Altmetrics
Downloads
68
Views
24
Comments
0
A peer-reviewed article of this preprint also exists.
This version is not peer-reviewed
Submitted:
18 August 2023
Posted:
21 August 2023
You are already at the latest version
c | Coefficient of OK model (-) | y(x) | The distribution of predicted value |
C | Cluster (-) | z(x) | Error function of the Kriging model |
d | Neighborhood radius (-) | ||
D | Sample set (-) | Superscripts/Subscripts | |
m | Dimensionality (-) | - | Average |
n | Initial sample size (-) | ^ | Predicted value |
N | Candidate set in clustering (-) | 1 / 2 | A number |
p | Minimum number of points in clustering (-) | i / j | A number |
s | Number of iteration steps (-) | in | Inlet |
T | Temperature (℃) | n | A number |
u | Object in clustering (-) | ||
V | Velocity (m/s) | Greek symbols | |
x | Variable (-) | σ | Standard deviation (-) |
X | Initial set in clustering (-) | θ | Angle (°) |
Functions | Abbreviations | ||
average(x) | Average function | ANN | Artificial neural networks |
Cov(xi,xj) | Covariance function | LHS | Latin hypercube sampling |
f(x) | Basis function of the Kriging model | MSE | Mean squared error |
F(x) | Objective (cost) function | MSP | Minimizing surrogate model prediction |
F'(x) | Combinatorial function of the objective function | NSGA | Non-dominated Sorting Genetic Algorithms |
g(x) | Constraint function | OK | Ordinary Kriging model |
IF | Logic function | PMV | Predicted Mean Vote |
max(x) | Find the maximum | POD | Proper orthogonal decomposition |
R(xi,xj) | Function of correlation coefficient | PSO | Particle swarm optimization |
y=0.52m, z=0.35m | ||||||||||
i | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
xi (m) | 0.024 | 0.063 | 0.102 | 0.205 | 0.354 | 0.709 | 0.859 | 0.961 | 0.985 | 1.020 |
uyi (m/s) | 0.220 | 0.240 | 0.222 | 0.140 | 0.068 | -0.06 | -0.125 | -0.204 | -0.268 | -0.270 |
Notes: Data from Blay's experimental study [55]. |
y=0.52m, z=0.35m | |||||||||||
j | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
xj (m) | 0.00 | 0.02 | 0.038 | 0.084 | 0.229 | 0.520 | 0.811 | 0.964 | 1.00 | 1.01 | 1.04 |
tj (K) | 288 | 292 | 293 | 293 | 292 | 292 | 292 | 291 | 291 | 291 | 288 |
Notes: Data from Blay's experimental study [55]. |
Methods | Authors | Other tools | Situations |
---|---|---|---|
CFD-based adjoint | Zhao, X. et al. (2018) [16] | The centroid-based hierarchical cluster analysis | Steady-state and single-objective |
Artificial neural networks (ANN) | Li, L. et al. (2023) [17] | Particle swarm optimizer-grey wolf optimization | Transient and multi-objective |
Lin, C. J. et al. (2022) [18] | Whale optimization algorithm | Steady-state and multi-objective | |
Hou, F. et al. (2022) [19] | Grey wolf optimization | Steady-state and multi-objective | |
Ye, X. et al. (2022) [20] | Technique for order preference by similarity to an ideal solution (TOPSIS) | Steady-state and multi-objective | |
Li, L. et al. (2022) [21] | PSO | Steady-state and single-objective | |
Aruta, G. et al. (2023) [22] | Non-dominated sorting genetic algorithm-II (NSGA-II) | Multi-objective | |
Proper orthogonal decomposition (POD) | Wang, X. et al. (2021) [23] | Radial basis functions | Steady-state and multi-objective |
Liu, Y. et al. (2021) [24] | Steady-state and multi-objective | ||
Multi-step joint optimization | Shao, X. et al. (2023) [25] | Three flow field characteristic indicators | Transient and multi-objective |
Meta-heuristic optimization approaches | Baba, F. M. et al. (2023) [26] | NSGA-II | Steady-state and multi-objective |
Fan, Z. et al. (2022) [27] | Improving the strength Pareto evolutionary algorithm-2 (SPEA-2) | Steady-state and multi-objective | |
