Altmetrics
Downloads
170
Views
56
Comments
0
A peer-reviewed article of this preprint also exists.
This version is not peer-reviewed
Submitted:
27 July 2023
Posted:
27 July 2023
You are already at the latest version
Parameter | Method of analysis/instrument | Ref. |
---|---|---|
pH | Probe YSI 6600 V2-4 (Xylem Inc.) | ‒ |
Suspended solids (mg L−1) | Gravimetry after drying at 105 °C | 49 |
Alkalinity | Titrimetric determination of acid neutralizing capacity to pH 4.5 (ANC4.5) | 50 |
Biochemical oxygen demand after 5 days (BOD5, mg L−1) | Electrochemical or optical probe methods | 51 |
Chemical oxygen demand by permanganate (CODMn, mg L−1) | Titrimetric determination after digestion with permanganate | 52 |
Chemical oxygen demand by dichromate method (CODCr, mg L−1) | Spectrophotometric test-tube method | 53 |
UV absorbency (Abs. @UVλ254) | Spectrometry (Shimadzu UV-1650 PC) | 54 |
TOT-P (mg L−1) | Inductive coupled plasma spectrometry (Agilent 8800 ICP-MSQ) | 55 |
PO43- (mg L−1) | Spectrophotometric ammonium molybdate method (Shimadzu UV-1650 PC) | 56 |
TOT-N (mg L−1) | High-temperature combustion (Multi N/C 2100 analyser, Analytik Jena AG, Germany) with unfiltered water samples | 57 |
N-NH4+ (mg L−1) | Spectrophotometry (Shimadzu UV-1650 PC) | 58 |
SO42-, N-NO3-, Cl-, (mg L−1) | Ion chromatography (Dionex ICS-1000) | 59 |
Ca2+, Mg2+, Na+, K+ (mg L−1) | Ion chromatography (Dionex ICS-1000) | 60 |
Chl-a (µg L−1) | Spectrometry (Shimadzu UV-1650 PC) | 61 |
TC (mg L−1) | High-temperature combustion method (Multi N/C 2100 analyser, Analytik Jena AG, Germany) | 62 |
TIC (mg L−1) | Low temperature acidification method (Multi N/C 2100 analyser, Analytik Jena AG, Germany) | 62 |
TOC (mg L−1) | TOC = TC – TIC | 62 |
DC (mg L−1) | High temperature combustion method (Multi N/C 2100 analyser, Analytik Jena AG, Germany) | 62 |
DIC (mg L−1) | Low temperature acidification method (Multi N/C 2100 analyser, Analytik Jena AG, Germany) | 62 |
DOC (mg L−1) | DOC = DC – DIC | 62 |
Parameter | Method of analysis/instrument | Ref. |
---|---|---|
pH | TIM865, Radiometer | ‒ |
Suspended solids (mg L−1) | Gravimetry after drying at 105 °C | 63 |
Alkalinity | Titrimetric determination of acid neutralizing capacity according to Gran using TIM865, Radiometer | 50 |
UV absorbency (Abs. @UVλ254) |
Spectrometry (Shimadzu UV-2700) | 54 |
TOT-P (mg L−1) | Spectrophotometric molybdate method (Kopáček and Hejzlar, 1993) | 56 |
PO43- (mg L−1) | Spectrophotometric ammonium molybdate method (Specord 50, Analytik Jena) Murphy and Riley (1962) |
56 |
Tot-N (mg L−1) | High-temperature combustion (Shimadzu TOC-L) with unfiltered water samples | 57 |
N-NH4+ (mg L−1) | Spectrophotometry (Specord 50, Analytik Jena) | 58 |
N-NO3-, Cl-, SO42- (mg L−1) | Ion chromatography (Dionex ICS-5000+) | 59 |
