Altmetrics
Downloads
118
Views
50
Comments
0
This version is not peer-reviewed
Submitted:
30 August 2023
Posted:
05 September 2023
You are already at the latest version
Feature Selection |
Classifiers | Accuracy (%) | Error Rate (%) | F1 Score (%) | MCC | Jaccard Index (%) |
g-mean (%) |
Kappa |
KL Divergence |
SVM | 82.24 | 17.76 | 80.89 | 0.65 | 67.91 | 82.77 | 0.64 |
KNN | 91.07 | 8.94 | 90.30 | 0.82 | 82.31 | 91.61 | 0.82 | |
Random Forest | 81.56 | 18.44 | 81.62 | 0.63 | 68.95 | 81.56 | 0.63 | |
Decision Tree | 77.35 | 22.66 | 76.80 | 0.55 | 62.34 | 77.39 | 0.55 | |
Softmax Discriminant | 79.67 | 20.33 | 78.31 | 0.60 | 64.35 | 80.05 | 0.59 | |
Multilayer Perceptron | 79.44 | 20.56 | 78.97 | 0.59 | 65.25 | 79.49 | 0.59 | |
Bayesian LDC | 80.42 | 19.58 | 79.96 | 0.61 | 66.61 | 80.47 | 0.61 | |
IWO | SVM | 91.06 | 8.94 | 90.86 | 0.82 | 83.24 | 91.13 | 0.82 |
KNN | 85.50 | 14.51 | 85.36 | 0.71 | 74.46 | 85.50 | 0.71 | |
Random Forest | 90.26 | 9.74 | 90.35 | 0.81 | 82.39 | 90.27 | 0.81 | |
Decision Tree | 91.57 | 8.43 | 91.71 | 0.83 | 84.70 | 91.87 | 0.83 | |
Softmax Discriminant | 85.13 | 14.87 | 85.71 | 0.70 | 75.00 | 85.32 | 0.70 | |
Multilayer Perceptron | 85.21 | 14.79 | 85.77 | 0.71 | 75.09 | 85.39 | 0.70 | |
Bayesian LDC | 88.62 | 11.38 | 89.38 | 0.78 | 80.80 | 89.25 | 0.77 |
Statistical Parameters | PSO | GWO | ||
Malignant | Normal | Malignant | Normal | |
Mean | 0.8598080214 | 0.1109701363 | 0.01878313748 | 0.01751341349 |
Variance | 0.05867975074 | 0.07425036326 | 0.07492946326 | 0.07494543857 |
Skewness | 19.87029488 | 19.83047771 | 22.52231557 | 22.56212107 |
Kurtosis | 441.8828416 | 444.9961882 | 509.1565306 | 510.3537192 |
Pearson CC | 0.9019022281 | 0.9269991469 | 0.9985202125 | 0.997858273 |
CCA | 0.12309 | 0.11291 |
Classifiers | Optimal Parameters of the Classifiers |
Support Vector Machine | Kernel - RBF; α – 1; Kernel width parameter (σ) – 100; w – 0.85; b - 0.01; Convergence Criterion – MSE. |
K-Nearest Neighbor | K - 5; Distance Metric – Euclidian; w - 0.5; Criterion – MSE. |
Random Forest | Number of Trees – 200; Maximum Depth – 10; Bootstrap Sample – 20; Class Weight – 0.45. |
Decision Tree | Maximum Depth – 20; Impurity Criterion – MSE; Class Weight – 0.4. |
Softmax Discriminant Classifier | λ = 0.5 along with mean of each class target values as 0.1 and 0.85. |
Multilayer Perceptron | Learning rate – 0.3; Learning Algorithm – LM; Criterion – MSE. |
Bayesian Linear Discriminant Classifier | Prior Probability P(x) – 0.5; Class mean = 0.8 and = 0.1, Criterion = MSE. |
