Submitted:
29 August 2023
Posted:
30 August 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Lactococcus Garvieae
3. Streptococcus uberis and Streptococcus parauberis
4. The genus Weissella
5. Mammalicoccus sciuri (Formerly Known as Staphylococcus sciuri)
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hanchi, H.; Mottawea, W.; Sebei, K.; Hammami, R. The Genus Enterococcus: Between Probiotic Potential and Safety Concerns—An Update. Frontiers in Microbiology 2018, 9. [Google Scholar] [CrossRef]
- Vendrell, D.; Balcázar, J.L.; Ruiz-Zarzuela, I.; de Blas, I.; Gironés, O.; Múzquiz, J.L. Lactococcus garvieae in fish: A review. Comparative Immunology, Microbiology and Infectious Diseases 2006, 29, 177–198. [Google Scholar] [CrossRef]
- Rodrigues, M.X.; Lima, S.F.; Higgins, C.H.; Canniatti-Brazaca, S.G.; Bicalho, R.C. The Lactococcus genus as a potential emerging mastitis pathogen group: A report on an outbreak investigation. Journal of Dairy Science 2016, 99, 9864–9874. [Google Scholar] [CrossRef]
- Fefer, J.J.; Ratzan, K.R.; Sharp, S.E.; Saiz, E. Lactococcus garvieae endocarditis: report of a case and review of the literature. Diagnostic Microbiology and Infectious Disease 1998, 32, 127–130. [Google Scholar] [CrossRef]
- Kawanishi, M.; Yoshida, T.; Kijima, M.; Yagyu, K.; Nakai, T.; Okada, S.; Endo, A.; Murakami, M.; Suzuki, S.; Morita, H. Characterization of Lactococcus garvieae isolated from radish and broccoli sprouts that exhibited a KG+ phenotype, lack of virulence and absence of a capsule. Letters in Applied Microbiology 2007, 44, 481–487. [Google Scholar] [CrossRef]
- Rantsiou, K.; Urso, R.; Iacumin, L.; Cantoni, C.; Cattaneo, P.; Comi, G.; Cocolin, L. Culture-Dependent and -Independent Methods To Investigate the Microbial Ecology of Italian Fermented Sausages. Applied and Environmental Microbiology 2005, 71, 1977–1986. [Google Scholar] [CrossRef]
- Coppola, S.; Blaiotta, G.; Ercolini, D.; Moschetti, G. Molecular evaluation of microbial diversity occurring in different types of Mozzarella cheese. Journal of Applied Microbiology 2001, 90, 414–420. [Google Scholar] [CrossRef]
- Morea, M.; Baruzzi, F.; Cocconcelli, P.S. Molecular and physiological characterization of dominant bacterial populations in traditional Mozzarella cheese processing. Journal of Applied Microbiology 1999, 87, 574–582. [Google Scholar] [CrossRef]
- Fortina, M.G.; Ricci, G.; Acquati, A.; Zeppa, G.; Gandini, A.; Manachini, P.L. Genetic characterization of some lactic acid bacteria occurring in an artisanal protected denomination origin (PDO) Italian cheese, the Toma piemontese. Food Microbiology 2003, 20, 397–404. [Google Scholar] [CrossRef]
- Alegría, Á.; Álvarez-Martín, P.; Sacristán, N.; Fernández, E.; Delgado, S.; Mayo, B. Diversity and evolution of the microbial populations during manufacture and ripening of Casín, a traditional Spanish, starter-free cheese made from cow’s milk. International Journal of Food Microbiology 2009, 136, 44–51. [Google Scholar] [CrossRef]
- Martín, I.; Rodríguez, A.; Córdoba, J.J. Application of selected lactic-acid bacteria to control Listeria monocytogenes in soft-ripened “Torta del Casar” cheese. LWT 2022, 168, 113873. [Google Scholar] [CrossRef]
- Pangallo, D.; Šaková, N.; Koreňová, J.; Puškárová, A.; Kraková, L.; Valík, L.; Kuchta, T. Microbial diversity and dynamics during the production of May bryndza cheese. International Journal of Food Microbiology 2014, 170, 38–43. [Google Scholar] [CrossRef] [PubMed]
- LACTIC, T.C.O. Genetic diversity, safety and technological characterization of lactic acid bacteria isolated from artisanal pico cheese. Ciências Agrárias, Ramo Tecnologia Alimentar 2017, 102.
