Submitted:
07 September 2023
Posted:
08 September 2023
You are already at the latest version
Abstract
Keywords:


| Experimental Design | Result | Ref. |
| Rats fed a high fat diet and treated with different tea extracts for 8 weeks | Chinese green tea significantly lowered serum and hepatic cholesterol and atherogenic index and increased the HDL-total cholesterol | Yang et al. [66] |
| Sprague-Dawley rats treated with Lung Chen tea for 8 weeks | Lung Chen tea treatment dramatically reduced blood cholesterol while increasing fecal bile acid and cholesterol excretion. | Yang et al. [67] |
| Male SHRSP rats fed green tea polyphenols for 3 weeks. | Systolic and diastolic BP were significantly lowered | Negishi et al. [68] |
| Atherosclerosis-prone C57BL/6J apoprotein (apo)E-deficient mice were given an atherogenic diet supplemented with green tea extracts for 14 weeks | In the tea group, plasma lipid peroxides were decreased. | Miura et al. [69] |
| Apolipoprotein E-null mice, possessing both developing and well-established atherosclerotic lesions, received intraperitoneal injections of EGCG over a 42-day period. | The administration of EGCG led to an augmentation in antioxidant capacity within the vascular tissue at the local level as well as throughout the systemic circulation. | Chyu et al.[70] |
| Male Wistar rats treated with green tea extracts for 14 days | Tea extract reduced the area of the intima and the ratio of the intimal area to the medial area | Chen et al[71] |
| During a 5-week treatment period, cholesterol-fed rats were administered green tea polyphenols, and their outcomes were compared to those of rats given probucol. | Green tea polyphenols effectively suppressed LDL oxidation and concurrently increased the antioxidative activity in the serum. | Yokozawa et al. [72] |
| New Zealand white rabbits were fed a high-fat diet with added cholesterol and given either black tea or green tea in their drinking water for 21 weeks. | Green tea consumption showed a tendency to decrease the formation of aortic lesions, while black tea, vitamin E, and beta-carotene exhibited no discernible effects. | Tijburg et al. [14] |
| Male New Zealand white rabbits were provided with a hypercholesterolemic diet supplemented with green tea for a duration of 17 weeks. | The consumption of green tea resulted in a reduction in atherosclerosis and a notable decrease in the expression of VEGF (Vascular Endothelial Growth Factor) within the atherosclerotic plaque located in the rabbit aorta. | Kavantzas et al.[73] |
| Male Zucker rats were fed a diet consisting of 50% sucrose and 15% butter, and this diet was supplemented with green tea powder for a period of 10 days | The use of powdered green tea significantly reduced body weight and resulted in a notable decrease in plasma total cholesterol levels. | Hasegawa et al.[74] |
| Wistar rats were provided with a diet high in cholesterol and fat, and this diet was supplemented with EGCG for a duration of 4 weeks. | In the group that was fed a diet containing 1% EGCG, there was a significant reduction in total cholesterol and LDL levels. | Raederstoff et al.[75] |
| Ovariectomized rats infused with green tea extracts for 8 hours. | Green tea extracts exhibited a dose-dependent reduction in the lymphatic absorption of cholesterol. | Wing Sum et al. |
Conflict of interest
References
- Vaduganathan, M.; Mensah, G.A.; Turco, J.V.; Fuster, V.; Roth, G.A. The Global Burden of Cardiovascular Diseases and Risk. J. Am. Coll. Cardiol. 2022, 80, 2361–2371. [CrossRef]