Rafati, N. et al. (2023) [28] | NSGA-II | Multi-objective | |
Wang, Y. et al. (2022) [29] | NSGA-II and K-means | Multi-objective | |
Mostafazadeh, F. et al. (2023) [30] | NSGA-III and TOPSIS | Multi-objective | |
Li, C. et al. (2023) [31] | PSO | Steady-state and single-objective | |
Sun, R. et al. (2023) [32] | Genetic algorithm | Steady-state and single-objective | |
Orthogonal experiment designs | Yin, Y. et al. (2023) [33] | Steady-state and single-objective | |
Chen, M. et al. (2023) [34] | Steady-state and single-objective |
NO. |
Vin (m/s) (deviation) |
Tin (℃) (deviation) | F1 | F2 | F' |
---|---|---|---|---|---|
1 | 0.57103 (0.18%) | 15.0359 (0.24%) | 0.000151 (min) |
0.001755 | 0.000953 (min) |
2 | 0.55203 (3.15%) | 14.9596 (0.29%) | 0.005745 | 0.000493 (min) |
0.003119 |
NO. |
Vin (m/s) (deviation) |
Tin (℃) (deviation) | F1 | F2 | F' | |
---|---|---|---|---|---|---|
Iteration 39 (continuous) | 1 | 0.61033 (7.075%) | 16.43050 (9.53%) | 0.05569 (min) |
0.02771 | 0.04170 (min) |
2 | 0.72669 (27.5%) | 16.63695 (10.9%) | 0.13114 | 0.01539 (min) |
0.07327 | |
Iteration 52 (continuous) | 1 | 0.61394 (7.71%) | 16.81935 (12.1%) | 0.05531 (min) |
0.02688 | 0.04109 |
2 | 0.55865 (1.99%) | 16.64436 (11.0%) | 0.05667 | 0.02359 | 0.04013 (min) |
|
3 | 0.72669 (27.5%) | 16.63695 (10.9%) | 0.13114 | 0.01539 (min) |
0.07327 | |
Iteration 12 (discrete) | 1 | 0.59 (3.51%) |
16.5 (10.0%) |
0.05497 (min) |
0.02654 | 0.04075 (min) |
2 | 0.76 (33.3%) |
16.6 (10.7%) |
0.12294 | 0.01565 (min) |
0.06930 | |
1 | 0.61033 (7.075%) | 16.43050 (9.53%) | 0.05569 (min) |
0.02771 | 0.04170 (min) |
Parameters | Lower limit | Upper limit | Precision |
---|---|---|---|
t (℃) | 8 | 20 | 0.1 |
V1 (m/s) | 0.1 | 1.5 | 0.01 |
V2 (m/s) | 0.1 | 1.5 | 0.01 |
θ1 (°) | -80 | 80 | 1 |
θ2 (°) | -80 | 80 | 1 |
NO. | t (℃) | V1 (m/s) | V2 (m/s) | θ1 (°) | θ2 (°) | volume1 (m3) | volume2 (m3) | total (m3) |
---|---|---|---|---|---|---|---|---|
1 | 8 | 0.76 | 0.98 | 19 | 12 | 0.786 | 0.709 (max) | 1.496 |
2 | 10.8 | 0.83 | 0.29 | -56 | -15 | 1.236 | 0.621 | 1.856 |
3 | 10.8 | 0.87 | 0.28 | -57 | -17 | 1.296 | 0.596 | 1.893 (max) |
4 | 10.6 | 0.9 | 0.27 | -55 | -20 | 1.301 | 0.578 | 1.880 |
5 | 11 | 0.87 | 0.31 | -60 | -14 | 1.304 | 0.550 | 1.854 |
6 | 10.9 | 0.86 | 0.29 | -58 | -17 | 1.305 | 0.549 | 1.854 |
7 | 10.9 | 0.87 | 0.29 | -59 | -15 | 1.316 | 0.526 | 1.841 |
8 | 10.8 | 0.86 | 0.31 | -59 | -17 | 1.340 | 0.495 | 1.834 |
9 | 9.8 | 1.01 | 0.97 | -72 | -68 | 1.371 (max) | 0.394 | 1.765 |
CFD-based genetic algorithms | POD method | Surrogate-based (this paper) |
|
---|---|---|---|
Target number (achievable) | multiple | multiple | multiple |
Target number (current study) |
multiple | single | double |
Initial sample size | small | large | medium |
Sampling method | random | uniform/orthogonal experimental design | Latin hypercube sampling technique |
Randomness | existent | non-existent | existent |
Continuity assumption | non-existent | existent | existent |
Prediction process | non-existent | interpolation | interpolation |
Prediction method | non-existent | spline/polynomial/ radial basis function |
Kriging |
Gradient dependence | non-existent | existent | existent |
Database update | existent | usually non-existent | existent |
Subgeneration generation tool | three kinds of operators | usually non-existent | infill criteria and NSGA-II |
Number of new individuals | usually equal to the initial sample size | usually non-existent | few |
Validation times | many | one or few | many |
Effect of outliers | non-existent | existent | existent |
Costs | higher | medium | lower |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 MDPI (Basel, Switzerland) unless otherwise stated