- Martinovic, A.; Cabal, A.; Nisic, A.; Sucher, J.; Stöger, A.; Allerberger, F.; Ruppitsch, W. Genome Sequences of Lactococcus garvieae and Lactococcus petauri Strains Isolated from Traditional Montenegrin Brine Cheeses. Microbiology Resource Announcements 2021, 10, 10.1128/mra.00546–00521. [Google Scholar] [CrossRef]
- Dimov, S.G.; Posheva, V.; Georgieva-Miteva, D.; Peykov, S.; Kitanova, M.; Ilieva, R.; Dimitrov, T.; Iliev, M.; Gotcheva, V.; Strateva, T. Artisanal cheeses relying on spontaneous fermentation as sources of unusual microbiota – The example of the Bulgarian ‘mehovo sirene’ skin bag cheese. International Journal of Dairy Technology 2023. [Google Scholar] [CrossRef]
- Gezginc, Y.; Karabekmez-Erdem, T.; Tatar, H.D.; Dağgeçen, E.C.; Ayman, S.; Akyol, İ. Metagenomics and volatile profile of Turkish artisanal Tulum cheese microbiota. Food Bioscience 2022, 45, 101497. [Google Scholar] [CrossRef]
- Dimov, S.G.; Gyurova, A.; Zagorchev, L.; Dimitrov, T.; Georgieva-Miteva, D.; Peykov, S. NGS-Based Metagenomic Study of Four Traditional Bulgarian Green Cheeses from Tcherni Vit. LWT 2021, 152, 112278. [Google Scholar] [CrossRef]
- Dimov, S.G. The unusual microbiota of the traditional Bulgarian dairy product Krokmach – A pilot metagenomics study. International Journal of Dairy Technology 2022, 75, 139–149. [Google Scholar] [CrossRef]
- Fernández, E.; Alegría, Á.; Delgado, S.; Mayo, B. Phenotypic, genetic and technological characterization of Lactococcus garvieae strains isolated from a raw milk cheese. International Dairy Journal 2010, 20, 142–148. [Google Scholar] [CrossRef]
- Fortina, M.G.; Ricci, G.; Foschino, R.; Picozzi, C.; Dolci, P.; Zeppa, G.; Cocolin, L.; Manachini, P.L. Phenotypic typing, technological properties and safety aspects of Lactococcus garvieae strains from dairy environments. Journal of Applied Microbiology 2007, 103, 445–453. [Google Scholar] [CrossRef]
- Martín, I.; Rodríguez, A.; García, C.; Córdoba, J.J. Evolution of Volatile Compounds during Ripening and Final Sensory Changes of Traditional Raw Ewe’s Milk Cheese “Torta del Casar” Maturated with Selected Protective Lactic Acid Bacteria. Foods 2022, 11, 2658. [Google Scholar]
- Abdelfatah, E.N.; Mahboub, H.H.H. Studies on the effect of Lactococcus garvieae of dairy origin on both cheese and Nile tilapia (O. niloticus). International Journal of Veterinary Science and Medicine 2018, 6, 201–207. [Google Scholar] [CrossRef] [PubMed]
- Björck, L.; Rosén, C.-G.; Marshall, V.; Reiter, B. Antibacterial Activity of the Lactoperoxidase System in Milk Against Pseudomonads and Other Gram-Negative Bacteria. Applied Microbiology 1975, 30, 199–204. [Google Scholar] [CrossRef] [PubMed]
- Villani, F.; Aponte, M.; Blaiotta, G.; Mauriello, G.; Pepe, O.; Moschetti, G. Detection and characterization of a bacteriocin, garviecin L1-5, produced by Lactococcus garvieae isolated from raw cow’s milk. Journal of Applied Microbiology 2001, 90, 430–439. [Google Scholar] [CrossRef] [PubMed]
- Ovchinnikov, K.V.; Chi, H.; Mehmeti, I.; Holo, H.; Nes, I.F.; Diep, D.B. Novel Group of Leaderless Multipeptide Bacteriocins from Gram-Positive Bacteria. Applied and Environmental Microbiology 2016, 82, 5216–5224. [Google Scholar] [CrossRef] [PubMed]
- Silva, S.P.M.; Ribeiro, S.C.; Teixeira, J.A.; Silva, C.C.G. Application of an alginate-based edible coating with bacteriocin-producing Lactococcus strains in fresh cheese preservation. LWT 2022, 153, 112486. [Google Scholar] [CrossRef]
- Fortina, M.G.; Ricci, G.; Borgo, F. A Study of Lactose Metabolism in Lactococcus garvieae Reveals a Genetic Marker for Distinguishing between Dairy and Fish Biotypes. Journal of Food Protection 2009, 72, 1248–1254. [Google Scholar] [CrossRef]
- Foschino, R.; Nucera, D.; Volponi, G.; Picozzi, C.; Ortoffi, M.; Bottero, M.T. Comparison of Lactococcus garvieae strains isolated in northern Italy from dairy products and fishes through molecular typing. Journal of Applied Microbiology 2008, 105, 652–662. [Google Scholar] [CrossRef]
- King, J.S. Streptococcus Uberis: A Review of its Role as a Causative Organism of Bovine Mastitis I. Characteristics of the Organism. British Veterinary Journal 1981, 137, 36–52. [Google Scholar] [CrossRef]