Feature Extraction | Classifiers | Confusion Matrix | MSE | |||
TP | TN | FP | FN | |||
PSO | SVM | 3944 | 4009 | 991 | 1056 | 7.29E-06 |
KNN | 4267 | 3725 | 1275 | 733 | 4.49E-05 | |
Random Forest | 2692 | 2933 | 2067 | 2308 | 1.60E-05 | |
Decision Tree | 3184 | 3217 | 1783 | 1816 | 3.60E-07 | |
Softmax Discriminant | 4033 | 3750 | 1250 | 967 | 4.00E-08 | |
Multilayer Perceptron | 3425 | 3675 | 1325 | 1575 | 2.25E-06 | |
Bayesian LDC | 4367 | 3975 | 1025 | 633 | 5.63E-05 | |
GWO | SVM | 3617 | 4175 | 825 | 1383 | 5.76E-06 |
KNN | 3500 | 3725 | 1275 | 1500 | 1.44E-05 | |
Random Forest | 3967 | 3817 | 1183 | 1033 | 3.36E-05 | |
Decision Tree | 4517 | 3984 | 1016 | 483 | 8.41E-06 | |
Softmax Discriminant | 4083 | 4275 | 725 | 917 | 1.96E-04 | |
Multilayer Perceptron | 4050 | 4384 | 616 | 950 | 4.84E-04 | |
Bayesian LDC | 3967 | 3692 | 1308 | 1033 | 2.50E-07 |
Feature Selection |
Classifiers | Confusion Matrix | MSE | |||
TP | TN | FP | FN | |||
KL Divergence |
SVM | 3297 | 2747 | 2253 | 1703 | 3.24E-06 |
KNN | 3978 | 2605 | 2395 | 1022 | 8.41E-06 | |
Random Forest | 4115 | 3294 | 1706 | 885 | 2.30E-05 | |
Decision Tree | 3919 | 4089 | 911 | 1081 | 9.00E-06 | |
Softmax Discriminant | 4089 | 4258 | 742 | 911 | 4.84E-06 | |
Multilayer Perceptron | 4271 | 3633 | 1367 | 729 | 2.56E-06 | |
Bayesian LDC | 3298 | 3311 | 1690 | 1702 | 1.02E-05 | |
IWO | SVM | 3854 | 3503 | 1497 | 1146 | 2.21E-05 |
KNN | 3490 | 3985 | 1016 | 1510 | 3.36E-05 | |
Random Forest | 3574 | 2757 | 2243 | 1426 | 1.94E-05 | |
Decision Tree | 2982 | 2871 | 2129 | 2018 | 7.84E-06 | |
Softmax Discriminant | 2734 | 3047 | 1953 | 2266 | 1.22E-05 | |
Multilayer Perceptron | 3047 | 2592 | 2408 | 1953 | 1.00E-06 | |
Bayesian LDC | 2681 | 2698 | 2302 | 2319 | 1.85E-05 |
Feature Selection |
Classifiers | Confusion Matrix | MSE | |||
TP | TN | FP | FN | |||
KL Divergence |
SVM | 4029 | 2742 | 2258 | 971 | 1.00E-06 |
KNN | 3789 | 4147 | 853 | 1211 | 4.90E-05 | |
Random Forest | 3490 | 4089 | 911 | 1510 | 6.40E-07 | |
Decision Tree | 3594 | 4147 | 853 | 1406 | 2.50E-07 | |
Softmax Discriminant | 4896 | 2668 | 2333 | 104 | 1.00E-06 | |
Multilayer Perceptron | 3737 | 2982 | 2018 | 1263 | 2.03E-05 | |
Bayesian LDC | 3460 | 2767 | 2233 | 1540 | 1.00E-08 | |
IWO | SVM | 4401 | 3262 | 1738 | 599 | 4.90E-07 |
KNN | 3203 | 3880 | 1120 | 1797 | 1.60E-05 | |
Random Forest | 4440 | 2735 | 2265 | 560 | 1.52E-05 | |
Decision Tree | 4167 | 2620 | 2380 | 833 | 5.29E-06 | |
