Submitted:
04 February 2024
Posted:
05 February 2024
Read the latest preprint version here
Abstract
Keywords:
Introduction:
Addendum:
- Primary mechanisms:
Circulating Tumor Cell-Based or Cell-Free DNA Analysis:
- Other possible mechanisms:
Bacterial Competence:
Macrophage Phagocytosis:
Bacterial Phagocytosis:
Two Remaining Strategies:
Brain and Spinal Cord Tumors:
Conclusion:
Acknowledgments
References
- Renteln, M. Conditional replication of oncolytic viruses based on detection of oncogenic mRNA. Gene Therapy 2018, 25, 1–3. [Google Scholar] [CrossRef]
- Renteln, M. Correction: Conditional replication of oncolytic viruses based on detection of oncogenic mRNA. Gene Ther 2021, 28, 469–469. [Google Scholar] [CrossRef]
- Renteln, M.A. Promoting oncolytic vector replication with switches that detect ubiquitous mutations. CCTR 2023, 19. [Google Scholar] [CrossRef]
- Smith, G.L.; Moss, B. Infectious poxvirus vectors have capacity for at least 25,000 base pairs of foreign DNA. Gene 1983, 25, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Raman, V.; Van Dessel, N.; Hall, C.L.; Wetherby, V.E.; Whitney, S.A.; Kolewe, E.L.; et al. Intracellular delivery of protein drugs with an autonomously lysing bacterial system reduces tumor growth and metastases. Nat Commun 2021, 12, 6116. [Google Scholar] [CrossRef]
- Bracha, S.; Hassi, K.; Ross, P.D.; Cobb, S.; Sheiner, L.; Rechavi, O. Engineering Brain Parasites for Intracellular Delivery of Therapeutic Proteins. 2018, 481192. [Google Scholar] [CrossRef]
- Thiele, J.-A.; Bethel, K.; Králíčková, M.; Kuhn, P. Circulating Tumor Cells: Fluid Surrogates of Solid Tumors. Annu Rev Pathol 2017, 12, 419–447. [Google Scholar] [CrossRef] [PubMed]
- Murtaza, M.; Dawson, S.-J.; Pogrebniak, K.; Rueda, O.M.; Provenzano, E.; Grant, J.; et al. Multifocal clonal evolution characterized using circulating tumour DNA in a case of metastatic breast cancer. Nat Commun 2015, 6, 8760. [Google Scholar] [CrossRef]
- Li, S.; Noor, Z.S.; Zeng, W.; Stackpole, M.L.; Ni, X.; Zhou, Y.; et al. Sensitive detection of tumor mutations from blood and its application to immunotherapy prognosis. Nat Commun 2021, 12, 4172. [Google Scholar] [CrossRef]
- Li, S.; Hu, R.; Small, C.; Kang, T.-Y.; Liu, C.-C.; Zhou, X.J.; et al. cfSNV: a software tool for the sensitive detection of somatic mutations from cell-free DNA. Nat Protoc 2023, 18, 1563–1583. [Google Scholar] [CrossRef] [PubMed]
- Martin-Alonso, C.; Tabrizi, S.; Xiong, K.; Blewett, T.; Sridhar, S.; Crnjac, A.; et al. Priming agents transiently reduce the clearance of cell-free DNA to improve liquid biopsies. Science 2024, 383, eadf2341. [Google Scholar] [CrossRef]
- Escudero, L.; Martínez-Ricarte, F.; Seoane, J. ctDNA-Based Liquid Biopsy of Cerebrospinal Fluid in Brain Cancer. Cancers 2021, 13, 1989. [Google Scholar] [CrossRef]
- Duong, M.T.-Q.; Qin, Y.; You, S.-H.; Min, J.-J. Bacteria-cancer interactions: bacteria-based cancer therapy. Exp Mol Med 2019, 51, 1–15. [Google Scholar] [CrossRef]