- Williams, A.M.; Collins, M.D. Molecular taxonomic studies on Streptococcus uberis types I and II. Description of Streptococcus parauberis sp. nov. Journal of Applied Bacteriology 1990, 68, 485–490. [Google Scholar] [CrossRef]
- Domeénech, A.; Derenaáandez-Garayzábal, J.F.; Pascual, C.; Garcia, J.A.; Cutuli, M.T.; Moreno, M.A.; Collins, M.D.; Dominguez, L. Streptococcosis in cultured turbot, Scopthalmus maximus (L.), associated with Streptococcus parauberis. Journal of Fish Diseases 1996, 19, 33–38. [Google Scholar] [CrossRef]
- Al Bulushi, I.M.; Poole, S.E.; Barlow, R.; Deeth, H.C.; Dykes, G.A. Speciation of Gram-positive bacteria in fresh and ambient-stored sub-tropical marine fish. International Journal of Food Microbiology 2010, 138, 32–38. [Google Scholar] [CrossRef] [PubMed]
- Currás, M.; Magariños, B.; Toranzo, A.E.; Romalde, J.L. Dormancy as a survival strategy of the fish pathogen Streptococcus parauberis in the marine environment. Diseases of Aquatic Organisms 2002, 52, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Leigh, J.A. Streptococcus uberis: A Permanent Barrier to the Control of Bovine Mastitis? The Veterinary Journal 1999, 157, 225–238. [Google Scholar] [CrossRef] [PubMed]
- Di Domenico, E.G.; Toma, L.; Prignano, G.; Pelagalli, L.; Police, A.; Cavallotti, C.; Torelli, R.; Sanguinetti, M.; Ensoli, F. Misidentification of Streptococcus uberis as a Human Pathogen: A Case Report and Literature Review. International Journal of Infectious Diseases 2015, 33, 79–81. [Google Scholar] [CrossRef]
- Huan, S.J.K.W.; Tan, J.S.W.; Chin, A.Y.H. Streptococcus parauberis infection of the hand. Journal of Hand Surgery (European Volume) 2021, 46, 83–84. [Google Scholar] [CrossRef]
- Zaman, K.; Thakur, A.; Sree, V.; Kaushik, S.; Gautam, V.; Ray, P. Post-traumatic endophthalmitis caused by Streptococcus parauberis: First human. Indian Journal of Medical Microbiology 2016, 34, 382–384. [Google Scholar] [CrossRef]
- Klijn, N.; Weerkamp, A.H.; Vos, W.M.d. Detection and characterization of lactose-utilizing Lactococcus spp. in natural ecosystems. Applied and Environmental Microbiology 1995, 61, 788–792. [Google Scholar] [CrossRef]
- Flórez, A.B.; Mayo, B. Microbial diversity and succession during the manufacture and ripening of traditional, Spanish, blue-veined Cabrales cheese, as determined by PCR-DGGE. International Journal of Food Microbiology 2006, 110, 165–171. [Google Scholar] [CrossRef]
- Edalatian, M.R.; Najafi, M.B.H.; Mortazavi, S.A.; Alegría, Á.; Nassiri, M.R.; Bassami, M.R.; Mayo, B. Microbial diversity of the traditional Iranian cheeses Lighvan and Koozeh, as revealed by polyphasic culturing and culture-independent approaches. Dairy Science & Technology 2012, 92, 75–90. [Google Scholar] [CrossRef]
- Fuka, M.M.; Wallisch, S.; Engel, M.; Welzl, G.; Havranek, J.; Schloter, M. Dynamics of Bacterial Communities during the Ripening Process of Different Croatian Cheese Types Derived from Raw Ewe’s Milk Cheeses. PLOS ONE 2013, 8, e80734. [Google Scholar] [CrossRef]
- Mangia, N.P.; Fancello, F.; Deiana, P. Microbiological characterization using combined culture dependent and independent approaches of Casizolu pasta filata cheese. Journal of Applied Microbiology 2016, 120, 329–345. [Google Scholar] [CrossRef] [PubMed]
- Fusco, V.; Quero, G.M.; Poltronieri, P.; Morea, M.; Baruzzi, F. Autochthonous and Probiotic Lactic Acid Bacteria Employed for Production of “Advanced Traditional Cheeses”. Foods 2019, 8, 412. [Google Scholar] [CrossRef] [PubMed]
- France, T.C.; O’Mahony, J.A.; Kelly, A.L. The Plasmin System in Milk and Dairy Products. In Agents of Change: Enzymes in Milk and Dairy Products; Kelly, A.L., Larsen, L.B., Eds.; Springer International Publishing: Cham, 2021; pp. 11–55. [Google Scholar] [CrossRef]
- Aminifar, M.; Hamedi, M.; Emam-Djomeh, Z.; Mehdinia, A. Investigation on proteolysis and formation of volatile compounds of Lighvan cheese during ripening. Journal of Food Science and Technology 2014, 51, 2454–2462. [Google Scholar] [CrossRef] [PubMed]
- Dan, T.; Wang, D.; Wu, S.; Jin, R.; Ren, W.; Sun, T. Profiles of Volatile Flavor Compounds in Milk Fermented with Different Proportional Combinations of Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus. Molecules 2017, 22, 1633. [Google Scholar] [PubMed]
- Yang, C.; Zhao, F.; Hou, Q.; Wang, J.; Li, M.; Sun, Z. PacBio sequencing reveals bacterial community diversity in cheeses collected from different regions. Journal of Dairy Science 2020, 103, 1238–1249. [Google Scholar] [CrossRef]
