Submitted:
12 July 2023
Posted:
13 July 2023
Read the latest preprint version here
Abstract
Keywords:
1. Introduction
2. Exploring Biomarkers for Predicting the Therapeutic Effects of TKIs (Table 1)
2.1. Sorafenib Biomarkers
2.2. Regorafenib Biomarker Studies
2.3. Signaling Pathways as Biomarkers for TKIs: Insights from Trials with mTOR and MET Inhibitors
2.4. New Approaches for Biomarker Discovery in Lenvatinib Treatment
| Agent | Study design | Number of cases | Prognostic and predictive factors | Out-come | Statistical analysis | HR [95% CI] | P-value |
Authors [reference no.] |
| Sora-fenib | Retrospective, single-arm | 120 | [High serum Ang-2] | PFS | Univariate | 1.84 [1.21–2.81] | 0.004 | Miyahara K et al. [14] |
| OS | Multivariate | 1.83 [1.12–2.98] | 0.014 | |||||
| [High angiogenic group*] *: patients with > three serum cytokines (Ang-2, FST, G-CSF, HGF, Leptin, PDGF-BB, PECAM-1, or VEGF) |
PFS | Univariate | 1.98 [1.30–3.06] | 0.001 | ||||
| OS | Multivariate | 1.76 [1.07–2.94] | 0.023 | |||||
| [MVI (present)] | OS | Multivariate | 2.27 [1.36–3.72] | 0.001 | ||||
| Sora-fenib | Retrospective pooled analysis of two phase 3 trials (vs. placebo) | Sora 448 Placebo 379 |
[Without EHS] | OS | Multivariate | 0.55 [0.42–0.72] | 0.015 | Bruix J et al. [15] |
| [With HCV] | OS | Multivariate | 0.47 [0.32–0.69] | 0.035 | ||||
| [Low NLR] | OS | Multivariate | 0.59 [0.46–0.77] | 0.0497 | ||||
| Sora-fenib | Subgroup meta-analyses, single-arm |
170 | [Low NLR] | OS | Univariate | 1.49 [1.17–1.91] | 0.001 | Qi X et al. [18] |
| Sora-fenib | Observational registry, single-arm | 3,371 | [Child-Pugh A] | OS | Kaplan-Meier | - | N/A | Marrero JA et al. [19] |
| [Bilirubin] | OS | Univariate | 1.71 [1.57–1.86] | N/A | ||||
| [Albumin] | OS | Univariate | 1.76 [1.63–1.89] | N/A | ||||
| Sorafe-nib | Retrospective, single-arm, HCV patients only |
103 | [HCV eradication] | OS | Multivariate | 0.46 [0.26–0.78] | 0.004 | Kuwano A et al. [20] |
| [ALBI score] | OS | Multivariate | 2.29 [1.20–4.37] | 0.012 | ||||
| Sora-fenib | Population-based retrospective cohort, HCV patients only, single-arm |
1,684 | [DAA user] | OS | Univariate PSM univariate |
- - |
< 0.0001 < 0.0001 |
Tsai H-Y et al. [21] |
| Sora-fenib | Retrospective, single-arm | 55 | [FGF3/FGF4amplification] (frozen tumor tissue) |
CR/PR | Fisher's exact | - | 0.006 | Arao T et al. [26] |
| [multiple lung metastases] | CR/PR | Fisher's exact | - | 0.006 | ||||
| Sora-fenib | Retrospective, single-arm | 20 | [High miR-224 expression] | PFS | Univariate | 0.28 [0.09–0.92] | 0.029 | Gyöngyösi B et al. [28] |
| (FFPE tumor tissue) | OS | Univariate | 0.24 [0.07–0.79] | 0.012 | ||||
| Sora-fenib | Retrospective, single-arm | Training 26 Validation 58 |
[High miR-425-3p expression] | TTP | Multivariate | 0.4 [0.1–0.7] | 0.002 | Vaira V et al. [31] |
| (FFPE tumor tissue)] | PFS | Multivariate | 0.3 [0.1–0.7] | 0.0012 | ||||
| Sora-fenib | Retrospective validation of the pharmacogenomics panel, single-arm | 54 | [High serum DKK-1] | PFS | Univariate | - | 0.0396 | Qiu Z et al. [33] |
| OS | Univariate | - | 0.0171 | |||||
| Regora-fenib | Retrospective pooled analysis of the phase 3 trial (vs. placebo) | Protein cohort Regora 332 Placebo 167 |
[Plasma ANG-1] | OS | Multivariate | 1.12 [1.05–1.19] | 0.019 | Teufel M et al. [35] |
| (1 ng/mL increase) | TTP | Multivariate | 1.10 [1.04–1.17] | 0.017 | ||||
| [Low plasma Cystatin-B] | OS | Multivariate | 1.46 [1.15–1.85] | 0.04 | ||||
| (2-fold increase ) | TTP | Multivariate | 1.42 [1.14–1.77] | 0.018 | ||||
| [Low plasma LAP TGF-β1] | OS | Multivariate | 1.36 [1.12–1.65] | 0.04 | ||||
| (2-fold increase) | TTP | Multivariate | 1.41 [1.18–1.68] | 0.004 | ||||
| [Low plasma LOX-1] | OS | Multivariate | 1.35 [1.16–1.57] | 0.009 | ||||
| (1 ng/mL increase) | TTP | Multivariate | 1.78 [1.33–2.39] | 0.003 | ||||
| [Low plasma MIP-1α] | OS | Multivariate | 1.02 [1.01–1.04] | 0.04 | ||||
| (1 pg/mL increase) | TTP | Multivariate | 1.02 [1.00–1.03] | 0.043 | ||||
| miRNA cohort Regora 234 Placebo 109 |
[miR-15b] | OS | Multivariate | 0.37 [0.20–0.70] | 0.002 | |||
| [miR-107] | OS | Multivariate | 0.54 [0.37–0.81] | 0.003 | ||||
| [miR-320b] | OS | Multivariate | 0.57 [0.41–0.81] | 0.001 | ||||
| [miR-122] | OS | Multivariate | 1.35 [1.14–1.60] | 0.0004 | ||||
| [miR-374b] | OS | Multivariate | 1.36 [1.11–1.65] | 0.002 | ||||
| [miR-200a] | OS | Multivariate | 1.39 [1.15–1.68] | 0.001 | ||||
| [miR-30a] | OS | Multivariate | 1.47 [1.14–1.88] | 0.003 | ||||
| [miR-125b] | OS | Multivariate | 1.54 [1.19–1.99] | 0.001 | ||||
| [miR-645]* (*dichotomized analysis, not vs. placebo) | OS | Multivariate | 3.16 [1.52–6.55] | 0.002 | ||||
| Lenva-tinib | Subgroup analysis of the open-label phase 3 trial (vs. sorafenib) |
Lenvatinib 478 (HBV 251, Alcohol 36) Sorafenib 476 (HBV 228, Alcohol 21) |
[HBV] | PFS | Univariate | 0.62 [0.50–0.75] | N/A | Kudo M et al. [8] |
| [Alcohol] | PFS | Univariate | 0.27 [0.11–0.66] | N/A | ||||
| Lenva-tinib | Retrospective, single-arm | 237 | [NLR ≥ 4] | OS | Multivariate Multivariate Chi-square test? Multivariate Multivariate Multivariate |
