6.1.1. Dye Removal by PCL Blends
Some polymers, particularly those with efficient functional groups that are insoluble in water, have been employed as adsorption agents for the removing of dyes and heavy metal ions. Polymers’ ability to remove pollutants is determined not only by their active functional groups, but also by their structure, surface area, and porosity. Because of its limited adsorption capacity, low mechanical qualities, and water-insoluble hydrophobic features, pure PCL is ineffective as an adsorbent. Because of these poor qualities, polymer blends or composites of PCL have been employed as excellent adsorption agents for the elimination of dyes from aqueous solution in place of pure PCL. Blending a hydrophobic polymer (PCL) with functional polymers such as cellulose, chitin, chitosan, lignin, and alginate at varying ratios is significant for enhancing adsorption active sites and lowering costs. When compared to other polymer classes, polymer nanofibers offer unique features like high water permeability, high porosity and surface area. As a result, converting ɛ-caprolactone polymers into PCL fibers is another successful approach for dye removal [
84].
For instance, Guo et al. fabricated novel composite fiber adsorption materials with different mass ratios consisting of PCL and beta-cyclodextrin-based polymer (PCD) by electrospinning. The fiber materials obtained showed exceptional elective adsorption for MB and 4-aminoazobenzene (AAB) solutions. Addition of a PCD constituent to composite fibers improved the mechanical resistance (breaking stress 3.41 MPa for PCL/(50%)PCD) of membranes and altered the sorption uptake because of the molecular structure of the cavity through host–guest interaction. The specific surface area values rose substantially with increasing of PCD constituent in the composite fibers, reaching 11.5 m
2/g for PCL/(50%)PCD composite fibers (7.50 m
2/g for neat PCL fibers), suggesting the development of additional anchoring sites aiding the subsequent adsorption of dye compounds. The dye removal efficiency reached from 7.44 mg/g to 24.1 mg/g for AAB and from 3.89 mg/g to 11.2 for MB. Because of the excellent stability and selectivity of the adsorption process, the currently produced beta-cyclodextrin-based composite fibers (average diameter of 200–400 nm) have shown potential large-scale uses in dye capture and wastewater remediation [
85].
Many investigations are being conducted to find effective and ecologically acceptable techniques of degrading phenols and their derivatives. In order to create novel types of biocatalytic systems capable of removing bisphenol A, an attempt was made to generate PCL-chitosan electrospun materials for tyrosinase immobilization. SEM scans validated the shape of the fibers and enzyme deposition. After enzyme deposition, fiber diameter increased significantly from 344±121 nm to 689±365 nm, demonstrating enzyme adhesion to the fiber surface. The constructed system was used in batch tests including the biodegradation of bisphenol A under different remediation circumstances. Over 80% of the pollutant was eliminated after 120 minutes of processing at temperatures ranging from 15 to 45 degrees Celsius and pH levels ranging from 6 to 9, using solutions containing up to 3 mg/L. After 30 days of storage, the immobilized biomolecule tyrosinase retained around 90% of its original activity (60% for free enzyme) and was still capable of removing more than 80% of bisphenol A even after 10 repeated usages [
86].
Chitosan-based nanofibrous membranes for dye adsorption from solution were created using hybrid electrospinning of chitosan (CS) and PCL or PCL-block-poly(ethylene glycol) (PCL-b-PEG or abbreviated with P) amphiphilic copolymers. PEG segments were shown to be capable of controlling the secondary fiber and core-shell structure. The addition of PEG component enhanced the compatibility of PCL and CS, decreased CS loss because of intermolecular hydrogen bonds formed between CS and PCL-b-PEG copolymer, and increased membrane stability. The adsorption studies revealed that the anionic CR dye adsorption process on CS-based membranes fits well with the pseudo-second order and the Langmuir isotherm models. The CS-based membranes (CS/P
5K, diameter of ~807.89 nm) with a PEG molecular weight of 5 kDa had high reusability, with highest adsorption capacity of 291.55 mg/g computed using the Langmuir model. The CS/P
5K removal effectiveness maintained at 90.18% and dropped to 80% after 10 repetitions, demonstrating that the CS/P
5K nanofibrous membrane can be reused for dye removal. As a result, CS/PCL/PEG nanofibers appear to be promising membranes for water purification [
87].