- Roth, G.A.; Mensah, G.A.; Fuster, V. The Global Burden of Cardiovascular Diseases and Risks. J. Am. Coll. Cardiol. 2020, 76, 2980–2981. [CrossRef]
- Smith, S.; Horgan, F.; Sexton, E.; Cowman, S.; Hickey, A.; Kelly, P.; McGee, H.; Murphy, S.; O’Neill, D.; Royston, M.; et al. The Cost of Stroke and Transient Ischaemic Attack in Ireland: A Prevalence-Based Estimate. Age Ageing 2012, 41, 332–338. [CrossRef]
- Kumar, R.; Malik, S.; Tiwari, R.; Zhautivova, S.B.; Rakhimovna, A.H.; Raj, T.; Kumar, P. Pathophysiology of Cardiovascular Diseases and the Role of Vitamins, and Herbal Extracts in the Reduction of Cardiovascular Risks. Cardiovasc. Hematol. Agents Med. Chem. 19, 175–186. [CrossRef]
- Mitchell, G.F.; Powell, J.T. Arteriosclerosis: A Primer for “In Focus” Reviews on Arterial Stiffness. Arterioscler. Thromb. Vasc. Biol. 2020, 40, 1025–1027. [CrossRef]
- Shukla, S.K.; Gupta, S.; Ojha, S.K.; Sharma, S.B. Cardiovascular Friendly Natural Products: A Promising Approach in the Management of CVD. Nat. Prod. Res. 2010, 24, 873–898. [CrossRef]
- Frąk, W.; Wojtasińska, A.; Lisińska, W.; Młynarska, E.; Franczyk, B.; Rysz, J. Pathophysiology of Cardiovascular Diseases: New Insights into Molecular Mechanisms of Atherosclerosis, Arterial Hypertension, and Coronary Artery Disease. Biomedicines 2022, 10, 1938. [CrossRef]
- Kućmierz, J.; Frąk, W.; Młynarska, E.; Franczyk, B.; Rysz, J. Molecular Interactions of Arterial Hypertension in Its Target Organs. Int. J. Mol. Sci. 2021, 22, 9669. [CrossRef]
- Mohabbulla Mohib, Md.; Fazla Rabby, S.M.; Paran, T.Z.; Mehedee Hasan, Md.; Ahmed, I.; Hasan, N.; Abu Taher Sagor, Md.; Mohiuddin, S. Protective Role of Green Tea on Diabetic Nephropathy—A Review. Cogent Biol. 2016, 2, 1248166. [CrossRef]
- Wu, B.-N.; Huang, Y.-C.; Wu, H.-M.; Hong, S.-J.; Chiang, L.-C.; Chen, I.-J. A Highly Selective Β1-Adrenergic Blocker with Partial Β2-Agonist Activity Derived from Ferulic Acid, an Active Component of Ligusticum Wallichii Franch. J. Cardiovasc. Pharmacol. 1998, 31, 750. [CrossRef]
- Mohiuddin, M.S.; Himeno, T.; Yamada, Y.; Morishita, Y.; Kondo, M.; Tsunekawa, S.; Kato, Y.; Nakamura, J.; Kamiya, H. Glucagon Prevents Cytotoxicity Induced by Methylglyoxal in a Rat Neuronal Cell Line Model. Biomolecules 2021, 11, 287. [CrossRef]
- Ernst, E. Harmless Herbs? A Review of the Recent Literature. Am. J. Med. 1998, 104, 170–178. [CrossRef]
- Mohiuddin, M.S.; Himeno, T.; Inoue, R.; Miura-Yura, E.; Yamada, Y.; Nakai-Shimoda, H.; Asano, S.; Kato, M.; Motegi, M.; Kondo, M.; et al. Glucagon-Like Peptide-1 Receptor Agonist Protects Dorsal Root Ganglion Neurons against Oxidative Insult. J. Diabetes Res. 2019, 2019, 9426014. [CrossRef]
- Chacko, S.M.; Thambi, P.T.; Kuttan, R.; Nishigaki, I. Beneficial Effects of Green Tea: A Literature Review. Chin. Med. 2010, 5, 13. [CrossRef]
- Sano, M.; Tabata, M.; Suzuki, M.; Degawa, M.; Miyase, T.; Maeda-Yamamoto, M. Simultaneous Determination of Twelve Tea Catechins by High-Performance Liquid Chromatography with Electrochemical Detection. The Analyst 2001, 126, 816–820. [CrossRef]
- Ruddarraju, R.R.; Murugulla, A.C.; Kotla, R.; Chandra Babu Tirumalasetty, M.; Wudayagiri, R.; Donthabakthuni, S.; Maroju, R.; Baburao, K.; Parasa, L.S. Design, Synthesis, Anticancer, Antimicrobial Activities and Molecular Docking Studies of Theophylline Containing Acetylenes and Theophylline Containing 1,2,3-Triazoles with Variant Nucleoside Derivatives. Eur. J. Med. Chem. 2016, 123, 379–396. [CrossRef]