1.87 [1.10–3.12] | 0.021 | Tada T et al. [53] |
| PFS | 1.90 [1.27–2.84] | 0.002 | ||||||
| DCR | 0.007 | |||||||
| [AFP ≥ 400 ng/mL] | OS | 1.97 [1.19–3.27] | 0.009 | |||||
| [mALBI grade 2b or 3] | OS | 2.12 [1.27–3.56] | 0.004 | |||||
| [BCLC stage ≥ C] | PFS | 1.52 [1.03–2.24] | 0.036 | |||||
| Lenva-tinib | Retrospective, single-arm | 1,325 | [HBV] | OS | Multivariate | 1.56 [1.13–2.17] * | 0.0071* | Casadei-Gardini A et al. [54] *: data are from the model 1 of 3 multivariate analyses. |
| [NAFLD/NASH] | OS | Multivariate | 0.58 [0.33–0.98] * | 0.0044* | ||||
| PFS | Multivariate | 0.87 [0.75–0.93] | 0.0090 | |||||
| [BCLC stage C] | OS | Multivariate | 1.64 [1.19–2.27] * | 0.0027* | ||||
| PFS | Multivariate | 1.33 [1.14–1.55] | 0.0002 | |||||
| [NLR > 3] | OS | Multivariate | 1.95 [1.46–2.60] * | < 0.0001* | ||||
| PFS | Multivariate | 1.16 [1.01–1.36] | 0.0482 | |||||
| [AST > 38] | OS | Multivariate | 1.52 [1.08–2.13] * | 0.0167* | ||||
| PFS | Multivariate | 1.21 [1.01–1.45] | 0.0365 | |||||
| Lenva-tinib |
Retrospective validation of the experimentally identified biomarker (vs. sorafenib) |
Lenvatinib 65 (ST6GAL1 high 22, low 43) Sorafenib 31 (ST6GAL1 high 12, low 19) |
[Serum ST6GAL1 high] | OS | Univariate | < 0.05 | Myojin Y et al. [55] |
3. AFP as a Predictive Biomarker for Ramucirumab Treatment
4. Exploration of Biomarkers for Predicting the Therapeutic Efficacy of Single-agent ICIs and Combined Immunotherapy (Table 2)
4.1. Known Predictive Markers for the Efficacy of Single-Agent ICI and Combined Immunotherapies for HCC: PD-L1 Expression, Tumor Mutation Burden (TMB), and Microsatellite Instability (MSI)
4.2. NASH as a Background Liver Disease
4.3. Wnt/β-Catenin Mutations as a Biomarker and MRI Findings as Imaging Biomarkers
4.4. Problems with Wnt/β-catenin mutations as a biomarker and MRI findings as imaging biomarkers
4.5. Blood Sample Biomarkers for Predicting the Therapeutic Effect of ICI Therapy: CRAFITY Score and NLR
4.6. Biomarkers Predicting the Therapeutic Effect of Atezolizumab and Bevacizumab Combination Therapy
| Agents | Study design | Number of cases | Prognostic and predictive factors | Out-come | analysis | HR [95%CI] | P-value |
Author (reference no) |
| Anti- PD-(L)1-based immuno-therapy |
Meta-analyses of | ICI 985 | Pfister D et. al. [75] | |||||
| 3 phase 3 trials: | Nivo 371 | [HBV] | OS | univariate | 0.64 [0.49-0.83] | 0.0008 | ||
| Checkmate 459 | Pembro 278 | [HCV] | OS | univariate | 0.68 [0.48-0.97] | 0.04 | ||
| (Nivo vs Sora), | Ate/Bev 336 | |||||||
| IMbrave 150 | Control 672 | |||||||
| (Ate/Bev vs Sora), | Sora 372+165 | |||||||
| KEYNOTE-240 | Placebo 135 | |||||||
| (Pembro vs PBO) | ||||||||
| Retrospective | exploratory 130 | |||||||
| (ICI single arm) | validation 118 | [NAFLD] | OS | multivariate | 2.6. [1.2-5.6] | 0.017 | ||
| Ate/Bev Lenva (Sora) |
retrospective | Non-viral cohort Ate/Bev 190 Len 569 |
[Lenvatinib] | OS | multivariate | 0.65 [0.44-0.95] | 0.0268 | Rimini M et. al. [77] |
| PFS | multivariate | 0.67 [0.51-0.86] | 0.035 | |||||
| NAFLD/NASH cohort Ate/Bev 82 Len 254 |
[Lenvatinib] | OS | multivariate | 0.46 [0.26-0.84] | 0.011 | |||
| PFS | multivariate | 0.55 [0.38-0.82] | 0.031 | |||||
| Anti-PD-(L)1 mono-therapy | retrospective, single arm |
18 | [hyperintensity tumor (RER* ≥ 0.9) on EOB-MRI] | PFS | multivariate | 7.78 [1.59–38.1] | 0.011 | Aoki T et. al. [82] |
| Ate/Bev | retrospective validation based on multiomics study, single arm | Non-viral HCC 30 | [Steatotic HCC] | PFS | univariate | <0.05 | Murai H et.al. [85] |
|
| Ate/Bev Lenva |
retrospective, separate single arm (not vs Len) | Ate/Bev 35 | [hetorogenous tumor on EOB-MRI] | PFS | univariate | 0.007 | Sasaki R et.al. [86] |
|
| [hyperintensity tumor (RER‡ ≥ 0.9) on EOB-MRI] | PFS | univariate | 0.012 | |||||
| Len 33 | (no significant factor) | |||||||
| Anti-PD-(L)1-based immuno-therapy | retrospective, single arm |
24 | [20 gene inflamed signature] (CCL5, CD2, CD3D, CD48, CD52, CD53, CXCL9, CXCR4, FYB, GZMA, GZMB, GZMK, IGHG1, IGHG3, LAPTM5, LCP2, PTPRC, SLA, TRAC, TRBC2) |
PR | Wilcoxon rank-sum | 0.047 | Montironi C et.al. [91] |
|
| Anti-PD-(L)1-based immuno-therapy Sora |
retrospective, separate single arm (not vs Sora) | Anti-PD-(L)1-based immuno-therapy: training 190 (anti-PD-(L)1 mono 110, Ate/Bev 75, Others 5) validation 102 (anti-PD-(L)1 mono 68, Ate/Bev 25, Anti-PD-(L)1 + TKI 7, Others 2) Sora 204 |
[Child-Pugh A] | OS | multivariate | 2.3 (1.5-3.4) | <0.001 | Scheiner B [93] |
| [ECOG PS 0] | OS | multivariate | 2.1 (1.4-3.2) | <0.001 | ||||
| [AFP<100] | OS | multivariate | 1.7 (1.2-2.6) | 0.007 | ||||
| [CRP<1] | OS | multivariate | 1.7 (1.2-2.6) | 0.007 | ||||
| [CRAFITY score†] | OS | univariate | 0.001 | |||||
| CRAFITY low | 1 | |||||||
| CRAFITY int. | 2.0 [1.1-3.4] | |||||||
| CRAFITY high | 3.6 [2.1-6.2] | |||||||
| [CRAFITY score†] | ORR | Chi square | - | 0.001 | ||||
| [CRAFITY score†] | DCR | Chi square | - | <0.001 | ||||
| [CRAFITY score†] | OS | univariate | - | 0.001 | ||||