Softmax Discriminant | 4219 | 2687 | 2313 | 781 | 2.30E-05 | |
Multilayer Perceptron | 4375 | 2747 | 2253 | 625 | 9.61E-06 | |
Bayesian LDC | 3216 | 2760 | 2240 | 1784 | 6.89E-05 |
Feature Selection |
Classifiers | Confusion Matrix | MSE | |||
TP | TN | FP | FN | |||
KL Divergence |
SVM | 4089 | 3568 | 1433 | 911 | 6.61E-04 |
KNN | 4184 | 4487 | 514 | 817 | 1.44E-05 | |
Random Forest | 4555 | 3520 | 1480 | 445 | 2.72E-04 | |
Decision Tree | 3815 | 3809 | 1191 | 1185 | 6.72E-05 | |
Softmax Discriminant | 4392 | 3948 | 1052 | 608 | 2.40E-05 | |
Multilayer Perceptron | 3881 | 4048 | 952 | 1119 | 1.96E-06 | |
Bayesian LDC | 4156 | 3947 | 1053 | 844 | 8.41E-06 | |
IWO | SVM | 3599 | 4085 | 915 | 1401 | 8.10E-05 |
KNN | 4058 | 4375 | 625 | 942 | 7.23E-05 | |
Random Forest | 4129 | 4038 | 962 | 871 | 9.00E-08 | |
Decision Tree | 3713 | 4308 | 692 | 1288 | 6.40E-05 | |
Softmax Discriminant | 4129 | 4161 | 839 | 871 | 4.00E-04 | |
Multilayer Perceptron | 4539 | 4024 | 976 | 461 | 2.50E-05 | |
Bayesian LDC | 3817 | 3797 | 1203 | 1183 | 1.44E-05 |
Feature Selection |
Classifiers | Confusion Matrix | MSE | |||
TP | TN | FP | FN | |||
KL Divergence |
SVM | 3653 | 4466 | 534 | 1347 | 1.23E-05 |
KNN | 4139 | 4948 | 52 | 862 | 7.23E-05 | |
Random Forest | 4044 | 3913 | 1088 | 956 | 1.30E-05 | |
Decision Tree | 3635 | 3985 | 1016 | 1365 | 6.89E-05 | |
Softmax Discriminant | 3565 | 4297 | 703 | 1435 | 1.37E-05 | |
Multilayer Perceptron | 3740 | 4034 | 966 | 1260 | 6.40E-07 | |
Bayesian LDC | 3775 | 3987 | 1013 | 1225 | 4.90E-07 | |
IWO | SVM | 4339 | 4617 | 383 | 661 | 1.94E-05 |
KNN | 4129 | 4321 | 680 | 871 | 5.76E-06 | |
Random Forest | 4509 | 4466 | 534 | 491 | 7.57E-05 | |
Decision Tree | 4617 | 4390 | 610 | 383 | 6.40E-07 | |
Softmax Discriminant | 4409 | 4005 | 995 | 592 | 1.04E-04 | |
Multilayer Perceptron | 4409 | 3913 | 1088 | 592 | 4.49E-05 | |
Bayesian LDC | 4754 | 3973 | 1027 | 246 | 4.90E-07 |
Feature Selection |
Classifiers | Confusion Matrix | MSE | |||
TP | TN | FP | FN | |||
KL Divergence |
SVM | 4144 | 3668 | 1333 | 856 | 6.56E-05 |
KNN | 4209 | 4537 | 464 | 792 | 2.92E-05 | |
Random Forest | 4575 | 3620 | 1380 | 425 | 1.09E-05 | |
Decision Tree | 3950 | 3859 | 1141 | 1050 | 5.93E-05 | |
Softmax Discriminant | 4417 | 4098 | 902 | 583 | 1.60E-05 | |
Multilayer Perceptron | 4011 | 4198 | 802 | 989 | 3.03E-05 | |
Bayesian LDC | 4245 | 4047 | 953 | 755 | 3.97E-05 | |
IWO | SVM | 3710 | 4235 | 765 | 1290 | 1.37E-05 |
KNN | 4208 | 4375 | 625 | 792 | 4.22E-05 | |