- Hartley, L.; Flowers, N.; Holmes, J.; Clarke, A.; Stranges, S.; Hooper, L.; Rees, K. Green and Black Tea for the Primary Prevention of Cardiovascular Disease. Cochrane Database Syst. Rev. 2013, 2013, CD009934. [CrossRef]
- Izzo, S.; Naponelli, V.; Bettuzzi, S. Flavonoids as Epigenetic Modulators for Prostate Cancer Prevention. Nutrients 2020, 12, 1010. [CrossRef]
- Hayakawa, S.; Ohishi, T.; Miyoshi, N.; Oishi, Y.; Nakamura, Y.; Isemura, M. Anti-Cancer Effects of Green Tea Epigallocatchin-3-Gallate and Coffee Chlorogenic Acid. Mol. Basel Switz. 2020, 25, 4553. [CrossRef]
- Jurgens, T.; Whelan, A.M. Can Green Tea Preparations Help with Weight Loss? Can. Pharm. J. CPJ 2014, 147, 159–160. [CrossRef]
- Wahiduzzaman, M.; Ota, A.; Hosokawa, Y. Novel Mechanistic Insights into the Anti-Cancer Mode of Arsenic Trioxide. Curr. Cancer Drug Targets 2020, 20, 115–129. [CrossRef]
- Veerman, G.D.M.; van der Werff, S.C.; Koolen, S.L.W.; Miedema, J.R.; Oomen-de Hoop, E.; van der Mark, S.C.; Chandoesing, P.P.; de Bruijn, P.; Wijsenbeek, M.S.; Mathijssen, R.H.J. The Influence of Green Tea Extract on Nintedanib’s Bioavailability in Patients with Pulmonary Fibrosis. Biomed. Pharmacother. 2022, 151, 113101. [CrossRef]
- Motegi, M.; Himeno, T.; Nakai-Shimoda, H.; Inoue, R.; Ozeki, N.; Hayashi, Y.; Sasajima, S.; Mohiuddin, M.S.; Asano-Hayami, E.; Kato, M.; et al. Deficiency of Glucagon Gene-Derived Peptides Induces Peripheral Polyneuropathy in Mice. Biochem. Biophys. Res. Commun. 2020, 532, 47–53. [CrossRef]
- Shen, C.-L.; Yeh, J.K.; Cao, J.; Wang, J.-S. Green Tea and Bone Metabolism. Nutr. Res. N. Y. N 2009, 29, 437–456. [CrossRef]
- Karnan, S.; Hanamura, I.; Ota, A.; Takasugi, S.; Nakamura, A.; Takahashi, M.; Uchino, K.; Murakami, S.; Wahiduzzaman, M.; Quang Vu, L. CD52 Is a Novel Target for the Treatment of FLT3-ITD-Mutated Myeloid Leukemia. Cell Death Discov. 2021, 7, 121. [CrossRef]
- Liu, J.; Bodnar, B.H.; Meng, F.; Khan, A.I.; Wang, X.; Saribas, S.; Wang, T.; Lohani, S.C.; Wang, P.; Wei, Z.; et al. Epigallocatechin Gallate from Green Tea Effectively Blocks Infection of SARS-CoV-2 and New Variants by Inhibiting Spike Binding to ACE2 Receptor. Cell Biosci. 2021, 11, 168. [CrossRef]
- Munichandrababu, T.; Bhaskar, B.V.; Ravi, S.; Bhuvaneswar, C.; Rajendra, W. Structure Based Virtual Screening of Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) against RNA-Binding Motif 6 (RBM6) Involved in Human Lung Cancer. Med. Chem. Res. 2013, 22, 2828–2839. [CrossRef]
- Mandel, S.A.; Weinreb, O.; Amit, T.; Youdim, M.B.H. Molecular Mechanisms of the Neuroprotective/Neurorescue Action of Multi-Target Green Tea Polyphenols. Front. Biosci. Sch. Ed. 2012, 4, 581–598. [CrossRef]
- Babu, T.M.C.; Rammohan, A.; Baki, V.B.; Devi, S.; Gunasekar, D.; Rajendra, W. Development of Novel HER2 Inhibitors against Gastric Cancer Derived from Flavonoid Source of Syzygium Alternifolium through Molecular Dynamics and Pharmacophore-Based Screening. Drug Des. Devel. Ther. 2016, 10, 3611–3632. [CrossRef]
- Babu, T.M.C.; Siva Rajesh, S.; Vijaya Bhaskar, B.; Devi, S.; Rammohan, A.; Sivaraman, T.; Rajendra, W. Molecular Docking, Molecular Dynamics Simulation, Biological Evaluation and 2D QSAR Analysis of Flavonoids from Syzygium Alternifolium as Potent Anti- Helicobacter Pylori Agents. RSC Adv. 2017, 7, 18277–18292. [CrossRef]
- Karnan, S.; Ota, A.; Murakami, H.; Rahman, M.L.; Hasan, M.N.; Wahiduzzaman, M.; Hanamura, I.; Quang Vu, L.; Inoko, A.; Hyodo, T.; et al. Identification of CD24 as a Potential Diagnostic and Therapeutic Target for Malignant Pleural Mesothelioma. Cell Death Discov. 2020, 6, 1–14. [CrossRef]