| DCR | Chi square | - | 0.037 | |||||
| [CRAFITY score†] | OS | univariate | - | <0.001 | ||||
| Ate/Bev | retrospective, single arm |
297 | [AFP<100] | PFS | multivariate | - | <0.001 | Hatanaka T et.al. [94] |
| OS | multivariate | - | 0.028 | |||||
| [CRP<1] | PFS | multivariate | - | <0.001 | ||||
| OS | multivariate | - | 0.032 | |||||
| [CRAFITY score†] | PFS | univariate | - | <0.001 | ||||
| OS | univariate | - | ||||||
| DCR | Chi square | - | 0.029 | |||||
| Ate/Bev | retrospective, single arm |
40 | [NLR > 3.21] | PFS | univariate | - | <0.0001 | Eso Y et.al [99] |
| Ate/Bev | retrospective, single arm |
249 | [NLR > 3] | OS | multivariate | 3.37 [1.02-11.08] | 0.001 | Tada T et.al. [100] |
| Ate/Bev Sora |
retrospective pooled analysis of the phase 1b GO30140 (single arm) and the phase 3 trial IMbrave 150 (Ate/Bev vs Sora) |
GO30140 arm A (Ate/Bev 90 single arm) IMbrave 150 (Ate/Bev119 Sora 58) |
<Transcriptome > | Zhu AX et. al. [72] |
||||
| [ABRSa high] | PFS | univariate | 0.51 [0.3-0.87] | 0.013 | ||||
| [CD274b high] | PFS | univariate | 0.42 [0.25-0.72] | 0.0011 | ||||
| [Teffc high] | PFS | univariate | 0.46 [0.27-0.78] | 0.0035 | ||||
| <In situ analyses> | ||||||||
| [CD8+Tcell density] | CR/PR | Student T | - | 0.007 | ||||
| [CD3+Tcell density] | CR/PR | Student T | - | 0.039 | ||||
| [CD3+GZMB+Tcell density] | CR/PR | Student T | - | 0.044 | ||||
| [MHC1+ tumor cells] | CR/PR | Student T | - | 0.0087 | ||||
| <Transcriptome > | ||||||||
| [ABRSa high] | PFS | multivariate | 0.49 [0.25-0.97] | 0.041 | ||||
| OS | multivariate | 0.26 [0.11-0.58] | 0.0012 | |||||
| [CD274b high] | PFS | multivariate | 0.46 [0.25-0.86] | 0.015 | ||||
| OS | multivariate | 0.3 [0.14-0.64] | 0.002 | |||||
| [Teffc high] | PFS | multivariate | 0.52 [0.28-0.99] | 0.047 | ||||
| OS | multivariate | 0.24 [0.11-0.5] | 0.0002 | |||||
| [Tregd/Teff c low] | PFS | multivariate | 0.42 [0.22-0.79] | 0.007 | ||||
| OS | multivariate | 0.24 [0.11-0.54] | 0.0006 | |||||
| [GPC3 low] | PFS | multivariate | 0.47 [0.27-0.81] | 0.006 | ||||
| OS | multivariate | 0.29 [0.13-0.62] | 0.002 | |||||
| [AFP low] | PFS | multivariate | 0.49 [0.28-0.87] | 0.014 | ||||
| OS | multivariate | 0.32 [0.14-0.73] | 0.007 | |||||
| <In situ > | ||||||||
| [CD8+Tcell high dens.] | OS | multivariate | 0.29 [0.14-0.61] | 0.0011 | ||||
| PFS | multivariate | 0.54 [0.29-1.00] | 0.053 | |||||
| <Genetic profiling> | ||||||||
| [CTNNB1 WT] | OS | multivariate | 0.42 [0.19-0.91] | 3×10-4 | ||||
| PFS | multivariate | 0.45 [0.27-0.86] | 0.0086 | |||||
| [TERT Mut] | OS | multivariate | 0.38 [0.16-0.89] | 7.8×10-5 | ||||
| PFS | multivariate | 0.61 [0.33-1.10] | 0.047 | |||||
| Ate/Bev | retrospective, single arm |
34 | [high plasma IL-6] | PFS | univariate | - | <0.05 | Myojin Y et.al. [103] |
| multivariate | 2.785 [1.216-6.38] | 0.01 | ||||||
| OS | univariate | - | <0.05 | |||||
| Ate/Bev Len |
retrospective, separate single arm (not vs Len) | Ate/Bev 24 | [High-level CD8+ TILs] | PFS | univariate | - | 0.041 | Kuwano A et.al. [104] |
| ORR | Chi square | - | 0.012 | |||||
| Len 15 | (no significant factor) | DCR | Chi square | - | 0.031 |
4.7. Biomarkers for Durvalumab and Tremelimumab Combination Therapy
5. Conclusions and Future Directions
Author Contributions
Funding
Data Availability Statement
Ethics approval and consent to participate
Acknowledgments
Conflicts of Interest
References
- Rumgay H.; Arnold M.; Ferlay J.; Lesi O.; Cabasag C.J.; Vignat J.; Laversanne M.; McGlynn K.A.; Soerjomataram I. Global burden of primary liver cancer in 2020 and predictions to 2040. J. Hepatol. 2022, 77, 1598–1606. [CrossRef]
- McGlynn K.A.; Petrick J.L.; El-Serag H.B. Epidemiology of Hepatocellular Carcinoma. Hepatology. 2021, 73, 4–13. [CrossRef]
- Llovet J.M.; Kelley R.K.; Villanueva A.; Singal A.G.; Pikarsky E.; Roayaie S.; Lencioni R.; Koike K.; Zucman-Rossi J.; Finn R.S. Hepatocellular carcinoma. Nat. Rev. Dis. Primers. 2021, 7, 6. [CrossRef]
- Mathurin P.; Rixe O.; Carbonell N.; Bernard B.; Cluzel P.; Bellin M.F.; Khayat D.; Opolon P.; Poynard T. Overview of medical treatments in unresectable hepatocellular carcinoma--an impossible meta-analysis? Aliment Pharmacol. Ther. 1998, 12, 111–126. [CrossRef]
- Wilhelm S.M.; Carter C.; Tang L.; Wilkie D.; McNabola A.; Rong H.; Chen C.; Zhang X.; Vincent P.; McHugh M.; et al. BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res. 2004, 64, 7099–7109. [CrossRef]
- Llovet J.M.; Ricci S.; Mazzaferro V.; Hilgard P.; Gane E.; Blanc J-F.; de Oliveira A.C.; Santoro A.; Raoul J-L.; Forner A.; et al. Sorafenib in advanced hepatocellular carcinoma. N. Engl. J. Med. 2008, 359, 378–390. [CrossRef]
- Bruix J.; Qin S.; Merle P.; Granito A.; Huang Y-H.; Bodoky G.; Pracht M.; Yokosuka O.; Rosmorduc O.; Breder V.; et al. Regorafenib for patients with hepatocellular carcinoma who progressed on sorafenib treatment (RESORCE): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2017, 389, 56–66. [CrossRef]