- Cooper, R.M.; Wright, J.A.; Ng, J.Q.; Goyne, J.M.; Suzuki, N.; Lee, Y.K.; et al. Engineered bacteria detect tumor DNA. Science 2023, 381, 682–686. [Google Scholar] [CrossRef]
- Muthana, M.; Kennerley, A.J.; Hughes, R.; et al. Directing cell therapy to anatomic target sites in vivo with magnetic resonance targeting. Nature Communications 2015, 6, 8009. [Google Scholar] [CrossRef]
- Dowdell, A.; Paschke, P.I.; Thomason, P.A.; et al. Competition between chemoattractants causes unexpected complexity and can explain negative chemotaxis. Current Biology 2023, 33, 1704–1715.e3. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Ren, L.; Wu, J.; Feng, R.; Chen, Y.; Li, R.; et al. ARHGEF37 overexpression promotes extravasation and metastasis of hepatocellular carcinoma via directly activating Cdc42. J Exp Clin Cancer Res 2022, 41, 230. [Google Scholar] [CrossRef] [PubMed]
- Morrissey, M.A.; Williamson, A.P.; Steinbach, A.M.; et al. Chimeric antigen receptors that trigger phagocytosis. Cooper JA. ed. eLife 2018, 7, e36688. [Google Scholar] [CrossRef] [PubMed]
- Ito, A.; Teranishi, R.; Kamei, K.; et al. Magnetically triggered transgene expression in mammalian cells by localized cellular heating of magnetic nanoparticles. Journal of Bioscience and Bioengineering 2019, 128, 355–364. [Google Scholar] [CrossRef] [PubMed]
- Bausch-Fluck, D.; Hofmann, A.; Bock, T.; et al. A Mass Spectrometric-Derived Cell Surface Protein Atlas. PLOS ONE 2015, 10, e0121314. [Google Scholar] [CrossRef]
- Bausch-Fluck, D.; Goldmann, U.; Müller, S.; et al. The in silico human surfaceome. PNAS 2018, 115, E10988–E10997. [Google Scholar] [CrossRef]
- Yang, H.; Shao, R.; Huang, H.; Wang, X.; Rong, Z.; Lin, Y. Engineering macrophages to phagocytose cancer cells by blocking the CD47/SIRPɑ axis. Cancer Med 2019, 8, 4245–4253. [Google Scholar] [CrossRef] [PubMed]
- Jungbluth, M.; Renicke, C.; Taxis, C. Targeted protein depletion in Saccharomyces cerevisiae by activation of a bidirectional degron. BMC Syst Biol 2010, 4, 176. [Google Scholar] [CrossRef]
- Kinchen, J.M.; Ravichandran, K.S. Phagosome maturation: going through the acid test. Nat Rev Mol Cell Biol 2008, 9, 781–795. [Google Scholar] [CrossRef]
- Wang, X.; Maxwell, K.G.; Wang, K.; Bowers, D.T.; Flanders, J.A.; Liu, W.; et al. A nanofibrous encapsulation device for safe delivery of insulin-producing cells to treat type 1 diabetes. Sci Transl Med 2021, 13, eabb4601. [Google Scholar] [CrossRef]
- Gilmartin, A.A.; Ralston, K.S.; Petri, W.A. Inhibition of Amebic Cysteine Proteases Blocks Amebic Trogocytosis but Not Phagocytosis. J Infect Dis 2020, 221, 1734–1739. [Google Scholar] [CrossRef]
- Underhill, D.M.; Goodridge, H.S. Information processing during phagocytosis. Nat Rev Immunol 2012, 12, 492–502. [Google Scholar] [CrossRef] [PubMed]
- Milde, R.; Ritter, J.; Tennent, G.A.; Loesch, A.; Martinez, F.O.; Gordon, S.; et al. Multinucleated Giant Cells Are Specialized for Complement-Mediated Phagocytosis and Large Target Destruction. Cell Reports 2015, 13, 1937–1948. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Pohler, U.; Strehlow, I.; et al. Macrophage precursor cells produce perforin and perform Yac-1 lytic activity in response to stimulation with interleukin-2. Journal of Leukocyte Biology 1994, 56, 117–123. [Google Scholar] [CrossRef]