- Huang, J.; Wang, Y.; Xie, Z.; Zhou, Y.; Zhang, Y.; Wan, X. The Anti-Obesity Effects of Green Tea in Human Intervention and Basic Molecular Studies. Eur. J. Clin. Nutr. 2014, 68, 1075–1087. [CrossRef]
- Barua, R.; Sultana, S.; Talukder, M.E.U.; Chakma, K.; Hasan, C.M.M.; Islam, M.S. Antioxidant and Cytotoxic Activity of Crude Flavonoid Fraction from the Fruits of Hybrid Variety of Momordica Charantia (Bitter Gourd). J. Pharm. Res. Int. 2014, 778–786. [CrossRef]
- Abe, S.K.; Inoue, M. Green Tea and Cancer and Cardiometabolic Diseases: A Review of the Current Epidemiological Evidence. Eur. J. Clin. Nutr. 2021, 75, 865–876. [CrossRef]
- Barua, R.; Mizuno, K.; Tashima, Y.; Ogawa, M.; Takeuchi, H.; Taguchi, A.; Okajima, T. Bioinformatics and Functional Analyses Implicate Potential Roles for EOGT and L-Fringe in Pancreatic Cancers. Mol. Basel Switz. 2021, 26, 882. [CrossRef]
- Neutrophil Restraint by Green Tea: Inhibition of Inflammation, Associated Angiogenesis, and Pulmonary Fibrosis1 | The Journal of Immunology | American Association of Immunologists Available online: https://journals.aai.org/jimmunol/article/170/8/4335/71635/Neutrophil-Restraint-by-Green-Tea-Inhibition-of (accessed on 5 September 2023).
- Farhan, M. Green Tea Catechins: Nature’s Way of Preventing and Treating Cancer. Int. J. Mol. Sci. 2022, 23, 10713. [CrossRef]
- Leong, H.; Mathur, P.S.; Greene, G.L. Green Tea Catechins Inhibit Angiogenesis through Suppression of STAT3 Activation. Breast Cancer Res. Treat. 2009, 117, 505–515. [CrossRef]
- Adamcakova, J.; Balentova, S.; Barosova, R.; Hanusrichterova, J.; Mikolka, P.; Prso, K.; Mokry, J.; Tatarkova, Z.; Kalenska, D.; Mokra, D. Effects of Green Tea Polyphenol Epigallocatechin-3-Gallate on Markers of Inflammation and Fibrosis in a Rat Model of Pulmonary Silicosis. Int. J. Mol. Sci. 2023, 24, 1857. [CrossRef]
- Xu, J.; Xu, Z.; Zheng, W. A Review of the Antiviral Role of Green Tea Catechins. Mol. J. Synth. Chem. Nat. Prod. Chem. 2017, 22, 1337. [CrossRef]
- Ben Saad, A.; Ncib, S.; Rjeibi, I.; Saidi, I.; Zouari, N. Nephroprotective and Antioxidant Effect of Green Tea (Camellia Sinensis) against Nicotine-Induced Nephrotoxicity in Rats and Characterization of Its Bioactive Compounds by HPLC-DAD. Appl. Physiol. Nutr. Metab. Physiol. Appl. Nutr. Metab. 2019, 44, 1134–1140. [CrossRef]
- Choubey, M. Growth Hormone and Insulin-like Growth Factor-I: Novel Insights into the Male Reproductive Health. In Growth Disorders and Acromegaly; IntechOpen, 2020 ISBN 978-1-83880-584-5.
- Pervin, M.; Unno, K.; Nakagawa, A.; Takahashi, Y.; Iguchi, K.; Yamamoto, H.; Hoshino, M.; Hara, A.; Takagaki, A.; Nanjo, F.; et al. Blood Brain Barrier Permeability of (−)-Epigallocatechin Gallate, Its Proliferation-Enhancing Activity of Human Neuroblastoma SH-SY5Y Cells, and Its Preventive Effect on Age-Related Cognitive Dysfunction in Mice. Biochem. Biophys. Rep. 2017, 9, 180–186. [CrossRef]
- Mancini, E.; Beglinger, C.; Drewe, J.; Zanchi, D.; Lang, U.E.; Borgwardt, S. Green Tea Effects on Cognition, Mood and Human Brain Function: A Systematic Review. Phytomedicine Int. J. Phytother. Phytopharm. 2017, 34, 26–37. [CrossRef]
- Arab, H.; Mahjoub, S.; Hajian-Tilaki, K.; Moghadasi, M. The Effect of Green Tea Consumption on Oxidative Stress Markers and Cognitive Function in Patients with Alzheimer’s Disease: A Prospective Intervention Study. Casp. J. Intern. Med. 2016, 7, 188–194.