- Kudo M.; Finn R.S.; Qin S.; Han K-H.; Ikeda K.; Piscaglia F.; Baron A.; Park J-W.; Han G.; Jassem J.; et al. Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: a randomised phase 3 non-inferiority trial. Lancet. 2018, 391, 1163–1173. [CrossRef]
- Zhu A.X.; Kang Y-K.; Yen C-J.; Finn R.S.; Galle P.R.; Llovet J.M.; Assenat E.; Brandi G.; Pracht M.; Lim H.Y.; et al. Ramucirumab after sorafenib in patients with advanced hepatocellular carcinoma and increased α-fetoprotein concentrations (REACH-2): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2019, 20, 282–296. [CrossRef]
- Finn R.S.; Qin S.; Ikeda M.; Galle P.R.; Ducreux M.; Kim T-Y.; Kudo M.; Breder V.; Merle P.; Kaseb A.O.; et al. Atezolizumab plus Bevacizumab in Unresectable Hepatocellular Carcinoma. N. Engl. J. Med. 2020, 382, 1894–1905. [CrossRef]
- Abou-Alfa G.K.; Lau G.; Kudo, M.; Chan S.L.; Kelley R.K.; Furuse J.; Sukeepaisarnjaroen W.; Kang Y-K.; Dao T.V.; De Toni E.N.; et al. Tremelimumab plus Durvalumab in Unresectable Hepatocellular Carcinoma. NEJM Evid. 2022, 1, EVIDoa2100070. [CrossRef]
- Abou-Alfa G.K.; Meyer T.; Cheng A-L.; El-Khoueiry A.B.; Rimassa L.; Ryoo B-Y.; Cicin I.; Merle P.; Chen Y.H.; Park J-W.; et al. Cabozantinib in Patients with Advanced and Progressing Hepatocellular Carcinoma. N. Engl. J. Med. 2018, 379, 54–63. [CrossRef]
- Llovet J.M.; Peña C.E.A.; Lathia C.D.; Shan M.; Meinhardt G.; Bruix J; SHARP Investigators Study Group (2012). Plasma biomarkers as predictors of outcome in patients with advanced hepatocellular carcinoma. Clin. Cancer. Res. 2012, 18, 2290–2300. [CrossRef]
- Miyahara K.; Nouso K.; Morimoto Y.; Takeuchi Y.; Hagihara H.; Kuwaki K.; Onishi H.; Ikeda F.; Miyake Y.; Nakamura S.; et al. Pro-angiogenic cytokines for prediction of outcomes in patients with advanced hepatocellular carcinoma. Br. J. Cancer. 2013, 109, 2072–2078. [CrossRef]
- Bruix J.; Cheng A-L.; Meinhardt G.; Nakajima K.; De Sanctis Y.; Llovet J. Prognostic factors and predictors of sorafenib benefit in patients with hepatocellular carcinoma: Analysis of two phase III studies. J. Hepatol. 2017, 67, 999–1008. [CrossRef]
- Guthrie G.J.K.; Charles K.A.; Roxburgh C.S.D.; Horgan P.G.; McMillan D.C.; Clarke S.J. The systemic inflammation-based neutrophil-lymphocyte ratio: experience in patients with cancer. Crit. Rev. Oncol. Hematol. 2013, 88, 218–230. [CrossRef]
- Templeton A.J.; McNamara M.G.; Šeruga B.; Vera-Badillo F.E.; Aneja P.; Ocaña A.; Leibowitz-Amit R.; Sonpavde G.; Knox J.J.; Tran B.; et al. Prognostic role of neutrophil-to-lymphocyte ratio in solid tumors: a systematic review and meta-analysis. J. Natl. Cancer Inst. 2014, 106, dju124. [CrossRef]
- Qi X.; Li J.; Deng H.; Li H.; Su C.; Guo X. Neutrophil-to-lymphocyte ratio for the prognostic assessment of hepatocellular carcinoma: A systematic review and meta-analysis of observational studies. Oncotarget. 2016, 7, 45283–45301. [CrossRef]
- Marrero J.A.; Kudo M.; Venook A.P.; Ye S-L.; Bronowicki J-P.; Chen X-P.; Dagher L.; Furuse J.; Geschwind J-F.H.; Ladrón de Guevara L.; et al. Observational registry of sorafenib use in clinical practice across Child-Pugh subgroups: The GIDEON study. J. Hepatol. 2016, 65, 1140–1147. [CrossRef]
- Kuwano A.; Yada M.; Nagasawa S.; Tanaka K.; Morita Y.; Masumoto A.; Motomura K. Hepatitis C virus eradication ameliorates the prognosis of advanced hepatocellular carcinoma treated with sorafenib. J. Viral Hepat. 2022, 29, 543–550. [CrossRef]
- Tsai H-Y.; Chang H-P.; Chen C-J.; Hsu W-L.; Huang L-Y.; Lee P-C. Effects of direct-acting antiviral therapy for patients with advanced hepatocellular carcinoma and concomitant hepatitis C-A population-based cohort study. Eur. Rev. Med. Pharmacol. Sci. 2021, 25, 7543–7552. [CrossRef]
- Abou-Alfa G.K.; Schwartz L.; Ricci S.; Amadori D.; Santoro A.; Figer A.; De Greve J.; Douillard J.Y.; Lathia C.; Schwartz B.; et al. Phase II study of sorafenib in patients with advanced hepatocellular carcinoma. J. Clin. Oncol. 2006, 24, 4293–4300. [CrossRef]
- Chen D.; Zhao P.; Li S.Q.; Xiao W.K.; Yin X.Y.; Peng B.G.; Liang L.J. Prognostic impact of pERK in advanced hepatocellular carcinoma patients treated with sorafenib. Eur. J. Surg. Oncol. 2013, 39, 974–980. [CrossRef]
- Negri F.; Bello B.D.; Porta C.; Campanini N.; Rossi S.; Tinelli C.; Poggi G.; Missale G.; Fanello S.; Salvagni S.; et al. Expression of pERK and VEGFR-2 in advanced hepatocellular carcinoma and resistance to sorafenib treatment. Liver Int. 2015, 35, 2001–2008. [CrossRef]
- Personeni N.; Rimassa L.; Pressiani T.; Destro A.; Ligorio C.; Tronconi M.C.; Bozzarelli S.; Carnaghi C.; Di Tommaso L.; Giordano L.; et al. Molecular determinants of outcome in sorafenib-treated patients with hepatocellular carcinoma. J. Cancer Res. Clin. Oncol. 2013, 139, 1179–1187. [CrossRef]
- Arao T.; Ueshima K.; Matsumoto K.; Nagai T.; Kimura H.; Hagiwara S.; Sakurai T.; Haji S.; Kanazawa A.; Hidaka H.; et al. FGF3/FGF4 amplification and multiple lung metastases in responders to sorafenib in hepatocellular carcinoma. Hepatology. 2013, 57, 1407–1415. [CrossRef]
- Chen X.; Ba Y.; Ma L.; Cai X.; Yin Y.; Wang K.; Guo J.; Zhang Y.; Chen J.; Guo X.; et al. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res. 2008, 18, 997–1006. [CrossRef]