Random Forest | 4229 | 4188 | 812 | 771 | 4.49E-05 | |
Decision Tree | 3813 | 4408 | 592 | 1188 | 4.36E-05 | |
Softmax Discriminant | 4229 | 4211 | 789 | 771 | 1.10E-04 | |
Multilayer Perceptron | 4558 | 4074 | 926 | 443 | 2.30E-05 | |
Bayesian LDC | 3917 | 3897 | 1103 | 1083 | 3.02E-05 |
Feature Selection |
Classifiers | Confusion Matrix | MSE | |||
TP | TN | FP | FN | |||
KL Divergence |
SVM | 3758 | 4466 | 534 | 1242 | 1.37E-05 |
KNN | 4159 | 4948 | 52 | 842 | 2.40E-05 | |
Random Forest | 4094 | 4063 | 938 | 906 | 1.02E-05 | |
Decision Tree | 3750 | 3985 | 1016 | 1250 | 1.23E-05 | |
Softmax Discriminant | 3670 | 4297 | 703 | 1330 | 4.76E-05 | |
Multilayer Perceptron | 3860 | 4084 | 916 | 1140 | 2.12E-05 | |
Bayesian LDC | 3905 | 4137 | 863 | 1095 | 9.61E-06 | |
IWO | SVM | 4439 | 4667 | 333 | 561 | 4.36E-05 |
KNN | 4229 | 4321 | 680 | 771 | 5.48E-05 | |
Random Forest | 4559 | 4466 | 534 | 441 | 1.90E-04 | |
Decision Tree | 4667 | 4490 | 510 | 333 | 2.40E-05 | |
Softmax Discriminant | 4459 | 4055 | 945 | 542 | 5.33E-05 | |
Multilayer Perceptron | 4459 | 4063 | 938 | 542 | 5.04E-05 | |
Bayesian LDC | 4789 | 4073 | 927 | 211 | 1.09E-05 |
Performance Metrics | Equation | Significance | |
---|---|---|---|
Accuracy (%) | Average positive-to-negative sample ratio. |
||
Error Rate | The number of incorrect predictions, based on recorded observations. |
||
F1 Score (%) | Average of precision and recall to obtain the classification accuracy of a specific class. | ||
MCC | Pearson correlation between the actual output and the achieved output. |
||
Jaccard Index (%) | The number of predicted true positives exceeded the number of actual positives, regardless of whether they were real or predicted. |
||
g-mean (%) | Combination of sensitivity and specificity into a single value that balances both objectives. | ||
Kappa | Inter-rater agreement measure for assessing agreement between two methods in categorizing cancer cases. |
Feature Extraction | Classifiers | Accuracy (%) | Error Rate (%) | F1 Score (%) | MCC | Jaccard Index (%) | g-mean(%) | Kappa |
PSO | SVM | 79.53 | 20.47 | 79.40 | 0.59 | 65.83 | 79.53 | 0.59 |
KNN | 79.92 | 20.08 | 80.95 | 0.60 | 68.00 | 80.21 | 0.60 | |
Random Forest | 56.25 | 43.75 | 55.17 | 0.13 | 38.09 | 56.26 | 0.13 | |
Decision Tree | 64.01 | 35.99 | 63.89 | 0.28 | 46.94 | 64.01 | 0.28 | |
Softmax Discriminant | 77.83 | 22.17 | 78.44 | 0.56 | 64.53 | 77.90 | 0.56 | |
Multilayer Perceptron | 71 | 29 | 70.26 | 0.42 | 54.15 | 71.04 | 0.42 | |