- Farkhondeh, T.; Pourbagher-Shahri, A.M.; Ashrafizadeh, M.; Folgado, S.L.; Rajabpour-Sanati, A.; Khazdair, M.R.; Samarghandian, S. Green Tea Catechins Inhibit Microglial Activation Which Prevents the Development of Neurological Disorders. Neural Regen. Res. 2020, 15, 1792–1798. [CrossRef]
- Choubey, M.; Ranjan, A.; Bora, P.S.; Baltazar, F.; Krishna, A. Direct Actions of Adiponectin on Changes in Reproductive, Metabolic, and Anti-Oxidative Enzymes Status in the Testis of Adult Mice. Gen. Comp. Endocrinol. 2019, 279, 1–11. [CrossRef]
- Semnani, M.; Mashayekhi, F.; Azarnia, M.; Salehi, Z. Effects of Green Tea Epigallocatechin-3-Gallate on the Proteolipid Protein and Oligodendrocyte Transcription Factor 1 Messenger RNA Gene Expression in a Mouse Model of Multiple Sclerosis. Folia Neuropathol. 2017, 55, 199–205. [CrossRef]
- Malar, D.S.; Prasanth, M.I.; Brimson, J.M.; Sharika, R.; Sivamaruthi, B.S.; Chaiyasut, C.; Tencomnao, T. Neuroprotective Properties of Green Tea (Camellia Sinensis) in Parkinson’s Disease: A Review. Molecules 2020, 25, 3926. [CrossRef]
- Choubey, M.; Ranjan, A.; Krishna, A. Adiponectin/AdipoRs Signaling as a Key Player in Testicular Aging and Associated Metabolic Disorders. Vitam. Horm. 2021, 115, 611–634. [CrossRef]
- Ma, X.; Ryu, G. Effects of Green Tea Contents on the Quality and Antioxidant Properties of Textured Vegetable Protein by Extrusion-Cooking. Food Sci. Biotechnol. 2018, 28, 67–74. [CrossRef]
- Choubey, M.; Ranjan, A.; Bora, P.S.; Krishna, A. Protective Role of Adiponectin against Testicular Impairment in High-Fat Diet/Streptozotocin-Induced Type 2 Diabetic Mice. Biochimie 2020, 168, 41–52. [CrossRef]
- Pervin, M.; Unno, K.; Ohishi, T.; Tanabe, H.; Miyoshi, N.; Nakamura, Y. Beneficial Effects of Green Tea Catechins on Neurodegenerative Diseases. Mol. J. Synth. Chem. Nat. Prod. Chem. 2018, 23, 1297. [CrossRef]
- Nugala, B.; Namasi, A.; Emmadi, P.; Krishna, P.M. Role of Green Tea as an Antioxidant in Periodontal Disease: The Asian Paradox. J. Indian Soc. Periodontol. 2012, 16, 313–316. [CrossRef]
- Akbarialiabad, H.; Dahroud, M.D.; Khazaei, M.M.; Razmeh, S.; Zarshenas, M.M. Green Tea, A Medicinal Food with Promising Neurological Benefits. Curr. Neuropharmacol. 2021, 19, 349–359. [CrossRef]
- Neuroprotective Effect of Green Tea Extractives against Oxidative Stress by Enhancing the Survival and Proliferation of PC12 Cells | SpringerLink Available online: https://link.springer.com/article/10.1007/s13273-019-0042-8 (accessed on 5 September 2023).