- Gyöngyösi B.; Végh É.; Járay B.; Székely E.; Fassan M.; Bodoky G.; Schaff Z.; Kiss A. Pretreatment MicroRNA Level and Outcome in Sorafenib-treated Hepatocellular Carcinoma. J. Histochem. Cytochem. 2014, 62, 547–555. [CrossRef]
- Giordano S.; Columbano A. MicroRNAs: new tools for diagnosis, prognosis, and therapy in hepatocellular carcinoma? Hepatology. 2013, 57, 840–847. [CrossRef]
- Ghidini M.; Braconi C. Non-Coding RNAs in Primary Liver Cancer. Front. Med. (Lausanne). 2015, 2, 36. [CrossRef]
- Vaira V.; Roncalli M.; Carnaghi C.; Faversani A.; Maggioni M.; Augello C.; Rimassa L.; Pressiani T.; Spagnuolo G.; Di Tommaso L.; et al. MicroRNA-425-3p predicts response to sorafenib therapy in patients with hepatocellular carcinoma. Liver Int. 2015, 35, 1077–1086. [CrossRef]
- Shi Y.; Liu Z.; Lin Q.; Luo Q.; Cen Y.; Li J.; Fang X.; Gong C. MiRNAs and Cancer: Key Link in Diagnosis and Therapy. Genes (Basel). 2021, 12, 1289. [CrossRef]
- Qiu Z.; Li H.; Zhang Z.; Zhu Z.; He S.; Wang X.; Wang P.; Qin J.; Zhuang L.; Wang W.; et al. A Pharmacogenomic Landscape in Human Liver Cancers. Cancer Cell. 2019, 36, 179–193.e11. [CrossRef]
- Semënov M.V.; Zhang X.; He X. DKK1 antagonizes Wnt signaling without promotion of LRP6 internalization and degradation. J. Biol. Chem. 2008, 283, 21427–21432. [CrossRef]
- Teufel M.; Seidel H.; Köchert K.; Meinhardt G.; Finn R.S.; Llovet J.M.; Bruix J. Biomarkers Associated With Response to Regorafenib in Patients With Hepatocellular Carcinoma. Gastroenterology. 2019, 156, 1731–1741. [CrossRef]
- Piccart-Gebhart M.J.; Procter M.; Leyland-Jones B.; Goldhirsch A.; Untch M.; Smith I.; Gianni L.; Baselga J.; Bell R.; Jackisch C.; et al. Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N. Engl. J. Med. 2005, 353, 1659–1672. [CrossRef]
- Cataldo V.D.; Gibbons D.L.; Pérez-Soler R.; Quintás-Cardama A. Treatment of non-small-cell lung cancer with erlotinib or gefitinib. N. Engl. J. Med. 2011, 364, 947–955. [CrossRef]
- Solomon B.J.; Mok T.; Kim D.W.; Wu Y.L.; Nakagawa K.; Mekhail T.; Felip E.; Cappuzzo F.; Paolini J.; Usari T.; et al. First-line crizotinib versus chemotherapy in ALK-positive lung cancer. N. Engl. J. Med. 2014, 371, 2167–2177. [CrossRef]
- Llovet J.M.; Hernandez-Gea V. Hepatocellular carcinoma: reasons for phase III failure and novel perspectives on trial design. Clin. Cancer Res. 2014, 20, 2072–2079. [CrossRef]
- Villanueva A.; Chiang D.Y.; Newell P.; Peix J.; Thung S.; Alsinet C.; Tovar V.; Roayaie S.; Minguez B.; Sole M.; et al. Pivotal role of mTOR signaling in hepatocellular carcinoma. Gastroenterology. 2008, 135, 1972–1983. [CrossRef]
- Zhu A.X.; Kudo M.; Assenat E.; Cattan S.; Kang Y.K.; Lim H.Y.; Poon R.T.; Blanc J.F.; Vogel A.; Chen C.L.; et al. Effect of everolimus on survival in advanced hepatocellular carcinoma after failure of sorafenib: the EVOLVE-1 randomized clinical trial. JAMA. 2014, 312, 57–67. [CrossRef]
- Zhang B.; Finn R.S. Personalized Clinical Trials in Hepatocellular Carcinoma Based on Biomarker Selection. Liver Cancer. 2016, 5, 221–232. [CrossRef]
- Santoro A.; Rimassa L.; Borbath I.; Daniele B.; Salvagni S.; Van Laethem J.L.; Van Vlierberghe H.; Trojan J.; Kolligs F.T.; Weiss A.; et al. Tivantinib for second-line treatment of advanced hepatocellular carcinoma: a randomised, placebo-controlled phase 2 study. Lancet Oncol. 2013, 14, 55–63. [CrossRef]
- Rimassa L.; Assenat E.; Peck-Radosavljevic M.; Pracht M.; Zagonel V.; Mathurin P.; Rota Caremoli E.; Porta C.; Daniele B.; Bolondi L.; et al. Tivantinib for second-line treatment of MET-high, advanced hepatocellular carcinoma (METIV-HCC): a final analysis of a phase 3, randomised, placebo-controlled study. Lancet Oncol. 2018, 19, 682–693. [CrossRef]
- Kudo M.; Morimoto M.; Moriguchi M.; Izumi N.; Takayama T.; Yoshiji H.; Hino K.; Oikawa T.; Chiba T.; Motomura K.; et al. A randomized, double-blind, placebo-controlled, phase 3 study of tivantinib in Japanese patients with MET-high hepatocellular carcinoma. Cancer Sci. 2020, 111, 3759–3769. [CrossRef]
- Rimassa L.; Kelley R.K.; Meyer T.; Ryoo B.Y.; Merle P.; Park J.W.; Blanc J.F.; Lim H.Y.; Tran A.; Chan Y.W.; et al. Outcomes Based on Plasma Biomarkers for the Phase 3 CELESTIAL Trial of Cabozantinib versus Placebo in Advanced Hepatocellular Carcinoma. Liver Cancer. 2021, 11, 38–47. [CrossRef]
- Totoki Y.; Tatsuno K.; Covington K.R.; Ueda H.; Creighton C.J.; Kato M.; Tsuji S.; Donehower L.A.; Slagle B.L.; Nakamura H.; et al. Trans-ancestry mutational landscape of hepatocellular carcinoma genomes. Nat. Genet. 2014, 46, 1267–1273. [CrossRef]
- Schulze K.; Imbeaud S.; Letouzé E.; Alexandrov L.B.; Calderaro J.; Rebouissou S.; Couchy G.; Meiller C.; Shinde J.; Soysouvanh F.; et al. Exome sequencing of hepatocellular carcinomas identifies new mutational signatures and potential therapeutic targets. Nat. Genet. 2015, 47, 505–511. [CrossRef]
- Xue R.; Li R.; Guo H.; Guo L.; Su Z.; Ni X.; Qi L.; Zhang T.; Li Q.; Zhang Z.; et al. Variable Intra-Tumor Genomic Heterogeneity of Multiple Lesions in Patients With Hepatocellular Carcinoma. Gastroenterology. 2016, 150, 998–1008. [CrossRef]