Ca2+, Mg2+, Na+, K+ (mg L−1) | Ion chromatography (Dionex IC25) | 60 |
TOC (mg L−1) | Nonpurgable total organic carbon (Shimadzu TOC-5000A) | 62 |
DOC (mg L−1) | Nonpurgable dissolved organic carbon (Shimadzu TOC-L) | 62 |
Site | pH | Alkalinity | SS | TOT-N | TOT-P | Ca2+ | Mg2+ | Na+ | K+ | SO42- | NO3- | Cl- | PO43- | N-NH4+ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
# | mmol L−1 | mg L−1 | mg L−1 | mg L−1 | mg L−1 | mg L−1 | mg L−1 | mg L−1 | mg L−1 | mg L−1 | mg L−1 | mg L−1 | mg L−1 | |
1 | 7.53 | 0.83 | 8.55 | 2.45 | 0.10 | 14.5 | 5.60 | 7.51 | 3.07 | 22.2 | 1.73 | 11.6 | 0.05 | 0.09 |
2 | 7.45 | 1.14 | 19.18 | 2.89 | 0.15 | 24.05 | 8.83 | 15.12 | 4.65 | 33.34 | 1.99 | 22.94 | 0.05 | 0.11 |
3 | 7.58 | 0.99 | 7.43 | 3.19 | 0.14 | 22.45 | 7.06 | 14.92 | 3.61 | 24.73 | 2.60 | 25.37 | 0.09 | 0.08 |
4 | 7.51 | 1.36 | 10.02 | 4.71 | 0.14 | 28.53 | 9.88 | 13.61 | 4.54 | 35.43 | 3.74 | 21.44 | 0.10 | 0.09 |
5 | 7.80 | 2.23 | 19.55 | 3.75 | 0.20 | 40.26 | 14.20 | 15.45 | 5.13 | 44.83 | 2.61 | 19.07 | 0.09 | 0.14 |
6 | 7.76 | 1.61 | 16.61 | 3.74 | 0.14 | 35.32 | 9.38 | 11.51 | 3.41 | 29.42 | 2.67 | 18.70 | 0.10 | 0.28 |
7 | 7.45 | 0.89 | 16.79 | 2.63 | 0.07 | 14.94 | 6.17 | 8.72 | 2.80 | 21.14 | 2.14 | 13.35 | 0.03 | 0.06 |
8 | 7.53 | 0.85 | 7.15 | 2.04 | 0.05 | 18.31 | 4.59 | 7.50 | 2.71 | 17.38 | 1.75 | 10.36 | 0.02 | 0.04 |
9 | 7.00 | 0.22 | 2.10 | 0.78 | 0.03 | 3.80 | 1.00 | 2.59 | 0.69 | 4.41 | 0.78 | 1.64 | 0.02 | 0.01 |
10 | 7.18 | 0.39 | 5.87 | 1.38 | 0.06 | 8.58 | 2.41 | 4.30 | 1.49 | 11.40 | 1.08 | 4.28 | 0.04 | 0.04 |
11 | 6.57 | 0.12 | 2.54 | 0.52 | 0.03 | 1.84 | 0.53 | 2.03 | 0.57 | 3.05 | 0.24 | 0.75 | 0.02 | 0.00 |
12 | 5.72 | 0.10 | 1.28 | 0.68 | 0.02 | 1.47 | 0.43 | 1.43 | 0.31 | 1.45 | 0.44 | 0.41 | 0.01 | 0.03 |
13 | 7.14 | 0.26 | 3.79 | 1.13 | 0.04 | 2.78 | 1.71 | 4.38 | 1.63 | 11.99 | 0.76 | 3.57 | 0.01 | 0.02 |
14 | 7.45 | 0.44 | 8.25 | 1.68 | 0.04 | 6.28 | 3.99 | 13.35 | 1.66 | 12.41 | 1.23 | 6.19 | 0.02 | 0.03 |
Sort | DOC | sUVa | BOD5 | CODCr | CODMn | Chl-a | BIX | FI | HIX | VHA | SHA | CHA | NEU | HPO | HPI |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
# | mg L−1 | cm−1/ mg C/L) |
mg L−1 | mg L−1 | mg L−1 | mg L−1 | % | % | % | % | % | % | |||
1 | 6.94 | 0.033 | 2.92 | 21.03 | 7.65 | 13.57 | 0.81 | 1.29 | 0.84 | 69.5 | 3.0 | 4.7 | 22.9 | 72.5 | 27.5 |
2 | 9.52 | 0.028 | 3.62 | 25.74 | 7.32 | 44.12 | 0.86 | 1.33 | 0.84 | 68.1 | 8.3 | 5.3 | 18.3 | 76.4 | 23.6 |
3 | 4.87 | 0.031 | 2.47 | 16.24 | 4.73 | 6.05 | 0.87 | 1.34 | 0.85 | 69.0 | 3.7 | 0.8 | 26.5 | 72.7 | 27.3 |
4 | 6.44 | 0.028 | 2.43 | 19.20 | 5.99 | 9.83 | 0.88 | 1.37 | 0.88 | 70.6 | 4.6 | 5.2 | 19.6 | 75.2 | 24.8 |
5 | 8.77 | 0.025 | 4.07 | 28.65 | 8.44 | 22.08 | 0.92 | 1.38 | 0.84 | 58.2 | 16.4 | 8.7 | 16.7 | 74.6 | 25.4 |