- Tulini, F.L.; Hymery, N.; Haertlé, T.; Le Blay, G.; De Martinis, E.C.P. Screening for antimicrobial and proteolytic activities of lactic acid bacteria isolated from cow, buffalo and goat milk and cheeses marketed in the southeast region of Brazil. Journal of Dairy Research 2016, 83, 115–124. [Google Scholar] [CrossRef]
- Muruzović, M.Ž.M.; Katarina, G.; Žugić-Petrović, T.D.; Čomić, L.R. In vitro evaluation of the antimicrobial potential of Streptococcus uberis isolated from a local cheese from Southeastern Serbia. Veterinarski Arhiv 2018, 88, 521–534. [Google Scholar] [CrossRef]
- Collins, M.D.; Samelis, J.; Metaxopoulos, J.; Wallbanks, S. Taxonomic studies on some leuconostoc-like organisms from fermented sausages: description of a new genus Weissella for the Leuconostoc paramesenteroides group of species. Journal of Applied Bacteriology 1993, 75, 595–603. [Google Scholar] [CrossRef]
- Abriouel, H.; Lerma, L.L.; Casado Muñoz, M.d.C.; Montoro, B.P.; Kabisch, J.; Pichner, R.; Cho, G.-S.; Neve, H.; Fusco, V.; Franz, C.M.A.P. , et al. The controversial nature of the Weissella genus: technological and functional aspects versus whole genome analysis-based pathogenic potential for their application in food and health. Frontiers in Microbiology 2015, 6. [Google Scholar] [CrossRef]
- Olano, A.; Chua, J.; Schroeder, S.; Minari, A.; Salvia, M.L.; Hall, G. Weissella confusa</i> (Basonym:Lactobacillus confusus</i>) Bacteremia: a Case Report. Journal of Clinical Microbiology 2001, 39, 1604–1607. [Google Scholar] [CrossRef]
- Flaherty, J.D.; Levett, P.N.; Dewhirst, F.E.; Troe, T.E.; Warren, J.R.; Johnson, S. Fatal Case of Endocarditis Due to Weissella confusa. Journal of Clinical Microbiology 2003, 41, 2237–2239. [Google Scholar] [CrossRef] [PubMed]
- Vela, A.I.; Porrero, C.; Goyache, J.; Nieto, A.; Sánchez, B.; Briones, V.; Moreno, M.A.; Domínguez, L.; Fernández-Garayzábal, J.F. Weissella confusa infection in primate (Cercopithecus mona). Emerg Infect Dis 2003, 9, 1307–1309. [Google Scholar] [CrossRef] [PubMed]
- Nam, H.; Ha, M.; Bae, O.; Lee, Y. Effect of Weissella confusa Strain PL9001 on the Adherence and Growth of Helicobacter pylori. Applied and Environmental Microbiology 2002, 68, 4642–4645. [Google Scholar] [CrossRef]
- Teixeira, C.G.; Fusieger, A.; Martins, E.; Freitas, R.d.; Vakarelova, M.; Nero, L.A.; Carvalho, A.F.d. Biodiversity and technological features of Weissella isolates obtained from Brazilian artisanal cheese-producing regions. LWT 2021, 147, 111474. [Google Scholar] [CrossRef]
- Kumari, M.; Kumar, R.; Singh, D.; Bhatt, S.; Gupta, M. Physiological and genomic characterization of an exopolysaccharide-producing Weissella cibaria CH2 from cheese of the western Himalayas. Food Bioscience 2020, 35, 100570. [Google Scholar] [CrossRef]
- Fusco, V.; Quero, G.M.; Cho, G.-S.; Kabisch, J.; Meske, D.; Neve, H.; Bockelmann, W.; Franz, C.M.A.P. The genus Weissella: taxonomy, ecology and biotechnological potential. Frontiers in Microbiology 2015, 6. [Google Scholar] [CrossRef]
- Björkroth, K.J.; Schillinger, U.; Geisen, R.; Weiss, N.; Hoste, B.; Holzapfel, W.H.; Korkeala, H.J.; Vandamme, P. Taxonomic study of Weissella confusa and description of Weissella cibaria sp. nov., detected in food and clinical samples. International Journal of Systematic and Evolutionary Microbiology 2002, 52, 141–148. [Google Scholar] [CrossRef]
- Jang, H.-J.; Kang, M.-S.; Yi, S.-H.; Hong, J.-Y.; Hong, S.-P. Comparative Study on the Characteristics of Weissella cibaria CMU and Probiotic Strains for Oral Care. Molecules 2016, 21, 1752. [Google Scholar] [CrossRef]
- Yu, H.-S.; Lee, N.-K.; Choi, A.-J.; Choe, J.-S.; Bae, C.H.; Paik, H.-D. Antagonistic and antioxidant effect of probiotic Weissella cibaria JW15. Food Science and Biotechnology 2019, 28, 851–855. [Google Scholar] [CrossRef]
- Masoud, W.; Vogensen, F.K.; Lillevang, S.; Abu Al-Soud, W.; Sørensen, S.J.; Jakobsen, M. The fate of indigenous microbiota, starter cultures, Escherichia coli, Listeria innocua and Staphylococcus aureus in Danish raw milk and cheeses determined by pyrosequencing and quantitative real time (qRT)-PCR. International Journal of Food Microbiology 2012, 153, 192–202. [Google Scholar] [CrossRef]