- Pinter M.; Peck-Radosavljevic M. Review article: systemic treatment of hepatocellular carcinoma. Aliment Pharmacol. Ther. 2018, 48, 598–609. [CrossRef]
- Tohyama O.; Matsui J.; Kodama K.; Hata-Sugi N.; Kimura T.; Okamoto K.; Minoshima Y.; Funahashi Y. Antitumor activity of lenvatinib (e7080): an angiogenesis inhibitor that targets multiple receptor tyrosine kinases in preclinical human thyroid cancer models. J. Thyroid Res. 2014, 2014, 638747. [CrossRef]
- Matsuki M.; Hoshi T.; Yamamoto Y.; Ikemori-Kawada M.; Minoshima Y.; Funahashi Y.; Matsui J. Lenvatinib inhibits angiogenesis and tumor fibroblast growth factor signaling pathways in human hepatocellular carcinoma models. Cancer Med. 2018, 7, 2641–2653. [CrossRef]
- Tada T.; Kumada T.; Hiraoka A.; Michitaka K.; Atsukawa M.; Hirooka M.; Tsuji K.; Ishikawa T.; Takaguchi K.; Kariyama K.; et al. Neutrophil-to-lymphocyte ratio is associated with survival in patients with unresectable hepatocellular carcinoma treated with lenvatinib. Liver Int. 2020, 40, 968–976. [CrossRef]
- Casadei-Gardini A.; Rimini M.; Kudo M.; Shimose S.; Tada T.; Suda G.; Goh M.J.; Jefremow A.; Scartozzi M.; Cabibbo G.; et al. Real Life Study of Lenvatinib Therapy for Hepatocellular Carcinoma: RELEVANT Study. Liver Cancer. 2022, 11, 527–539. [CrossRef]
- Myojin Y.; Kodama T.; Maesaka K.; Motooka D.; Sato Y.; Tanaka S.; Abe Y.; Ohkawa K.; Mita E.; Hayashi Y.; et al. ST6GAL1 Is a Novel Serum Biomarker for Lenvatinib-Susceptible FGF19-Driven Hepatocellular Carcinoma. Clin. Cancer Res. 2021, 27, 1150–1161. [CrossRef]
- Wilson L.J.; Linley A.; Hammond D.E.; Hood F.E.; Coulson J.M.; MacEwan D.J.; Ross S.J.; Slupsky J.R.; Smith P.D.; Eyers P.A.; et al. The biology of VEGF and its receptors. Nat. Med. 2003, 9, 669–676. [CrossRef]
- Spratlin J.L.; Cohen R.B.; Eadens M.; Gore L.; Camidge D.R.; Diab S.; Leong S.; O'Bryant C.; Chow L.Q.M.; Serkova N.J.; et al. Phase I pharmacologic and biologic study of ramucirumab (IMC-1121B), a fully human immunoglobulin G1 monoclonal antibody targeting the vascular endothelial growth factor receptor-2. J. Clin. Oncol. 2010, 28, 780–787. [CrossRef]
- Zhu A.X.; Finn R.S.; Mulcahy M.; Gurtler J.; Sun W.; Schwartz J.D.; Dalal R.P.; Joshi A.; Hozak R.R.; Xu Y.; et al. A phase II and biomarker study of ramucirumab, a human monoclonal antibody targeting the VEGF receptor-2, as first-line monotherapy in patients with advanced hepatocellular cancer. Clin. Cancer Res. 2013, 19, 6614–6623. [CrossRef]
- Zhu A.X.; Park J.O.; Ryoo B.Y.; Yen C.J.; Poon R.; Pastorelli D.; Blanc J.F.; Chung H.C.; Baron A.D.; Pfiffer T.E.F.; et al. Ramucirumab versus placebo as second-line treatment in patients with advanced hepatocellular carcinoma following first-line therapy with sorafenib (REACH): a randomised, double-blind, multicentre, phase 3 trial. Lancet Oncol. 2015, 16, 859–870. [CrossRef]
- Spratlin J.L.; Cohen R.B.; Eadens M.; Gore L.; Camidge D.R.; Diab S.; Leong S.; O'Bryant C.; Chow L.Q.M.; Serkova N.J.; et al. Phase I pharmacologic and biologic study of ramucirumab (IMC-1121B), a fully human immunoglobulin G1 monoclonal antibody targeting the vascular endothelial growth factor receptor-2. J. Clin. Oncol. 2010, 28, 780–787. [CrossRef]
- Montal R.; Andreu-Oller C.; Bassaganyas L.; Esteban-Fabró R.; Moran S.; Montironi C.; Moeini A.; Pinyol R.; Peix J.; Cabellos L.; et al. Molecular portrait of high alpha-fetoprotein in hepatocellular carcinoma: implications for biomarker-driven clinical trials. Br. J. Cancer. 2019, 121, 340–343. [CrossRef]
- Donne R.; Lujambio A. The liver cancer immune microenvironment: Therapeutic implications for hepatocellular carcinoma. Hepatology. 2023, 77, 1773–1796. [CrossRef]
- El-Khoueiry A.B.; Sangro B.; Yau T.; Crocenzi T.S.; Kudo M.; Hsu C.; Kim T.-Y.; Choo S.-P.; Trojan J.; Welling Rd T.H.; et al. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet. 2017, 389, 2492–2502. [CrossRef]
- Yau T.; Park J.-W.; Finn R.S.; Cheng A.-L.; Mathurin P.; Edeline J.; Kudo M.; Harding J.J.; Merle P.; Rosmorduc O.; et al. Nivolumab versus sorafenib in advanced hepatocellular carcinoma (CheckMate 459): a randomised, multicentre, open-label, phase 3 trial. Lancet Oncol. 2022, 23, 77–90. [CrossRef]
- Zhu A.X.; Finn R.S.; Edeline J.; Cattan S.; Ogasawara S.; Palmer D.; Verslype C.; Zagonel V.; Fartoux L.; Vogel A.; et al. Pembrolizumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib (KEYNOTE-224): a non-randomised, open-label phase 2 trial. Lancet Oncol. 2018, 19, 940–952. [CrossRef]
- Finn R.S.; Ryoo B.-Y.; Merle P.; Kudo M.; Bouattour M.; Lim H.Y.; Breder V.; Edeline J.; Chao Y.; Ogasawara S.; et al. Pembrolizumab As Second-Line Therapy in Patients With Advanced Hepatocellular Carcinoma in KEYNOTE-240: A Randomized, Double-Blind, Phase III Trial. J. Clin. Oncol. 2020, 38, 193–202. [CrossRef]
- Qin S.; Chen Z.; Fang W.; Ren Z.; Xu R.; Ryoo B.-Y.; Meng Z.; Bai Y.; Chen X.; Liu X.; et al. Pembrolizumab Versus Placebo as Second-Line Therapy in Patients From Asia With Advanced Hepatocellular Carcinoma: A Randomized, Double-Blind, Phase III Trial. J. Clin. Oncol. 2023, 41, 1434–1443. [CrossRef]