6 | 4.78 | 0.030 | 2.96 | 17.31 | - | 6.21 | 0.86 | 1.33 | 0.85 | 59.8 | 12.6 | 4.2 | 23.5 | 72.3 | 27.7 |
7 | 5.43 | 0.032 | 2.13 | 13.40 | 4.26 | 3.39 | 0.83 | 1.33 | 0.84 | 62.8 | 12.4 | 1.1 | 23.6 | 75.3 | 24.7 |
8 | 2.60 | 0.031 | 1.74 | 8.68 | 2.93 | 3.28 | 0.85 | 1.32 | 0.82 | 55.3 | 13.8 | 0.0 | 30.9 | 69.1 | 30.9 |
9 | 5.25 | 0.048 | - | - | 6.47 | - | 0.60 | 1.11 | 0.86 | 80.4 | 3.9 | 0.6 | 15.0 | 84.3 | 15.7 |
10 | 3.59 | 0.029 | 1.70 | 10.29 | 3.87 | - | 0.71 | 1.20 | 0.84 | 72.2 | 2.2 | 0.9 | 24.7 | 74.4 | 25.6 |
11 | 7.03 | 0.052 | - | - | - | - | 0.56 | 1.10 | 0.87 | 84.7 | 5.2 | 0.9 | 9.2 | 90.0 | 10.0 |
12 | 9.49 | 0.051 | 1.66 | 26.31 | 12.55 | - | 0.53 | 1.07 | 0.87 | 84.3 | 7.9 | 1.2 | 6.5 | 92.2 | 7.8 |
13 | 4.05 | 0.037 | 1.51 | 13.70 | 4.92 | - | 0.71 | 1.24 | 0.87 | 69.9 | 8.1 | 1.8 | 20.3 | 78.0 | 22.0 |
14 | 5.53 | 0.039 | 1.72 | 15.75 | 5.33 | 3.07 | 0.69 | 1.21 | 0.88 | 69.1 | 9.0 | 2.7 | 19.1 | 78.1 | 21.9 |
Ref. | Component assignment and description | Location | Sample type | Excitation/emission similarity score | |
---|---|---|---|---|---|
Component 1: λexcitation, max/λemission, max = 265 (365)/487 | |||||
1 | 43 RaskaDOM |
C2: Humic-like; large sized; characteristics of soil, sediment, and freshwater environments. | Cropping system, Montana, USA | Soil water extractable DOM | 0.9920/0.9946 |
2 | 64 Wheat |
C2: Humic-like; large sized; characteristics of soil, sediment, and freshwater environments | Cropping system, Montana, USA | Soil water extractable DOM | 0.9876/0.9972 |
3 | 65 Recycle |
C1: Terrestrial humic-like fluorescence in high nutrient and wastewater-impacted environments. | Water recycling plant, Australia | Water recycling DOM | 0.9808/0.9986 |
4 | 66 Galveston bay |
C1: similar to Coble peak C; humic like | Texas, USA | Riverine/Estuarine DOM | 0.9802/0.9975 |
5 | 67 Gueguen_Nelson |
C1: Humic-like; terrestrially derived; Coble peak C; some photobleaching | Beaufort Sea, experiments | Estuarine DOM | 0.9792/0.9933 |
6 | 68 Macaronesia |
C3: humic like | Sao Vicente, Cape Verde to Gran Canaria, Canary Island | Marine DOM | 0.9753/0.9968 |
7 | 69 | C1: Coble peak C+A; Humic-like; terrestrially derived | Australia | Water treatment plant DOM | 0.9723/0.9988 |
8 | 42 | C2: humic-like; terrestrially derived material identified in a variety of aquatic environments; photosensitive | Various freshwater environments across Quebec, Canada | Boreal freshwater DOM | 0.9965/0.9728 |
9 | 40 | C1: terrestrial and marine DOM | Fjordsystem, Norway | Experimental marine DOM | 0.9798/0.9861 |
10 | 41 | C2: aromatic; high molecular weight organic matter (humic-like) with terrestrial character and correlated to lignin phenol concentrations; humic-like substance, enriched in terrestrial DOM sources; ubiquitous in DOM. | Experiments | SRHA DOM standard from the International Humic Substances Society | 0.9832/0.9724 |