- Okello, E.J.; Mather, J. Comparative Kinetics of Acetyl- and Butyryl-Cholinesterase Inhibition by Green Tea Catechins|Relevance to the Symptomatic Treatment of Alzheimer’s Disease. Nutrients 2020, 12, 1090. [CrossRef]
- Akter, S.; Tasnim, S.; Barua, R.; Choubey, M.; Arbee, S.; Mohib, M.M.; Minhaz, N.; Choudhury, A.; Sarker, P.; Mohiuddin, M.S. The Effect of COVID-19 on Gut Microbiota: Exploring the Complex Interplay and Implications for Human Health. Gastrointest. Disord. 2023, 5, 340–355. [CrossRef]
- Weinreb, O.; Mandel, S.; Amit, T.; Youdim, M.B.H. Neurological Mechanisms of Green Tea Polyphenols in Alzheimer’s and Parkinson’s Diseases. J. Nutr. Biochem. 2004, 15, 506–516. [CrossRef]
- Imai, K.; Nakachi, K. Cross Sectional Study of Effects of Drinking Green Tea on Cardiovascular and Liver Diseases. BMJ 1995, 310, 693–696. [CrossRef]
- Kuriyama, S.; Shimazu, T.; Ohmori, K.; Kikuchi, N.; Nakaya, N.; Nishino, Y.; Tsubono, Y.; Tsuji, I. Green Tea Consumption and Mortality Due to Cardiovascular Disease, Cancer, and All Causes in Japan: The Ohsaki Study. JAMA 2006, 296, 1255–1265. [CrossRef]
- Sasazuki, S.; Kodama, H.; Yoshimasu, K.; Liu, Y.; Washio, M.; Tanaka, K.; Tokunaga, S.; Kono, S.; Arai, H.; Doi, Y.; et al. Relation between Green Tea Consumption and the Severity of Coronary Atherosclerosis among Japanese Men and Women. Ann. Epidemiol. 2000, 10, 401–408. [CrossRef]
- Dai, W.; Choubey, M.; Patel, S.; Singer, H.A.; Ozcan, L. Adipocyte CAMK2 Deficiency Improves Obesity-Associated Glucose Intolerance. Mol. Metab. 2021, 53, 101300. [CrossRef]
- Akter, S.; Choubey, M.; Mohib, M.M.; Arbee, S.; Sagor, M.A.T.; Mohiuddin, M.S. Stem Cell Therapy in Diabetic Polyneuropathy: Recent Advancements and Future Directions. Brain Sci. 2023, 13, 255. [CrossRef]
- Akter, S.; Choubey, M.; Arbee, S.; Mohib, M.M.; Tirumalasetty, M.B.; Minhaz, N.; Biswas, M.; Mohiuddin, M.S. Safeguarding Intimate Health: Decoding the Interplay of Diabetes and Erectile Dysfunction 2023.
- Yang, M.-H.; Wang, C.-H.; Chen, H.-L. Green, Oolong and Black Tea Extracts Modulate Lipid Metabolism in Hyperlipidemia Rats Fed High-Sucrose Diet. J. Nutr. Biochem. 2001, 12, 14–20. [CrossRef]
- Gu, Q.; Chen, F.; Chen, N.; Wang, J.; Li, Z.; Deng, X. Effect of EGCG on Bronchial Epithelial Cell Premalignant Lesions Induced by Cigarette Smoke and on Its CYP1A1 Expression. Int. J. Mol. Med. 2021, 48, 220. [CrossRef]
- Negishi, H.; Xu, J.-W.; Ikeda, K.; Njelekela, M.; Nara, Y.; Yamori, Y. Black and Green Tea Polyphenols Attenuate Blood Pressure Increases in Stroke-Prone Spontaneously Hypertensive Rats. J. Nutr. 2004, 134, 38–42. [CrossRef]
- Tea Catechins Prevent the Development of Atherosclerosis in Apoprotein E–Deficient Mice - ScienceDirect Available online: https://www.sciencedirect.com/science/article/pii/S0022316622144536 (accessed on 7 September 2023).