- Leach D.R.; Krummel M.F.; Allison J.P. Enhancement of antitumor immunity by CTLA-4 blockade. Science. 1996, 271, 1734–1736. [CrossRef]
- Iwai Y.; Ishida M.; Tanaka Y.; Okazaki T.; Honjo T.; Minato N. Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc. Natl. Acad. Sci. USA. 2002, 99, 12293–12297. [CrossRef]
- Shiravand Y.; Khodadadi F.; Kashani S.M.A.; Hosseini-Fard S.R.; Hosseini S.; Sadeghirad H.; Ladwa R.; O'Byrne K.; Kulasinghe A. Immune Checkpoint Inhibitors in Cancer Therapy. Curr. Oncol. 2022, 29, 3044–3060. [CrossRef]
- Ang C.; Klempner S.J.; Ali S.M.; Madison R.; Ross J.S.; Severson E.A.; Fabrizio D.; Goodman A.; Kurzrock R.; Suh J.; Millis S.Z. Prevalence of established and emerging biomarkers of immune checkpoint inhibitor response in advanced hepatocellular carcinoma. Oncotarget. 2019, 10, 4018–4025. [CrossRef]
- Zhu A.X.; Abbas A.R.; de Galarreta M.R.; Guan Y.; Lu S.; Koeppen H.; Zhang W.; Hsu C.H.; He A.R.; Ryoo B.Y.; et al. Molecular correlates of clinical response and resistance to atezolizumab in combination with bevacizumab in advanced hepatocellular carcinoma. Nat. Med. 2022, 28, 1599–1611. [CrossRef]
- Kudo M. Pembrolizumab for the Treatment of Hepatocellular Carcinoma. Liver Cancer. 2019, 8, 143–154. [CrossRef]
- Pinato D.J.; Mauri F.A.; Spina P.; Cain O.; Siddique A.; Goldin R.; Victor S.; Pizio C.; Akarca A.U.; Boldorini R.L.; et al. Clinical implications of heterogeneity in PD-L1 immunohistochemical detection in hepatocellular carcinoma: the Blueprint-HCC study. Br. J. Cancer. 2019, 120, 1033–1036. [CrossRef]
- Pfister D.; Núñez N.G.; Pinyol R.; Govaere O.; Pinter M.; Szydlowska M.; Gupta R.; Qiu M.; Deczkowska A.; Weiner A.; et al. NASH limits anti-tumour surveillance in immunotherapy-treated HCC. Nature. 2021, 592, 450–456. [CrossRef]
- Cheng A.L.; Qin S.; Ikeda M.; Galle P.R.; Ducreux M.; Kim T.Y.; Lim H.Y.; Kudo M.; Breder V.; Merle P.; et al. Updated efficacy and safety data from IMbrave150: Atezolizumab plus bevacizumab vs. sorafenib for unresectable hepatocellular carcinoma. J. Hepatol. 2022, 76, 862–873. [CrossRef]
- Rimini M.; Rimassa L.; Ueshima K.; Burgio V.; Shigeo S.; Tada T.; Suda G.; Yoo C.; Cheon J.; Pinato D.J.; et al. Atezolizumab plus bevacizumab versus lenvatinib or sorafenib in non-viral unresectable hepatocellular carcinoma: an international propensity score matching analysis. ESMO Open. 2022, 7, 100591. [CrossRef]
- Spranger S.; Bao R.; Gajewski T.F. Melanoma-intrinsic β-catenin signalling prevents anti-tumour immunity. Nature. 2015, 523, 231–235. [CrossRef]
- Luke J.J.; Bao R.; Sweis R.F.; Spranger S.; Gajewski T.F. WNT/β-catenin Pathway Activation Correlates with Immune Exclusion across Human Cancers. Clin. Cancer Res. 2019, 25, 3074–3083. [CrossRef]
- Harding J.J.; Nandakumar S.; Armenia J.; Khalil D.N.; Albano M.; Ly M.; Shia J.; Hechtman J.F.; Kundra R.; El Dika I.; et al. Prospective Genotyping of Hepatocellular Carcinoma: Clinical Implications of Next-Generation Sequencing for Matching Patients to Targeted and Immune Therapies. Clin. Cancer Res. 2019, 25, 2116–2126. [CrossRef]
- Ueno A.; Masugi Y.; Yamazaki K.; Komuta M.; Effendi K.; Tanami Y.; Tsujikawa H.; Tanimoto A.; Okuda S.; Itano O.; et al. OATP1B3 expression is strongly associated with Wnt/β-catenin signalling and represents the transporter of gadoxetic acid in hepatocellular carcinoma. J. Hepatol. 2014, 61, 1080–1087. [CrossRef]
- Aoki T.; Nishida N.; Ueshima K.; Morita M.; Chishina H.; Takita M.; Hagiwara S.; Ida H.; Minami Y.; Yamada A.; et al. Higher Enhancement Intrahepatic Nodules on the Hepatobiliary Phase of Gd-EOB-DTPA-Enhanced MRI as a Poor Responsive Marker of Anti-PD-1/PD-L1 Monotherapy for Unresectable Hepatocellular Carcinoma. Liver Cancer. 2021, 10, 615–628. [CrossRef]
- Kubo A.; Suda G.; Kimura M.; Maehara O.; Tokuchi Y.; Kitagataya T.; Ohara M.; Yamada R.; Shigesawa T.; Suzuki K.; et al. Characteristics and Lenvatinib Treatment Response of Unresectable Hepatocellular Carcinoma with Iso-High Intensity in the Hepatobiliary Phase of EOB-MRI. Cancers (Basel). 2021, 13, 3633. [CrossRef]
- Kuwano A.; Tanaka K.; Yada M.; Nagasawa S.; Morita Y.; Masumoto A.; Motomura K. Therapeutic efficacy of lenvatinib for hepatocellular carcinoma with iso-high intensity in the hepatobiliary phase of Gd-EOB-DTPA-MRI. Mol. Clin. Oncol. 2022, 16, 53. [CrossRef]
- Murai H.; Kodama T.; Maesaka K.; Tange S.; Motooka D.; Suzuki Y.; Shigematsu Y.; Inamura K.; Mise Y.; Saiura A.; et al. Multiomics identifies the link between intratumor steatosis and the exhausted tumor immune microenvironment in hepatocellular carcinoma. Hepatology. 2023, 77, 77–91. [CrossRef]
- Sasaki R.; Nagata K.; Fukushima M.; Haraguchi M.; Miuma S.; Miyaaki H.; Soyama A.; Hidaka M.; Eguchi S.; Shigeno M.; et al. Evaluating the Role of Hepatobiliary Phase of Gadoxetic Acid-Enhanced Magnetic Resonance Imaging in Predicting Treatment Impact of Lenvatinib and Atezolizumab plus Bevacizumab on Unresectable Hepatocellular Carcinoma. Cancers (Basel). 2022, 14, 827. [CrossRef]