- Tamang, D.L.; Alves, B.N.; Elliott, V.; et al. Regulation of perforin lysis: Implications for protein disulfide isomerase proteins. Cell Immunol 2009, 255, 82–92. [Google Scholar] [CrossRef]
- Heusel, J.W.; Wesselschmidt, R.L.; Shresta, S.; et al. Cytotoxic lymphocytes require granzyme B for the rapid induction of DNA fragmentation and apoptosis in allogeneic target cells. Cell 1994, 76, 977–987. [Google Scholar] [CrossRef]
- Voskoboinik, I.; Smyth, M.J.; Trapani, J.A. Perforin-mediated target-cell death and immune homeostasis. Nat Rev Immunol 2006, 6, 940–952. [Google Scholar] [CrossRef]
- Gupta, M.; Shin, D.-M.; Ramakrishna, L.; Goussetis, D.J.; Platanias, L.C.; Xiong, H.; et al. IRF8 directs stress-induced autophagy in macrophages and promotes clearance of Listeria monocytogenes. Nat Commun 2015, 6, 6379. [Google Scholar] [CrossRef] [PubMed]
- Yoon, Y.G.; Koob, M.D. Nonreplicating Intracellular Bacterial Vector for Conjugative DNA Transfer into Mitochondria. Pharm Res 2012, 29, 1040–1045. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Gorostiaga, A.; Palacios, P.; Martínez-Arteaga, R.; Sánchez, M.; Casanova, M.; Vicente, M. Life without Division: Physiology of Escherichia coli FtsZ-Deprived Filaments. MBio 2016, 7, e01620–16. [Google Scholar] [CrossRef]
- Shiratori, T.; Suzuki, S.; Kakizawa, Y.; Ishida, K. Phagocytosis-like cell engulfment by a planctomycete bacterium. Nat Commun 2019, 10, 5529. [Google Scholar] [CrossRef] [PubMed]
- Kolinko, I.; Lohße, A.; Borg, S.; Raschdorf, O.; Jogler, C.; Tu, Q.; et al. Biosynthesis of magnetic nanostructures in a foreign organism by transfer of bacterial magnetosome gene clusters. Nature Nanotech 2014, 9, 193–197. [Google Scholar] [CrossRef]
- Grillot-Courvalin, C.; Goussard, S.; Huetz, F.; Ojcius, D.M.; Courvalin, P. Functional gene transfer from intracellular bacteria to mammalian cells. Nat Biotechnol 1998, 16, 862–866. [Google Scholar] [CrossRef] [PubMed]
- Shiomi, D.; Sakai, M.; Niki, H. Determination of bacterial rod shape by a novel cytoskeletal membrane protein. EMBO J 2008, 27, 3081–3091. [Google Scholar] [CrossRef]
- Schreiber, G.; Metzger, S.; Aizenman, E.; Roza, S.; Cashel, M.; Glaser, G. Overexpression of the relA gene in Escherichia coli. J Biol Chem 1991, 266, 3760–3767. [Google Scholar] [CrossRef]
- Büke, F.; Grilli, J.; Cosentino Lagomarsino, M.; Bokinsky, G.; Tans, S.J. ppGpp is a bacterial cell size regulator. Current Biology 2022, 32, 870–877.e5. [Google Scholar] [CrossRef]
- Reniere, M.L.; Whiteley, A.T.; Hamilton, K.L.; John, S.M.; Lauer, P.; Brennan, R.G.; et al. Glutathione activates virulence gene expression of an intracellular pathogen. Nature 2015, 517, 170–173. [Google Scholar] [CrossRef]
- Basan, M.; Zhu, M.; Dai, X.; Warren, M.; Sévin, D.; Wang, Y.-P.; et al. Inflating bacterial cells by increased protein synthesis. Mol Syst Biol 2015, 11, 836. [Google Scholar] [CrossRef] [PubMed]