Bayesian LDC | 83.42 | 16.58 | 84.05 | 0.67 | 72.48 | 83.59 | 0.67 | |
GWO | SVM | 77.92 | 22.08 | 76.62 | 0.56 | 62.09 | 78.21 | 0.56 |
KNN | 72.25 | 27.75 | 71.61 | 0.45 | 55.78 | 72.29 | 0.45 | |
Random Forest | 77.84 | 22.16 | 78.17 | 0.56 | 64.16 | 77.86 | 0.56 | |
Decision Tree | 85.01 | 14.99 | 85.77 | 0.70 | 75.08 | 85.33 | 0.70 | |
Softmax Discriminant | 83.58 | 16.42 | 83.26 | 0.67 | 71.32 | 83.62 | 0.67 | |
Multilayer Perceptron | 84.34 | 15.66 | 83.80 | 0.69 | 72.12 | 84.46 | 0.69 | |
Bayesian LDC | 76.59 | 23.41 | 77.22 | 0.53 | 62.89 | 76.66 | 0.53 |
Feature Selection |
Classifiers | Accuracy (%) | Error Rate (%) | F1 Score (%) | MCC | Jaccard Index (%) |
g-mean (%) |
Kappa |
KL Divergence |
SVM | 60.44 | 39.56 | 62.51 | 0.21 | 45.46 | 60.56 | 0.21 |
KNN | 65.83 | 34.17 | 69.96 | 0.33 | 53.79 | 66.96 | 0.32 | |
Random Forest | 74.09 | 25.91 | 76.05 | 0.49 | 61.36 | 74.65 | 0.48 | |
Decision Tree | 80.08 | 19.92 | 79.74 | 0.60 | 66.30 | 80.11 | 0.60 | |
Softmax Discriminant | 83.47 | 16.53 | 83.18 | 0.67 | 71.21 | 83.50 | 0.67 | |
Multilayer Perceptron | 79.04 | 20.96 | 80.30 | 0.59 | 67.08 | 79.43 | 0.58 | |
Bayesian LDC | 66.08 | 33.92 | 66.04 | 0.32 | 49.30 | 66.08 | 0.32 | |
IWO | SVM | 73.57 | 26.43 | 74.47 | 0.47 | 59.32 | 73.67 | 0.47 |
KNN | 74.74 | 25.26 | 73.43 | 0.50 | 58.01 | 74.95 | 0.49 | |
Random Forest | 63.31 | 36.69 | 66.09 | 0.27 | 49.35 | 63.64 | 0.27 | |
Decision Tree | 58.53 | 41.47 | 58.99 | 0.17 | 41.83 | 58.54 | 0.17 | |
Softmax Discriminant | 57.81 | 42.19 | 56.45 | 0.16 | 39.32 | 57.84 | 0.16 | |
Multilayer Perceptron | 56.39 | 43.61 | 58.29 | 0.13 | 41.13 | 56.44 | 0.13 | |
Bayesian LDC | 53.79 | 46.21 | 53.71 | 0.08 | 36.72 | 53.79 | 0.08 |
Feature Selection |
Classifiers | Accuracy (%) | Error Rate (%) | F1 Score (%) | MCC | Jaccard Index (%) |
g-mean (%) |
Kappa |
KL Divergence |
SVM | 67.72 | 32.28 | 71.40 | 0.37 | 55.52 | 68.80 | 0.35 |
KNN | 79.36 | 20.64 | 78.60 | 0.59 | 64.74 | 79.49 | 0.59 | |
Random Forest | 75.78 | 24.22 | 74.24 | 0.52 | 59.03 | 76.09 | 0.52 | |
Decision Tree | 77.41 | 22.59 | 76.09 | 0.55 | 61.41 | 77.69 | 0.55 | |
Softmax Discriminant | 75.64 | 24.37 | 80.08 | 0.57 | 66.77 | 80.74 | 0.51 | |
Multilayer Perceptron | 67.19 | 32.81 | 69.49 | 0.35 | 53.25 | 67.54 | 0.34 | |
Bayesian LDC | 62.27 | 37.73 | 64.72 | 0.25 | 47.84 | 62.49 | 0.25 | |
IWO | SVM | 76.63 | 23.37 | 79.02 | 0.55 | 65.31 | 77.82 | 0.53 |
KNN | 70.83 | 29.17 | 68.71 | 0.42 | 52.34 | 71.16 | 0.42 | |