- Morea, M.; Baruzzi, F.; Cappa, F.; Cocconcelli, P.S. Molecular characterization of the Lactobacillus community in traditional processing of Mozzarella cheese. International Journal of Food Microbiology 1998, 43, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Escobar-Zepeda, A.; Sanchez-Flores, A.; Quirasco Baruch, M. Metagenomic analysis of a Mexican ripened cheese reveals a unique complex microbiota. Food Microbiology 2016, 57, 116–127. [Google Scholar] [CrossRef] [PubMed]
- Cibik, R.; Lepage, E.; Tailliez, P. Molecular Diversity of Leuconostoc mesenteroides and Leuconostoc citreumIsolated from Traditional French Cheeses as Revealed by RAPD Fingerprinting, 16S rDNA Sequencing and 16S rDNA Fragment Amplification. Systematic and Applied Microbiology 2000, 23, 267–278. [Google Scholar] [CrossRef] [PubMed]
- Londoño-Zapata, A.F.; Durango-Zuleta, M.M.; Sepúlveda-Valencia, J.U.; Moreno Herrera, C.X. Characterization of lactic acid bacterial communities associated with a traditional Colombian cheese: Double cream cheese. LWT - Food Science and Technology 2017, 82, 39–48. [Google Scholar] [CrossRef]
- Gerasi, E.; Litopoulou-Tzanetaki, E.; Tzanetakis, N. Microbiological study of Manura, a hard cheese made from raw ovine milk in the Greek island Sifnos. International Journal of Dairy Technology 2003, 56, 117–122. [Google Scholar] [CrossRef]
- Ercan, D.; Korel, F.; Orşahin, H. Microbiological quality of artisanal Sepet cheese. International Journal of Dairy Technology 2014, 67, 384–393. [Google Scholar] [CrossRef]
- Li, J.; Huang, Q.; Zheng, X.; Ge, Z.; Lin, K.; Zhang, D.; Chen, Y.; Wang, B.; Shi, X. Investigation of the Lactic Acid Bacteria in Kazak Cheese and Their Contributions to Cheese Fermentation. Frontiers in Microbiology 2020, 11. [Google Scholar] [CrossRef]
- Malaka, R.; Laga, A.; Ako, A.; Zakariah, M.; Mauliah, F.U. Quality and storage time of traditional dangke cheese inoculated with indigenous lactic acid bacteria isolated from Enrekang District, South Sulawesi, Indonesia. Biodiversitas Journal of Biological Diversity 2022, 23. [Google Scholar]
- Aboubacar, M.R.M.; Owino, W.; Mbogo, K. Characterization and antibiotic profiles of lactic acid bacteria isolated from “tchoukou” traditional milk cheeses produced in the Zinder region of Niger Republic, West Africa.
- Lynch, K.M.; McSweeney, P.L.H.; Arendt, E.K.; Uniacke-Lowe, T.; Galle, S.; Coffey, A. Isolation and characterisation of exopolysaccharide-producing Weissella and Lactobacillus and their application as adjunct cultures in Cheddar cheese. International Dairy Journal 2014, 34, 125–134. [Google Scholar] [CrossRef]
- Kariyawasam, K.M.G.M.M.; Jeewanthi, R.K.C.; Lee, N.K.; Paik, H.D. Characterization of cottage cheese using Weissella cibaria D30: Physicochemical, antioxidant, and antilisterial properties. Journal of Dairy Science 2019, 102, 3887–3893. [Google Scholar] [CrossRef]
- Teixeira, C.G.; Fusieger, A.; Milião, G.L.; Martins, E.; Drider, D.; Nero, L.A.; de Carvalho, A.F. Weissella: An Emerging Bacterium with Promising Health Benefits. Probiotics and Antimicrobial Proteins 2021, 13, 915–925. [Google Scholar] [CrossRef]
- Teixeira, C.G.; Silva, R.R.d.; Fusieger, A.; Martins, E.; Freitas, R.d.; Carvalho, A.F.d. The Weissella genus in the food industry: A review. Research, Society and Development 2021, 10, e8310514557. [Google Scholar] [CrossRef]
- Lynch, K.M.; Lucid, A.; Arendt, E.K.; Sleator, R.D.; Lucey, B.; Coffey, A. Genomics of Weissella cibaria with an examination of its metabolic traits. Microbiology 2015, 161, 914–930. [Google Scholar] [CrossRef] [PubMed]
- Kavitake, D.; Devi, P.B.; Shetty, P.H. Overview of exopolysaccharides produced by Weissella genus – A review. International Journal of Biological Macromolecules 2020, 164, 2964–2973. [Google Scholar] [CrossRef] [PubMed]
- Benhouna, I.S.; Heumann, A.; Rieu, A.; Guzzo, J.; Kihal, M.; Bettache, G.; Champion, D.; Coelho, C.; Weidmann, S. Exopolysaccharide produced by Weissella confusa: Chemical characterisation, rheology and bioactivity. International Dairy Journal 2019, 90, 88–94. [Google Scholar] [CrossRef]
- Teixeira, C.G.; Rodrigues, R.d.S.; Yamatogi, R.S.; Lucau-Danila, A.; Drider, D.; Nero, L.A.; de Carvalho, A.F. Genomic Analyses of Weissella cibaria W25, a Potential Bacteriocin-Producing Strain Isolated from Pasture in Campos das Vertentes, Minas Gerais, Brazil. Microorganisms 2022, 10, 314. [Google Scholar] [CrossRef]