Component 2: λexcitation, max/λemission, max = 250 305/413 | |||||
1 | 70 | C4: UVA humic-like component frequently found in lentic freshwater; associated with bacterial planktonic activity. | The Sau Reservoir and its tributary the Ter River, Spain | Freshwater DOM | 0.9823/0.9924 |
2 | 41 | C3: combined Coble peaks A+M; microbial humic-like substances; produced by microbial degradation of organic matter. | Experiments | SRHA DOM standard from the International Humic Substances Society | 0.9887/0.9842 |
3 | 67 | C2: Humic-like; terrestrially derived; Coble peak A; susceptible to photobleaching. | Beaufort Sea, experiments | Estuarine DOM | 0.9790/0.9898 |
4 | 44 | C2: humic-like, ubiquitous humic component related with fulvic acids and re-processed humics | Montseny Natural Park, Spain | Headwater forested catchment freshwater DOM | 0.9717/0.9968 |
5 | 45 | C1: terrestrial humic-like, microbial-humic-like. | The Baltimore sewer system, Baltimore, USA | Wastewater DOM | 0.9810/0.9865 |
6 | 66 Galveston bay |
C2: similar to Coble peak M. | Texas, USA | Riverine/Estuarine DOM | 0.9834/0.9826 |
7 | 69 | C2: Coble peaks C+A; Humic-like; terrestrial delivered reprocessed OM | Australia | Water treatment plant DOM | 0.9733/0.9886 |
8 | 43 | C1: Humic-like; medium sized; characteristics of soil, sediment, and freshwater environments. | Cropping system, Montana, USA | Soil water extractable DOM | 0.9718/0.9548 |
9 | 64 | C2: Humic-like; medium sized; characteristics of soil, sediment, and freshwater environments. | Cropping system, Montana, USA | Soil water extractable DOM | 0.9826/0.9761 |
10 | 65 | C2: Microbial humic-like. | Water recycling plant, Australia | Water recycling DOM | 0.9826/0.9679 |
Component 3: λexcitation, max/λemission, max = 280/336 | |||||
1 | 71 | C7: protein-like; both tyrosine- and tryptophan-like properties. | Southern Onterio, Canada | Stormwater pond DOM | 0.9951/0.9961 |
2 | 72 | C5: Coble peak T; tryptophan-like. | Mackenzie, Lena, Kolyma, Ob, and Yenisei Rivers | Arctic river DOM | 0.9878/0.9947 |
3 | 73 | C5: Coble T peak; protein-like/tryptophan-like material with a recent, probably microbial origin. | Drinking water treatment plant, Sweden | Drinking water treatment plant water DOM | 0.9935/0.9867 |
4 | 74 | C2: tryptophan-like; protein-like | Maryland, USA | Leaf litter leachate | 0.9877/0.9924 |
5 | 69 | C4: Coble peaks T+B, Protein-like; microbial delivered. | Australia | Water treatment plant DOM | 0.9885/0.9886 |