Random Forest | 71.75 | 28.25 | 75.87 | 0.46 | 61.12 | 74.14 | 0.43 | |
Decision Tree | 67.87 | 32.13 | 72.18 | 0.38 | 56.47 | 69.50 | 0.36 | |
Softmax Discriminant | 69.06 | 30.94 | 73.17 | 0.40 | 57.69 | 70.74 | 0.38 | |
Multilayer Perceptron | 71.22 | 28.78 | 75.25 | 0.45 | 60.32 | 73.33 | 0.42 | |
Bayesian LDC | 59.76 | 40.24 | 61.52 | 0.20 | 44.42 | 59.84 | 0.20 |
Feature Selection |
Classifiers | Accuracy (%) | Error Rate (%) | F1 Score (%) | MCC | Jaccard Index (%) |
g-mean (%) |
Kappa |
KL Divergence |
SVM | 76.56 | 23.44 | 77.72 | 0.53 | 63.56 | 76.80 | 0.53 |
KNN | 86.70 | 13.30 | 86.30 | 0.74 | 75.96 | 86.81 | 0.73 | |
Random Forest | 80.75 | 19.25 | 82.56 | 0.63 | 70.30 | 81.86 | 0.62 | |
Decision Tree | 76.24 | 23.76 | 76.26 | 0.52 | 61.63 | 76.24 | 0.53 | |
Softmax Discriminant | 83.40 | 16.60 | 84.11 | 0.67 | 72.58 | 83.62 | 0.67 | |
Multilayer Perceptron | 79.28 | 20.72 | 78.93 | 0.59 | 65.20 | 79.31 | 0.59 | |
Bayesian LDC | 81.03 | 18.97 | 81.42 | 0.62 | 68.67 | 81.08 | 0.62 | |
IWO | SVM | 76.84 | 23.16 | 75.66 | 0.54 | 61.84 | 77.05 | 0.54 |
KNN | 84.33 | 15.67 | 83.82 | 0.69 | 72.14 | 84.44 | 0.69 | |
Random Forest | 81.67 | 18.33 | 81.83 | 0.63 | 69.25 | 81.68 | 0.63 | |
Decision Tree | 80.21 | 19.79 | 78.95 | 0.61 | 65.23 | 80.56 | 0.60 | |
Softmax Discriminant | 82.90 | 17.10 | 82.84 | 0.66 | 70.71 | 82.90 | 0.66 | |
Multilayer Perceptron | 85.64 | 14.36 | 86.28 | 0.72 | 75.88 | 85.94 | 0.71 | |
Bayesian LDC | 76.14 | 23.86 | 76.19 | 0.52 | 61.54 | 76.14 | 0.52 |
Feature Selection |
Classifiers | Accuracy (%) | Error Rate (%) | F1 Score (%) | MCC | Jaccard Index (%) |
g-mean (%) |
Kappa |
KL Divergence |
SVM | 78.11 | 21.89 | 79.11 | 0.56 | 65.44 | 78.32 | 0.56 |
KNN | 87.45 | 12.55 | 87.02 | 0.75 | 77.03 | 87.58 | 0.75 | |
Random Forest | 81.95 | 18.05 | 83.53 | 0.65 | 71.71 | 82.92 | 0.64 | |
Decision Tree | 78.09 | 21.91 | 78.19 | 0.55 | 64.19 | 78.10 | 0.54 | |
Softmax Discriminant | 85.15 | 14.85 | 85.61 | 0.70 | 74.84 | 85.27 | 0.70 | |
Multilayer Perceptron | 82.09 | 17.91 | 81.75 | 0.64 | 69.13 | 82.12 | 0.64 | |
Bayesian LDC | 82.92 | 17.08 | 83.25 | 0.66 | 71.31 | 82.96 | 0.66 | |
IWO | SVM | 79.45 | 20.55 | 78.31 | 0.59 | 64.35 | 79.72 | 0.59 |
KNN | 85.83 | 14.17 | 85.59 | 0.72 | 74.81 | 85.86 | 0.72 | |
Random Forest | 84.17 | 15.83 | 84.23 | 0.68 | 72.76 | 84.17 | 0.68 | |
Decision Tree | 82.21 | 17.79 | 81.08 | 0.65 | 68.18 | 82.58 | 0.64 | |
Softmax Discriminant | 84.40 | 15.60 | 84.43 | 0.69 | 73.05 | 84.40 | 0.69 | |