- Wang, W.; Zhang, Z.-Z.; Wu, Y.; Wang, R.-Q.; Chen, J.-W.; Chen, J.; Zhang, Y.; Chen, Y.-J.; Geng, M.; Xu, Z.-D.; et al. (–)-Epigallocatechin-3-Gallate Ameliorates Atherosclerosis and Modulates Hepatic Lipid Metabolic Gene Expression in Apolipoprotein E Knockout Mice: Involvement of TTC39B. Front. Pharmacol. 2018, 9, 195. [CrossRef]
- Chan, P.C.; Ramot, Y.; Malarkey, D.E.; Blackshear, P.; Kissling, G.E.; Travlos, G.; Nyska, A. Fourteen-Week Toxicity Study of Green Tea Extract in Rats and Mice. Toxicol. Pathol. 2010, 38, 1070. [CrossRef]
- Yokozawa, T.; Noh, J.S.; Park, C.H. Green Tea Polyphenols for the Protection against Renal Damage Caused by Oxidative Stress. Evid.-Based Complement. Altern. Med. ECAM 2012, 2012, 845917. [CrossRef]
- Ding, S.; Jiang, J.; Yu, P.; Zhang, G.; Zhang, G.; Liu, X. Green Tea Polyphenol Treatment Attenuates Atherosclerosis in High-Fat Diet-Fed Apolipoprotein E-Knockout Mice via Alleviating Dyslipidemia and up-Regulating Autophagy. PLOS ONE 2017, 12, e0181666. [CrossRef]
- SUZUKI, Y.; MIYOSHI, N.; ISEMURA, M. Health-Promoting Effects of Green Tea. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 2012, 88, 88–101. [CrossRef]
- Bun, S.S.; Bun, H.; Guédon, D.; Rosier, C.; Ollivier, E. Effect of Green Tea Extracts on Liver Functions in Wistar Rats. Food Chem. Toxicol. Int. J. Publ. Br. Ind. Biol. Res. Assoc. 2006, 44, 1108–1113. [CrossRef]
- Yang, Y.-C.; Lu, F.-H.; Wu, J.-S.; Wu, C.-H.; Chang, C.-J. The Protective Effect of Habitual Tea Consumption on Hypertension. Arch. Intern. Med. 2004, 164, 1534–1540. [CrossRef]
- Hirano, R.; Momiyama, Y.; Takahashi, R.; Taniguchi, H.; Kondo, K.; Nakamura, H.; Ohsuzu, F. Comparison of Green Tea Intake in Japanese Patients with and without Angiographic Coronary Artery Disease. Am. J. Cardiol. 2002, 90, 1150–1153. [CrossRef]
- Chyu, K.-Y.; Babbidge, S.M.; Zhao, X.; Dandillaya, R.; Rietveld, A.G.; Yano, J.; Dimayuga, P.; Cercek, B.; Shah, P.K. Differential Effects of Green Tea-Derived Catechin on Developing versus Established Atherosclerosis in Apolipoprotein E-Null Mice. Circulation 2004, 109, 2448–2453. [CrossRef]
- Tijburg, L.B.; Wiseman, S.A.; Meijer, G.W.; Weststrate, J.A. Effects of Green Tea, Black Tea and Dietary Lipophilic Antioxidants on LDL Oxidizability and Atherosclerosis in Hypercholesterolaemic Rabbits. Atherosclerosis 1997, 135, 37–47. [CrossRef]
- Zeng, X.; Tan, X. Epigallocatechin-3-gallate and Zinc Provide Anti-apoptotic Protection against Hypoxia/Reoxygenation Injury in H9c2 Rat Cardiac Myoblast Cells. Mol. Med. Rep. 2015, 12, 1850–1856. [CrossRef]
- Ranjan, A.; Choubey, M.; Yada, T.; Krishna, A. Immunohistochemical Localization and Possible Functions of Nesfatin-1 in the Testis of Mice during Pubertal Development and Sexual Maturation. J. Mol. Histol. 2019, 50, 533–549. [CrossRef]
- Singh, A.; Choubey, M.; Bora, P.; Krishna, A. Adiponectin and Chemerin: Contrary Adipokines in Regulating Reproduction and Metabolic Disorders. Reprod. Sci. Thousand Oaks Calif 2018, 25, 1462–1473. [CrossRef]
- Ks, P.; B, Q.; Ra, A. Ischemia-Induced Endothelial Cell Swelling and Mitochondrial Dysfunction Are Attenuated by Cinnamtannin D1, Green Tea Extract, and Resveratrol in Vitro. Nutr. Neurosci. 2015, 18. [CrossRef]
- Zheng, X.-X.; Xu, Y.-L.; Li, S.-H.; Liu, X.-X.; Hui, R.; Huang, X.-H. Green Tea Intake Lowers Fasting Serum Total and LDL Cholesterol in Adults: A Meta-Analysis of 14 Randomized Controlled Trials1234. Am. J. Clin. Nutr. 2011, 94, 601–610. [CrossRef]
- Yan, Z.; Zhong, Y.; Duan, Y.; Chen, Q.; Li, F. Antioxidant Mechanism of Tea Polyphenols and Its Impact on Health Benefits. Anim. Nutr. 2020, 6, 115–123. [CrossRef]