6 | 46 | C4: tryptophan-like and protein-like material; generally contributes the highest intensity peaks in wastewaters, even in treated effluents; indicates recent production; often found in anthropogenically affected watersheds. | Coastal drainage basins of Miami, FL, USA | Coastal DOM | 0.9913/0.9845 |
7 | 75 | C3: protein-like; fresh production; biological production; higher in surface water layer. | Indian ocean | Marine DOM | 0.9978/0.9781 |
8 | 76 | C4: Tryptophan-like; both photodegraded and produced during photodegradation, depending on sample type. | Subtropical Minjiang watershed, China | Wastewater, leaf litter leachates, river water DOM. | 0.9864/0.9836 |
9 | 42 | C6: associated with freshly produced protein-like material; tryptophan-like; strongest predictor of BDOC. | Various freshwater environments across Quebec, Canada | Boreal freshwater DOM | 0.9663/0.9825 |
10 | 45 | C4: tryptophan-like; wastewater indicator. | The Baltimore sewer system, Baltimore, USA | Wastewater DOM | 0.9953/0.9538 |
Site # | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Name | Otava Písek |
Blanice Putim |
Volyňka Strakonice | Peklov Nemětice |
Černíčský potok Bojanovice |
Nezdický potok Žichovice |
Ostružná Sušice | Volšovka Červené Dvorce | Otava nad Volšovkou |
Losenice Rejštejn |
Hamerský potok Antýgl |
Vydra Modrava |
Volyňka Vimperk | Blanice Pode-dvory |
Location () | 49.3083 14.1250 |
49.2663 14.1127 |
49.2541 13.9032 |
49.1947 13.8839 |
49.2948 13.6435 |
49.2670 13.6273 |
49.2521 13.5499 |
49.2120 13.5026 |
49.2115 13.5022 |
49.1405 13.5170 |
49.0597 13.5120 | 49.0267 13.4974 | 49.0506 13.7676 | 49.0328 13.9504 |
Altitude m a.s.l. |
360 | 364 | 400 | 428 | 429 | 435 | 452 | 482 | 465 | 558 | 900 | 980 | 710 | 545 |
Catchment area km2 |
2885 | 860 | 427 | 80.3 | 61.5 | 75.8 | 172 | 74.4 | 456 | 53.7 | 20.7 | 89.7 | 48.4 | 210 |
Land use, %: | ||||||||||||||
Forest | 43.2 | 40.92 | 41.5 | 28.0 | 27.1 | 41.1 | 39.8 | 50.9 | 82.1 | 78.2 | 86.9 | 96.2 | 78.1 | 64.5 |
Arable | 24.2 | 28.6 | 15.1 | 25.3 | 30.3 | 15.3 | 15.0 | 4.93 | 0.36 | 0.14 | 0 | 0.05 | 0.39 | 3.07 |
Grassland1 | 29.1 | 26.4 | 40.5 | 44.2 | 38.8 | 41.5 | 42.7 | 42.6 | 16.7 | 20.8 | 13.0 | 3.49 | 21.1 | 31.6 |
Urban | 2.23 | 2.43 | 2.58 | 2.19 | 2.10 | 1.58 | 1.73 | 1.44 | 0.45 | 0.75 | 0.07 | 0.03 | 0.34 | 0.62 |
Water2 | 1.32 | 1.6 | 0.3 | 0.29 | 1.69 | 0.56 | 0.73 | 0.13 | 0.38 | 0.08 | 0.09 | 0.23 | 0.07 | 0.23 |
Population density, person km⁻2 |
50.0 | 48.4 | 57.3 | 32.0 | 29.0 | 22.8 | 27.3 | 59.8 | 9.5 | 30.7 | 3.2 | 0.64 | 4.2 | 11.4 |
%DOM fractions |
vs. |
R2 |
---|---|---|
HPI |
Fishponds | 0.712 |
BOD5 | 0.810 | |
Rel. RR | 0.691 | |
VHA | sUVa | 0.669 |
CHA |
Urban | 0.689 |
CODMn | 0.729 | |
K+ | 0.676 | |
NO3- | 0.729 | |
BIX | 0.757 | |
FI | 0.805 | |
HIX | 0.704 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 MDPI (Basel, Switzerland) unless otherwise stated