Multilayer Perceptron | 86.32 | 13.68 | 86.95 | 0.73 | 76.91 | 86.59 | 0.73 | |
Bayesian LDC | 78.14 | 21.86 | 78.29 | 0.56 | 64.21 | 78.14 | 0.56 |
Feature Selection |
Classifiers | Accuracy (%) | Error Rate (%) | F1 Score (%) | MCC | Jaccard Index (%) |
g-mean (%) |
Kappa |
KL Divergence |
SVM | 81.19 | 18.81 | 79.53 | 0.63 | 66.02 | 81.88 | 0.62 |
KNN | 90.87 | 9.14 | 90.06 | 0.83 | 81.92 | 91.71 | 0.82 | |
Random Forest | 79.56 | 20.44 | 79.83 | 0.59 | 66.43 | 79.58 | 0.59 | |
Decision Tree | 76.20 | 23.81 | 75.33 | 0.53 | 60.43 | 76.30 | 0.52 | |
Softmax Discriminant | 78.62 | 21.38 | 76.93 | 0.58 | 62.51 | 79.13 | 0.57 | |
Multilayer Perceptron | 77.74 | 22.26 | 77.07 | 0.56 | 62.69 | 77.82 | 0.55 | |
Bayesian LDC | 77.62 | 22.38 | 77.14 | 0.55 | 62.78 | 77.66 | 0.55 | |
IWO | SVM | 89.56 | 10.44 | 89.27 | 0.79 | 80.61 | 89.66 | 0.79 |
KNN | 84.50 | 15.51 | 84.19 | 0.69 | 72.70 | 84.54 | 0.69 | |
Random Forest | 89.76 | 10.24 | 89.80 | 0.80 | 81.49 | 89.76 | 0.80 | |
Decision Tree | 90.07 | 9.93 | 90.29 | 0.80 | 81.30 | 90.13 | 0.80 | |
Softmax Discriminant | 84.13 | 15.87 | 84.75 | 0.68 | 73.54 | 84.31 | 0.68 | |
Multilayer Perceptron | 83.21 | 16.79 | 84.00 | 0.67 | 72.42 | 83.47 | 0.66 | |
Bayesian LDC | 87.27 | 12.73 | 88.19 | 0.75 | 78.88 | 88.00 | 0.75 |
S No | Feature Extraction | Feature Selection | Classifiers | Accuracy (%) |
---|---|---|---|---|
1 | PSO | - | Bayesian LDC | 83.42 % |
2 | GWO | - | Decision Tree | 85.01 % |
3 | PSO | KL Divergence | Softmax Discriminant | 83.47 % |
4 | PSO | IWO | KNN | 74.74 % |
5 | GWO | KL Divergence | KNN | 79.36 % |
6 | GWO | IWO | SVM | 76.63 % |
7 | PSO | KL Divergence | KNN with Adam | 86.70 % |
8 | PSO | IWO | MLP with Adam | 85.64 % |
9 | PSO | KL Divergence | KNN with RAdam | 87.45 % |
10 | PSO | IWO | MLP with RAdam | 86.32 % |
11 | GWO | KL Divergence | KNN with Adam | 90.87 % |
12 | GWO | IWO | Decision Tree with Adam | 90.07 % |
13 | GWO | KL Divergence | KNN with RAdam | 91.07 % |
14 | GWO | IWO | Decision Tree with RAdam | 91.57 % |
S No | Classifiers | Without Feature Extraction |
With Feature Extraction | With Feature Selection | With Hyperparameter Tuning of IWO Feature Selection Method |
|||
---|---|---|---|---|---|---|---|---|
PSO | GWO | KL Divergence |
IWO | Adam | RAdam | |||
1 | SVM | |||||||
2 | KNN | |||||||
3 | RF | |||||||
4 | DT | |||||||
5 | SDC | |||||||
6 | MLP | |||||||
7 | BLDC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 MDPI (Basel, Switzerland) unless otherwise stated