- Apostolakos, I.; Paramithiotis, S.; Mataragas, M. Functional and Safety Characterization of Weissella paramesenteroides Strains Isolated from Dairy Products through Whole-Genome Sequencing and Comparative Genomics. Dairy 2022, 3, 799–813. [Google Scholar] [CrossRef]
- Ndagano, D.; Lamoureux, T.; Dortu, C.; Vandermoten, S.; Thonart, P. Antifungal Activity of 2 Lactic Acid Bacteria of the Weissella Genus Isolated from Food. Journal of Food Science 2011, 76, M305–M311. [Google Scholar] [CrossRef]
- Valerio, F.; Favilla, M.; De Bellis, P.; Sisto, A.; de Candia, S.; Lavermicocca, P. Antifungal activity of strains of lactic acid bacteria isolated from a semolina ecosystem against Penicillium roqueforti, Aspergillus niger and Endomyces fibuliger contaminating bakery products. Systematic and Applied Microbiology 2009, 32, 438–448. [Google Scholar] [CrossRef]
- Kwak, S.H.; Cho, Y.M.; Noh, G.M.; Om, A.S. Cancer Preventive Potential of Kimchi Lactic Acid Bacteria (Weissella cibaria, Lactobacillus plantarum). J Cancer Prev 2014, 19, 253–258. [Google Scholar] [CrossRef]
- Su-Bin, A.; Ho-Eun, P.; Sang-Myeong, L.; So-Young, K.; Mi-Yae, S.; Wan-Kyu, L. Characteristics and immuno-modulatory effects of Weissella cibaria JW15 isolated from Kimchi, Korea traditional fermented food, for probiotic use. Journal of Biomedical Research 2013, 14, 206–211. [Google Scholar]
- Quattrini, M.; Korcari, D.; Ricci, G.; Fortina, M.G. A polyphasic approach to characterize Weissella cibaria and Weissella confusa strains. Journal of Applied Microbiology 2020, 128, 500–512. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.; Mathivanan, N.; Goyal, A. Bacterial adhesins, the pathogenic weapons to trick host defense arsenal. Biomedicine & Pharmacotherapy 2017, 93, 763–771. [Google Scholar] [CrossRef]
- Wang, L.; Si, W.; Xue, H.; Zhao, X. A fibronectin-binding protein (FbpA) of Weissella cibaria inhibits colonization and infection of Staphylococcus aureus in mammary glands. Cellular Microbiology 2017, 19, e12731. [Google Scholar] [CrossRef] [PubMed]
- Heo, S.; Lee, J.-H.; Jeong, D.-W. Food-derived coagulase-negative Staphylococcus as starter cultures for fermented foods. Food Science and Biotechnology 2020, 29, 1023–1035. [Google Scholar] [CrossRef] [PubMed]
- Kloos, W.E.; Schleifer, K.H.; Smith, R.F. Characterization of Staphylococcus sciuri sp.nov. and Its Subspecies1. International Journal of Systematic and Evolutionary Microbiology 1976, 26, 22–37. [Google Scholar] [CrossRef]
- Madhaiyan, M.; Wirth, J.S.; Saravanan, V.S. Phylogenomic analyses of the Staphylococcaceae family suggest the reclassification of five species within the genus Staphylococcus as heterotypic synonyms, the promotion of five subspecies to novel species, the taxonomic reassignment of five Staphylococcus species to Mammaliicoccus gen. nov., and the formal assignment of Nosocomiicoccus to the family Staphylococcaceae. International Journal of Systematic and Evolutionary Microbiology 2020, 70, 5926–5936. [Google Scholar] [CrossRef]
- Shittu, A.; Lin, J.; Morrison, D.; Kolawole, D. Isolation and molecular characterization of multiresistant Staphylococcus sciuri and Staphylococcus haemolyticus associated with skin and soft-tissue infections. Journal of Medical Microbiology 2004, 53, 51–55. [Google Scholar] [CrossRef]
- Stepanović, S.; Dakić, I.; Morrison, D.; Hauschild, T.; Ježek, P.; Petráš, P.; Martel, A.; Vuković, D.; Shittu, A.; Devriese, L.A. Identification and Characterization of Clinical Isolates of Members of the <i>Staphylococcus sciuri</i> Group. Journal of Clinical Microbiology 2005, 43, 956–958. [Google Scholar] [CrossRef]
- Hedin, G.; Widerström, M. Endocarditis due toStaphylococcus sciuri. European Journal of Clinical Microbiology and Infectious Diseases 1998, 17, 673–675. [Google Scholar] [CrossRef]
- Toshinobu Horii, Y.S.T.K.T.K.M.M. Intravenous Catheter-related Septic Shock Caused by Staphylococcus sciuri and Escherichia vulneris. Scandinavian Journal of Infectious Diseases 2001, 33, 930–932. [Google Scholar] [CrossRef] [PubMed]
