | Multicenter cohort from the German Diabetes Prospective Follow-up Registry | 3238 new onset T1D in 2020 | 9.8 | 1799 (55.6%) | DKA cases 1094 (33.8%) Increase in incidence of COVID-19 or death was associated with RR of DKA of 1.40 (95% confidence interval, 1.10–1.77; P = 0.006) and 1.23 (1.14–1.32; P < .001), respectively |
Significant increase in the risks of DKA and severe DKA in children with new-onset T1D during the coronavirus pandemic in Germany Ketoacidosis incidence in 2020 ranged from 22.6% in January to 43.3% in August (expected 20.1% in January to 25.3% in October) Ketoacidosis observed in 2020 in children with new-onset T1D vs expected rates (2000 to 2019) |
|
| Clemens Kamrath, Diabetes Care. 2022 Aug. Germany [16] | Multicenter Diabetes Prospective Study, German Registry, T1D incidence in children and adolescents 1/1/2020 – 6/30/2021 |
5,162 in 2020/2021 |
9.7 | (55.8 %) | 24.4% (23.6–25.2) NT1D incidence 2020/21 21.2% (20.5–21.9) NT1D expected incidence 2011 to 2019 IRR 1.15 [1.10–1.20]; P < 0.001 |
Incidence rate ratio (IRR) 1.15 (95% CI 1.10-1.20; P < 0.001) IRR in female, 1.14 (95% CI 1.07–1.21, P < 0.001) and male, 1.16 (95% CI 1.10–1.23, P < 0.001) Significant increase IRR in children aged < 6 years (IRR 1.23, 95% CI 1.13–1.33, P < 0.001) and 6–11 years (IRR 1.18, 95% CI 1.11–1.26, P < 0.001), but not in adolescents aged 12–17 years (IRR 1.06, 95% CI 0.98–1.13, P = 0.13) |
|
| 2,740 in 2018 |
9.8 | (55.0 %) | |||||
| 2,903 in 2019 |
9.7 | (54.9 %) | |||||
| Ron Jacob, Diabetes Ther. 2021 May, Israel [17] | A retrospective cross-sectional study, 11 Israeli pediatric Eds diabetes-related presentation |
150 T1D 48,176 visits (2020) |
12 | DKA in established T1D 2020 vs 2019 (59.3% vs 41.9%, P < 0.043) DKA in new onset T1D 2020 vs 2019 (53.4% vs 38.7%, p = 0.063) Not significant increase in NT1D |
Significant increase DKA rate in established T1D Non-statistically significant increase DKA rate in new onset T1D No difference in severe DKA (established T1D [15.6% vs 8.1%; P = 0.184], and newly diagnosed T1D [18.6% vs 17.5%; P = 0.858]) |
||
| 154 T1D 77,477 visits (2019) |
12 | ||||||
| Concetta Mastromauro, Ital J Pediatr. 2022 Feb, Italy [12] | Retrospective, Pediatric and Adolescent T1D Group 1/2015 – 2/2020 Group 2 3/2020 – 4/2021 |
172 new onset T1D 132 group 1 40 group 2 |
9.1 9.3 8.4 |
101 (58.7%) 81 (61.3%) 420 (50%) |
DKA (36% vs 55%, P=0.03) Severe DKA (8.4% vs 22.5%, P=0.01) |
Significant increase in DKA and severe DKA during the pandemic | |
| Katarzyna Dżygało, Pediatr Endocrinol Diabetes Metab. 2020, Poland [18] | Observational retrospective cohort study, children 0-18 years with newly diagnosed T1D | 34 group 2020 52 group 2019 (March–May) |
9.90 9.59 |
22 (64.7%) 26 (50%) |
DKA (52.94% vs 40.38%, P=0.276) Severe DKA (32.35% vs 11.54%, P=0.0262) |
DKA rate has increased by 12 percentage Severe DKA cases noted in newly diagnosed T1D children |
|
| Josephine Ho, Pediatr Diabetes. 2021 Jun, Poland [19] | Retrospective study, < 18 years old, new onset T1D during the pandemic March 17 to August 31, 2020 vs 2019 |
107 NT1D in 2020 |
9.62 |
46 (43.0%) |
No significant increase in NT1D Higher DKA (68.2% vs 45.6%; p < 0.001) and higher severe DKA (27.1% vs 13.2%; p = 0.01) in 2020 vs 2019 |
Significant increase in DKA and severe DKA in NT1D children during the COVID-19 pandemic period | |
| 114 NT1D in 2019 | 9.43 | 47 (41.2%) | |||||
| Agnieszka Zubkiewicz-Kucharska, Adv Clin Exp Med. 2021 Feb, Poland [13] | Multicenter cohort study, the T1D pediatric registry for Lower Silesia (children aged 0–18 years) Incidence rate (IR) 2000-2019 vs first four months 2020 |
0-18 |
36.67% DKA incidence 2020 vs 31.75% DKA incidence 2000-2019 (p > 0.05) T1D cases (March, April) 2020 were half of the same months in 2019 (P > 0.05) IRT1D 17.27/100,000/year in 2020 vs IRT1D 17.51/100,000/year in 2000-2019 IRT1D in 2020 (first 4 months) was significantly lower than the period 2014–2019 (P = 0.0016), but comparable to 2019 (P = 0.0808) |
Increase in IR of T1D 2000 - 2019: - 10.43/100,000/year in 2000 - 22.06/100,000/year in 2019 - 27.10/100,000/year, Peak incidence in 2017 Highest T1D incidence rate in January and February DKA incidence: - 23.65% in 2000-2004 - 34.23% in 2005-2009 - 35.59% in 2010-2014 - 36.71% in 2015-2019 The IR of T1D during the COVID-19 pandemic was comparable, although their clinical condition was worse |