- Kuwano A.; Yada M.; Narutomi F.; Nagasawa S.; Tanaka K.; Kurosaka K.; Ohishi Y.; Masumoto A.; Motomura K. Therapeutic efficacy of atezolizumab plus bevacizumab for hepatocellular carcinoma with WNT/β-catenin signal activation. Oncol. Lett. 2022, 24, 216. [CrossRef]
- Yamashita T.; Kitao A.; Matsui O.; Hayashi T.; Nio K.; Kondo M.; Ohno N.; Miyati T.; Okada H.; Yamashita T.; et al. Gd-EOB-DTPA-enhanced magnetic resonance imaging and alpha-fetoprotein predict prognosis of early-stage hepatocellular carcinoma. Hepatology. 2014, 60, 1674–1685. [CrossRef]
- Hagiwara S.; Nishida N.; Kudo M. Advances in Immunotherapy for Hepatocellular Carcinoma. Cancers (Basel). 2023, 15, 2070. [CrossRef]
- Sia D.; Jiao Y.; Martinez-Quetglas I.; Kuchuk O.; Villacorta-Martin C.; Castro de Moura M.; Putra J.; Camprecios G.; Bassaganyas L.; Akers N.; et al. Identification of an Immune-specific Class of Hepatocellular Carcinoma, Based on Molecular Features. Gastroenterology. 2017, 153, 812–826. [CrossRef]
- Montironi C.; Castet F.; Haber P.K.; Pinyol R.; Torres-Martin M.; Torrens L.; Mesropian A.; Wang H.; Puigvehi M.; Maeda M.; et al. Inflamed and non-inflamed classes of HCC: a revised immunogenomic classification. J. Hepatol. 2023, 72, 129–140. [CrossRef]
- Luke J.J.; Bao R.; Sweis R.F.; Spranger S.; Gajewski T.F. WNT/β-catenin Pathway Activation Correlates with Immune Exclusion across Human Cancers. Clin. Cancer Res. 2019, 25, 3074–3083. [CrossRef]
- Scheiner B.; Pomej K.; Kirstein M.M.; Hucke F.; Finkelmeier F.; Waidmann O.; Himmelsbach V.; Schulze K.; von Felden J.; Fründt T.W.; et al. Prognosis of patients with hepatocellular carcinoma treated with immunotherapy - development and validation of the CRAFITY score. J. Hepatol. 2022, 76, 353–363. [CrossRef]
- Hatanaka T.; Kakizaki S.; Hiraoka A.; Tada T.; Hirooka M.; Kariyama K.; Tani J.; Atsukawa M.; Takaguchi K.; Itobayashi E.; et al. Prognostic impact of C-reactive protein and alpha-fetoprotein in immunotherapy score in hepatocellular carcinoma patients treated with atezolizumab plus bevacizumab: a multicenter retrospective study. Hepatol. Int. 2022, 16, 1150–1160. [CrossRef]
- Capone M.; Giannarelli D.; Mallardo D.; Madonna G.; Festino L.; Grimaldi A.M.; Vanella V.; Simeone E.; Paone M.; Palmieri G.; et al. Baseline neutrophil-to-lymphocyte ratio (NLR) and derived NLR could predict overall survival in patients with advanced melanoma treated with nivolumab. J. Immunother. Cancer. 2018, 6, 74. [CrossRef]
- Bilen M.A.; Dutcher G.M.A.; Liu Y.; Ravindranathan D.; Kissick H.T.; Carthon B.C.; Kucuk O.; Harris W.B.; Master V.A. Association Between Pretreatment Neutrophil-to-Lymphocyte Ratio and Outcome of Patients With Metastatic Renal-Cell Carcinoma Treated With Nivolumab. Clin. Genitourin. Cancer. 2018, 16, e563–e575. [CrossRef]
- Ogata T.; Satake H.; Ogata M.; Hatachi Y.; Inoue K.; Hamada M.; Yasui H. Neutrophil-to-lymphocyte ratio as a predictive or prognostic factor for gastric cancer treated with nivolumab: a multicenter retrospective study. Oncotarget. 2018, 9, 34520–34527. [CrossRef]
- Bagley S.J.; Kothari S.; Aggarwal C.; Bauml J.M.; Alley E.W.; Evans T.L.; Kosteva J.A.; Ciunci C.A.; Gabriel P.E.; Thompson J.C.; et al. Pretreatment neutrophil-to-lymphocyte ratio as a marker of outcomes in nivolumab-treated patients with advanced non-small-cell lung cancer. Lung Cancer. 2017, 106, 1–7. [CrossRef]
- Eso Y.; Takeda H.; Taura K.; Takai A.; Takahashi K.; Seno H. Pretreatment Neutrophil-to-Lymphocyte Ratio as a Predictive Marker of Response to Atezolizumab Plus Bevacizumab for Hepatocellular Carcinoma. Curr. Oncol. 2021, 28, 4157–4166. [CrossRef]
- Tada T.; Kumada T.; Hiraoka A.; Hirooka M.; Kariyama K.; Tani J.; Atsukawa M.; Takaguchi K.; Itobayashi E.; Fukunishi S.; et al. Neutrophil-lymphocyte ratio predicts early outcomes in patients with unresectable hepatocellular carcinoma treated with atezolizumab plus bevacizumab: a multicenter analysis. Eur. J. Gastroenterol. Hepatol. 2022, 34, 698–706. [CrossRef]
- Reig M.; Forner A.; Rimola J.; Ferrer-Fàbrega J.; Burrel M.; Garcia-Criado Á.; Kelley R.K.; Galle P.R.; Mazzaferro V.; Salem R.; et al. BCLC strategy for prognosis prediction and treatment recommendation: The 2022 update. J. Hepatol. 2022, 76, 681–693. [CrossRef]
- Kudo M. Durvalumab Plus Tremelimumab: A Novel Combination Immunotherapy for Unresectable Hepatocellular Carcinoma. Liver Cancer. 2022, 11, 87–93. [CrossRef]
- Myojin Y.; Kodama T.; Sakamori R.; Maesaka K.; Matsumae T.; Sawai Y.; Imai Y.; Ohkawa K.; Miyazaki M.; Tanaka S.; et al. Interleukin-6 Is a Circulating Prognostic Biomarker for Hepatocellular Carcinoma Patients Treated with Combined Immunotherapy. Cancers (Basel). 2022, 14, 883. [CrossRef]
- Kuwano A.; Yada M.; Miyazaki Y.; Tanaka K.; Kurosaka K.; Ohishi Y.; Masumoto A.; Motomura K. Tumor-infiltrating CD8+ T cells as a biomarker for chemotherapy efficacy in unresectable hepatocellular carcinoma. Oncol. Lett. 2023, 25, 259. [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