- Sands, K.; Carvalho, M.J.; Spiller, O.B.; Portal, E.A.R.; Thomson, K.; Watkins, W.J.; Mathias, J.; Dyer, C.; Akpulu, C.; Andrews, R. , et al. Characterisation of Staphylococci species from neonatal blood cultures in low- and middle-income countries. BMC Infectious Diseases 2022, 22, 593. [Google Scholar] [CrossRef]
- Benz, M.S.; Scott, I.U.; Flynn, H.W.; Unonius, N.; Miller, D. Endophthalmitis isolates and antibiotic sensitivities: a 6-year review of culture-proven cases. American Journal of Ophthalmology 2004, 137, 38–42. [Google Scholar] [CrossRef]
- Frederic Wallet, L.S.E.B.M.R.-D.P.D.R.J.C. Peritonitis Due to Staphylococcus sciuri in a Patient on Continuous Ambulatory Peritoneal Dialysis. Scandinavian Journal of Infectious Diseases 2000, 32, 697–698. [Google Scholar] [CrossRef] [PubMed]
- Stepanović, S.; Ježek, P.; Dakić, I.; Vuković, D.; Seifert, L. Staphylococcus sciuri: an unusual cause of pelvic inflammatory disease. International Journal of STD & AIDS 2005, 16, 452–453. [Google Scholar] [CrossRef]
- Devriese, L.A. Staphylococci in healthy and diseased animals. Journal of Applied Bacteriology 1990, 69, 71S–80S. [Google Scholar] [CrossRef]
- Nemeghaire, S.; Argudín, M.A.; Feßler, A.T.; Hauschild, T.; Schwarz, S.; Butaye, P. The ecological importance of the Staphylococcus sciuri species group as a reservoir for resistance and virulence genes. Veterinary Microbiology 2014, 171, 342–356. [Google Scholar] [CrossRef]
- Nemeghaire, S.; Vanderhaeghen, W.; Argudín, M.A.; Haesebrouck, F.; Butaye, P. Characterization of methicillin-resistant Staphylococcus sciuri isolates from industrially raised pigs, cattle and broiler chickens. Journal of Antimicrobial Chemotherapy 2014, 69, 2928–2934. [Google Scholar] [CrossRef]
- Rahman, M.T.; Kobayashi, N.; Alam, M.M.; Ishino, M. Genetic analysis of mecA homologues in Staphylococcus sciuri strains derived from mastitis in dairy cattle. Microbial drug resistance 2005, 11, 205–214. [Google Scholar] [CrossRef]
- Chen, S.; Wang, Y.; Chen, F.; Yang, H.; Gan, M.; Zheng, S.J. A Highly Pathogenic Strain of Staphylococcus sciuri Caused Fatal Exudative Epidermitis in Piglets. PLOS ONE 2007, 2, e147. [Google Scholar] [CrossRef]
- Adegoke, G.O. Comparative characteristics of Staphylococcus sciuri, Staphylococcus lentus and Staphylococcus gallinarum isolated from healthy and sick hosts. Veterinary Microbiology 1986, 11, 185–189. [Google Scholar] [CrossRef] [PubMed]
- Sacramento, A.G.; Fuga, B.; Monte, D.F.M.; Cardoso, B.; Esposito, F.; Dolabella, S.S.; Barbosa, A.A.T.; Zanella, R.C.; Cortopassi, S.R.G.; da Silva, L.C.B.A. , et al. Genomic features of mecA-positive methicillin-resistant Mammaliicoccus sciuri causing fatal infections in pets admitted to a veterinary intensive care unit. Microbial Pathogenesis 2022, 171, 105733. [Google Scholar] [CrossRef] [PubMed]
- Irlinger, F.; Morvan, A.; El Solh, N.; Bergere, J.L. Taxonomic Characterization of Coagulase-Negative Staphylococci in Ripening Flora from Traditional French Cheeses. Systematic and Applied Microbiology 1997, 20, 319–328. [Google Scholar] [CrossRef]
- Klempt, M.; Franz, C.M.A.P.; Hammer, P. Characterization of coagulase-negative staphylococci and macrococci isolated from cheese in Germany. Journal of Dairy Science 2022, 105, 7951–7958. [Google Scholar] [CrossRef] [PubMed]
- Van der Veken, D.; Leroy, F. Prospects for the applicability of coagulase-negative cocci in fermented-meat products using omics approaches. Current Opinion in Food Science 2022, 48, 100918. [Google Scholar] [CrossRef]
- Charmpi, C.; Thamsborg, K.K.M.; Mikalsen, S.-O.; Magnussen, E.; Sosa Fajardo, A.; Van der Veken, D.; Leisner, J.J.; Leroy, F. Bacterial species diversity of traditionally ripened sheep legs from the Faroe Islands (skerpikjøt). International Journal of Food Microbiology 2023, 386, 110023. [Google Scholar] [CrossRef] [PubMed]
- Endres, C.M.; Moreira, E.; de Freitas, A.B.; Castel, A.P.D.; Graciano, F.; Mann, M.B.; Frazzon, A.P.G.; Mayer, F.Q.; Frazzon, J. Evaluation of Enterotoxins and Antimicrobial Resistance in Microorganisms Isolated from Raw Sheep Milk and Cheese: Ensuring the Microbiological Safety of These Products in Southern Brazil. Microorganisms 2023, 11, 1618. [Google Scholar] [CrossRef]
- Esen, Y.; Çetin, B. Bacterial and yeast microbial diversity of the ripened traditional middle east surk cheese. International Dairy Journal 2021, 117, 105004. [Google Scholar] [CrossRef]