|||
| 1961 in 2000 – 2019 | 0-18 | 1054 (53.72%) |
|||||
| Iwona Pietrzak, Pediatr Diabetes. 2022 Nov, Poland [20] | Multicenter cohort study, DKA incidence in T1D COVID- 19 (15/3/2020-15/3/2021) and before COVID-19 (15/2/2019-15/3/2020) | 3062 T1D 1347 (44%) DKA |
9.5 | 1632 (53.3%) | 826 (49.4%) in the 2020/2021 IR 25.90 cases/100000 1671 (54.6%) in the2020/2021 |
COVID-19 was associated with increase in the frequency of DKA and its severity | |
| 521 (37.5%) in the 2019/2020 IR 21.55 cases/100000 1391 (45.4%) in the 2019/2020 | |||||||
| Anca Andreea Boboc, J Pers Med. 2021 Jun. Romania [21] | Observational retrospective cohort study, pediatric T1D patient from Marie Curie Emergency Children’s Hospital, Bucharest. | 147 (3/2020–2/2021) |
7.59 | 243 (53%) | 65.99% DKA 13.2 NT1D/month (5/2020-2/2021) |
An increase in the incidence and severity of T1D in children during the COVID-19 pandemic 30.08% increase in new onset T1D during the pandemic 67.40% increase in DKA incidence during the pandemic |
|
| 312 (2003–2019) |
39.42% DKA 9.4 NT1D/month (5/2018-2/2019) |
||||||
| Aqeel Alaqeel, Front Endocrinol (Lausanne). 2021 Apr. Saudi Arabia [22] | Multicenter retrospective cohort study, 1–14 years admitted with new-onset T1D or DKA during the COVID-19 pandemic | 106 (March–June 2020) |
10 | 51 (48.1%) | NT1D 41 (38.7%) DKA 88 (83%) DKA frequency NT1D 23 (26%) |
DKA was higher in 2020 vs 2019 (83% vs. 73%; P=0.05; risk ratio=1.15; 95% confidence interval, 1.04–1.26) DKA frequency among new-onset T1D was higher in 2020 vs 2019 (26% vs. 13.4%; P=<0.001) |
|
| 154 (March–June 2019) |
9.7 | 69 (44.8%) | NT1D 57 (37.0%) DKA 112 (72.7%) DKA frequency NT1D 15 (13.4%) |
||||
| Semine Özdemir Dilek, J Pediatr Endocrinol Metab. 2021 Jul. Turkey [23] | Cross-sectional study, newly diagnosed with type 1 diabetes mellitus in Cukurova University hospital | 74 (2020) | 10 | 35 (47.3%) | DKA 68 (91.9%) Moderate DKA 16 (23.5%) Severe DKA 15 (22.1%) |
Increase in the number of NT1D, autoantibody positivity, rates and severity of DKA during the COVID-19 pandemic period | |
| 46 (2019) | 10.5 | 21 (45.7%) | DKA 27 (58.7%) Moderate DKA 5 (18.5%) Severe DKA 4 (14.8%) |
||||
| Grenye O’Malley, J Clin Endocrinol Metab. 2021 Jan, USA [24] | Multicenter cross-sectional, adults over the age of 19 with T1D and COVID-19 | 113 (March 1, 2020 - August 22, 2020) | 39.9 | 55 (48.7%) | Death 5 (4.4%) DKA 27 (23.8%) |
TID is associated with higher risk of morbidity and mortality in COVID-19 patients | |
| Kaleb T Bogale, Endocrinol Diabetes Metab. 2021 Feb, USA [25] | Retrospective analysis, all pediatric patients (age ≤ 18) newly diagnosed T1D (01/01/2017 - 09/14/2020) |
42 Post-COVID |
9.2 | 23 (54.8%) | DKA 20 (47.6%) Moderate or severe DKA 13 (31.0%) |
Almost similar DKA rates and severity during COVID-19 |
|
| 370 Pre-COVID | 10 | 218 (58.9%) | DKA 172 (46.5%) Moderate or severe DKA 123 (33.2%) |
||||
| Thomas Danne, Diabetes Technol Ther. 2021 Sep, USA [26] | Retrospective cohort, T1D ≤ 21 years of age, 22,820 May/June 21,820 August/September 2019 and 2020 |
12,157 (M/J2020) | 13.5 | 52% | T1D duration 4.5 At least one DKA 1.1% At least 1 severe hypo 0.3% |
A significant rise in DKA rate and mortality during COVID-19 | |
| 13,386 (A/S 2020) | 13.6 | 51.9% | T1D duration 4.6 At least one DKA 0.7% At least 1 severe hypo 0.3% |
||||
| 16,735 (M/J 2019) | 13.4 | 51.7% | T1D duration 4.5 At least one DKA 0.8% At least 1 severe hypo 0.5% |
||||
| 14,523 (A/S 2019 | 13.4 | 51.6% |
T1D duration 4.6 At least one DKA 1.0% At least 1 severe hypo 0.5% |
||||
| Connie Trieu, J Clin Transl Endocrinol. 2021 Dec, USA [28] | Hospitalized children with T1D or T2DM and SARS-CoV-2 infection between April and November 2020 | 9 NT1D + COVID |
10.5 |
2 (22%) | DKA 64.3% in 2020 DKA 56.9% in 2019 DKA 47.1% in 2018 NT1D 286 children in 2020 NT1D 246 children in 2019 NT1D 263 children in 2018 |
16.3% increased rate of NT1D in 2020 6.5% decrease of NT1D from 2018 to 2019 Increase in DKA incidence in 2020 |
|
| 12 Known T1D + COVID | 12.4 | 6 (50%) | |||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