- Ahmed, N.A.; Radwan, N.M.; Aboul Ezz, H.S.; Salama, N.A. The Antioxidant Effect of Green Tea Mega EGCG against Electromagnetic Radiation-Induced Oxidative Stress in the Hippocampus and Striatum of Rats. Electromagn. Biol. Med. 2017, 36, 63–73. [CrossRef]
- Zhang, L.; Gui, S.; Wang, J.; Chen, Q.; Zeng, J.; Liu, A.; Chen, Z.; Lu, X. Oral Administration of Green Tea Polyphenols (TP) Improves Ileal Injury and Intestinal Flora Disorder in Mice with Salmonella Typhimurium Infection via Resisting Inflammation, Enhancing Antioxidant Action and Preserving Tight Junction. J. Funct. Foods 2020, 64, 103654. [CrossRef]
- da Costa, R.M.; Fais, R.S.; Dechandt, C.R.P.; Louzada-Junior, P.; Alberici, L.C.; Lobato, N.S.; Tostes, R.C. Increased Mitochondrial ROS Generation Mediates the Loss of the Anti-Contractile Effects of Perivascular Adipose Tissue in High-Fat Diet Obese Mice. Br. J. Pharmacol. 2017, 174, 3527–3541. [CrossRef]
- Youn, J.Y.; Gao, L.; Cai, H. The P47phox- and NADPH Oxidase Organiser 1 (NOXO1)-Dependent Activation of NADPH Oxidase 1 (NOX1) Mediates Endothelial Nitric Oxide Synthase (ENOS) Uncoupling and Endothelial Dysfunction in a Streptozotocin-Induced Murine Model of Diabetes. Diabetologia 2012, 55, 2069–2079. [CrossRef]
- Chen, X.; Qi, J.; Wu, Q.; Jiang, H.; Wang, J.; Chen, W.; Mao, A.; Zhu, M. High Glucose Inhibits Vascular Endothelial Keap1/Nrf2/ARE Signal Pathway via Downregulation of Monomethyltransferase SET8 Expression. Acta Biochim. Biophys. Sin. 2020, 52, 506–516. [CrossRef]
- Najnin, R.A.; Shafrin, F.; Polash, A.H.; Zaman, A.; Hossain, A.; Taha, T.; Ahmed, R.; Tuli, J.F.; Barua, R.; Sajib, A.A.; et al. A Diverse Community of Jute (Corchorus Spp.) Endophytes Reveals Mutualistic Host–Microbe Interactions. Ann. Microbiol. 2015, 65, 1615–1626. [CrossRef]
- da Costa, R.M.; Rodrigues, D.; Pereira, C.A.; Silva, J.F.; Alves, J.V.; Lobato, N.S.; Tostes, R.C. Nrf2 as a Potential Mediator of Cardiovascular Risk in Metabolic Diseases. Front. Pharmacol. 2019, 10. [CrossRef]
- Yang, X.-J.; Liu, F.; Feng, N.; Ding, X.-S.; Chen, Y.; Zhu, S.-X.; Yang, L.-C.; Feng, X.-F. Berberine Attenuates Cholesterol Accumulation in Macrophage Foam Cells by Suppressing AP-1 Activity and Activation of the Nrf2/HO-1 Pathway. J. Cardiovasc. Pharmacol. 2020, 75, 45. [CrossRef]
- Talukder, Md.E.U.; Momen, F.; Barua, R.; Sultana, S.; Yesmin, F.; Islam, M.S.; Bhuiyan, R.H. In Vitro Assessment of Cytotoxic Activity of Hybrid Variety of Momordica Charantia (Bitter Gourd). J. Phytopharm. 2020, 9, 445–448. [CrossRef]
- Oyama, J.-I.; Shiraki, A.; Nishikido, T.; Maeda, T.; Komoda, H.; Shimizu, T.; Makino, N.; Node, K. EGCG, a Green Tea Catechin, Attenuates the Progression of Heart Failure Induced by the Heart/Muscle-Specific Deletion of MnSOD in Mice. J. Cardiol. 2017, 69, 417–427. [CrossRef]
- Ohishi, T.; Goto, S.; Monira, P.; Isemura, M.; Nakamura, Y. Anti-Inflammatory Action of Green Tea. Anti-Inflamm. Anti-Allergy Agents Med. Chem. 15, 74–90. [CrossRef]
- Najnin, R.A.; Shafrin, F.; Polash, A.H.; Zaman, A.; Hossain, A.; Taha, T.; Ahmed, R.; Tuli, J.F.; Barua, R.; Sajib, A.A.; et al. A Diverse Community of Jute (Corchorus Spp.) Endophytes Reveals Mutualistic Host–Microbe Interactions. Ann. Microbiol. 2015, 65, 1615–1626. [CrossRef]
- Ohishi, T.; Kishimoto, Y.; Miura, N.; Shiota, G.; Kohri, T.; Hara, Y.; Hasegawa, J.; Isemura, M. Synergistic Effects of (-)-Epigallocatechin Gallate with Sulindac against Colon Carcinogenesis of Rats Treated with Azoxymethane. Cancer Lett. 2002, 177, 49–56. [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