- Bockelmann, W. Development of defined surface starter cultures for the ripening of smear cheeses. International Dairy Journal 2002, 12, 123–131. [Google Scholar] [CrossRef]
- Naqqash, T.; Wazir, N.; Aslam, K.; Shabir, G.; Tahir, M.; Shaikh, R.S. First report on the probiotic potential of Mammaliicoccus sciuri isolated from raw goat milk. Bioscience of Microbiota, Food and Health 2022, 41, 149–159. [Google Scholar] [CrossRef]
- Veken, D.V.d.; Hollanders, C.; Verce, M.; Michiels, C.; Ballet, S.; Weckx, S.; Leroy, F. Genome-Based Characterization of a Plasmid-Associated Micrococcin P1 Biosynthetic Gene Cluster and Virulence Factors in Mammaliicoccus sciuri IMDO-S72. Applied and Environmental Microbiology 2022, 88, e02088–e02021. [Google Scholar] [CrossRef] [PubMed]
| Genus | Species | Some examples of cheeses | References |
|---|---|---|---|
| Lactococcus | Lc. garvieae | Italian mozzarella cheeses Italian Toma Piemontese cheese Spanish Casín cheese Spanish “Torta del Casar” cheese Slovakian May bryndza cheese Azorean Pico cheese Montenegrian brine cheeses Bulgarian and Turkish Tulum cheeses Bulgarian “Green” cheese Bulgarian Krokmach cheese |
[7,8] [9] [10] [11] [12] [13] [14] [15,16] [17] [18] |
| Streptococcus | Str. uberis | Italian Mozzarella cheese Spanish Casín cheese Italian Casizolu cheese |
[8] [10] [42] |
| Str. parauberis | Spanish Cabrales cheese Spanish Casín cheese Iranian Lighvan and Koozeh cheese Slovenian raw milk cheeses Slovakian May bryndza cheese Italian Casizolu cheeseItalian Giuncata cheese Italian Caciotta Leccese cheese Bulgarian and Turkish Tulum cheeses |
[39] [10] [40] [41] [12] [42] [43] [43] [15,16] |
|
| Weissella | W. hellenica | Danish raw milk cheeses a type of Croatian cheese Brazilian artisanal cheeses Italian Mozzarella cheese |
[62] [41] [56] [63] |
| W. confusa | Turkish Sepet cheese a type of Kazak cheese a type of Indonesian cheese |
[68] [69] [70] |
|
| W. paramesenteroides | a type of Mexican ripened cheese some traditional French cheeses Columbian double cream cheese Greek Manura cheese Turkish Sepet cheese |
[64] [65] [66] [67] [68] |
|
| W. cibaria | Afrikan Tchoukou cheese Western Himalayan cheese |
[71] [57] |
|
| Mammalicoccus | M. sciuri | French smear cheeses some German cheeses some Brazilian cheeses Middle East Surk cheese |
[106] [107] [110] [111] |
| diseased | Pathogenicity | References |
|---|---|---|
| Lc. garvieae | fish lactococcosis bovine mastitis endocarditis in immunocompromised and old persons |
[2] [3] [4] |
| Str. uberis | bovine mastitis occasional human infections |
[29] [35] |
| Str. parauberis | bovine mastitis fish pathogen rare cases of infection in humans |
[30] [31] [36,37] |
| W. hellenica | no records | |
| W. confusa | bacteremia endocarditis deadly infections in primates |
[52] [53] [54] |
| W. paramesenteroides | no records | |
| W. cibaria | bacteremias in humans otitis in dogs |
[58] [59] |
| M. sciuri | human wound infections urinary tract infections endocarditis in humans sepsis in humans endophtalmitis in humans peroitonitis in humans plevric inflammatory disease in humans mastitis in cows and goats epidermitis in piglets presence in ovine rinderpest suffering animals respiratory distress syndrome in cats and dogs |
[91] [92] [93] [94,95] [96] [97] [98] [99,102] [103] [104] [105] |
| Species | Contribution to the ripening | References | Health-promoting and probiotic effects | References |
|---|---|---|---|---|
| Lc. garvieae | palatability sensorial characteristics lactose fermentationaroma |
[19] [20] [20] [21] |
inhibition of pathogens | [11,22,23,24,25] |
| Str. uberis | streptokinase induced proteolysis | [44] | inhibition of pathogens | [48,59] |
| Str. parauberis | streptokinase induced proteolysis organoleptic properties |
[45] [47] |
||
| Weissella spp. | contribution to the rheological properties by EPS production coagulation of the milk proteins organoleptic properties |
[57,75] [56,76] [56,72] |
synthesis of EPS bacteriocins production hydrogen peroxide production inhibition of H. pylori antifungal activities chemopreventive effects anti-obesity effects antiviral activity |
[51,57,74,75,77,78] [74,79,80] [51,60] [55] [81,82] [83] [84] [51] |
| M. sciuri | organoleptic properties | [88,108,112] | no definitive data |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