- Taylor, C.M.; Beresford, M.; Epton, H.A.S.; Sigee, D.C.; Shama, G.; Andrew, P.W.; et al. Listeria monocytogenes relA and hpt mutants are impaired in surface-attached growth and virulence. J Bacteriol 2002, 184, 621–628. [Google Scholar] [CrossRef] [PubMed]
- Kume, K.; Cantwell, H.; Burrell, A.; Nurse, P. Nuclear membrane protein Lem2 regulates nuclear size through membrane flow. Nat Commun 2019, 10, 1871. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, M.B.; Theriot, J.A. Shigella flexneri surface protein IcsA is sufficient to direct actin-based motility. Proc Natl Acad Sci USA 1995, 92, 6572–6576. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Ren, X.-H.; Han, D.; et al. Precise Detection on Cell–Cell Fusion by a Facile Molecular Beacon-Based Method. Anal Chem 2022, 94, 17334–17340. [Google Scholar] [CrossRef] [PubMed]
- Magnin, R.; Rabusseau, F.; Salabartan, F.; Mériaux, S.; Aubry, J.-F.; Le Bihan, D.; et al. Magnetic resonance-guided motorized transcranial ultrasound system for blood-brain barrier permeabilization along arbitrary trajectories in rodents. J Ther Ultrasound 2015, 3, 22. [Google Scholar] [CrossRef] [PubMed]
- Weber-Adrian, D.; Thévenot, E.; O’Reilly, M.A.; Oakden, W.; Akens, M.K.; Ellens, N.; et al. Gene delivery to the spinal cord using MRI-guided focused ultrasound. Gene Ther 2015, 22, 568–577. [Google Scholar] [CrossRef] [PubMed]
- Nagai, Y.; Miyakawa, N.; Takuwa, H.; Hori, Y.; Oyama, K.; Ji, B.; et al. Deschloroclozapine, a potent and selective chemogenetic actuator enables rapid neuronal and behavioral modulations in mice and monkeys. Nat Neurosci 2020, 23, 1157–1167. [Google Scholar] [CrossRef]
- Yevtodiyenko, A.; Bazhin, A.; Khodakivskyi, P.; Godinat, A.; Budin, G.; Maric, T.; et al. Portable bioluminescent platform for in vivo monitoring of biological processes in non-transgenic animals. Nat Commun 2021, 12, 2680. [Google Scholar] [CrossRef] [PubMed]
- Park, J.S.; Rhau, B.; Hermann, A.; McNally, K.A.; Zhou, C.; Gong, D.; et al. Synthetic control of mammalian-cell motility by engineering chemotaxis to an orthogonal bioinert chemical signal. Proc Natl Acad Sci USA 2014, 111, 5896–5901. [Google Scholar] [CrossRef]
- Xu, J.-Q.; Liu, Q.-Q.; Huang, S.-Y.; Duan, C.-Y.; Lu, H.-B.; Cao, Y.; et al. The lymphatic system: a therapeutic target for central nervous system disorders. Neural Regen Res 2022, 18, 1249–1256. [Google Scholar] [CrossRef]
- Beltran-Huarac, J.; Yamaleyeva, D.N.; Dotti, G.; Hingtgen, S.; Sokolsky-Papkov, M.; Kabanov, A.V. Magnetic Control of Protein Expression via Magneto-mechanical Actuation of ND-PEGylated Iron Oxide Nanocubes for Cell Therapy. ACS Appl Mater Interfaces 2023, 15, 19877–19891. [Google Scholar] [CrossRef] [PubMed]
- Mazuel, F.; Espinosa, A.; Luciani, N.; et al. Massive Intracellular Biodegradation of Iron Oxide Nanoparticles Evidenced Magnetically at Single-Endosome and Tissue Levels. ACS Nano 2016, 10, 7627–7638. [Google Scholar] [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).