Amphiphilic PCL-PEG-PCL/Bentonite A2 nanocomposites were synthesized by in situ ROP of
ε-CL in the existence of PEG chains, catalyzed by a intercalated Algerian Bentonite tetrabutylammonium hydrogen sulfate (TBHSA) (A1). For this purpose, sodium cations in bentonite were exchanged by tetrabutylammonium cations [(C
4H
9)
4N
+]. The XRD and transmission electron microscopy (TEM) measurements revealed that the silicate sheets in the PCL-PEG-PCL/layered silicate nanocomposites were partly exfoliated. The nanocomposite (A2) was employed to efficiently remove MB dye from aqueous medium. As the mass of the nanocomposite rose, so did the dye’s adsorption capacity, which reached an ideal value of 0.13 g adsorbent at pH = 6.8. Calculating an adsorption capacity (q
max) of 600 mg/g within 90 minutes, the Langmuir isotherm provided the best match [
88].
Karagöz et al. designed and manufactured electrospun PCL nanofibers (NFs) adjusted with TiO
2 and Ag NPs. The as-prepared PCL/TiO
2-Ag NFs mats were created using one-step electrospinning and used for three separate applications: (a) reusable surface-enhanced Raman spectroscopy (SERS) substrate for non-qualitative analysis to track pollutants, (b) photocatalyst for organic pollutant degradation, and (c) antibacterial agent to kill bacteria. For the detection of MB dye, PCL/TiO
2-Ag NFs performed to be a highly efficient SERS platform with a detection limit of 10 nM (MB). The photocatalytic degradation of the probe analytes MB under UV irradiation was completed in less than 180 minutes with degradation efficiency 93-95% using a PCL/TiO
2-Ag NFs nanocatalyst [
89].
A membrane having a greater hydrophilic nature is predicted to be more fouling resistant. The biodegradable nature of PCL and the antifouling property of TiO
2 were combined in a composite and used in the construction of water purification membranes. TiO
2 nanoparticles’ strong association boosted the stiffness of the supramolecular polymeric chain and improved the thermostability of the composite membranes. Porosity and pore size must also be evaluated to establish the membrane’s appropriateness for separation applications. To promote pore development in the membranes, PEG is supplemented to the polymeric solution. The tensile strength of the membranes (2.5 N/mm
2) was increased by combining PEG with PCL and including TiO
2 nanoparticles. The optimal PEG and TiO
2 compositions were 6.24 and 1.0 wt% in PCL-TiO
2-PEG membrane, respectively. After of bovine serum albumin filtering, the antifouling property of TiO
2 gave rise to roughly 90% flux recovery for the PCL-TiO
2-PEG membrane when compared to the PCL-PEG membrane. For membranes in water remediation uses, the PCL-TiO
2 combination would be a superior option [
90].
Immobilization of particular bacteria onto electrospun nanofiber webs of PCL was used to create innovative biocomposite materials. After adequate numbers of bacteria were immobilized on electrospun nanofiber webs, equivalent web samples were used to evaluate their ability to remove the Setazol Blue BRF-X dye. Both PCL/bacteria and PLA/bacteria webs eliminated the Setazol Blue BRF-X dye within 48 hours at each dose investigated (50, 100, and 200 mg/L), and their removal efficiency (87.88% and 89.57% for 50 mgL
-1 of dye concentration) were extremely similar to free bacterial cells. The samples’ Q
eq values were in the same order: 119.56 mgg
-1 for free bacteria, 109.75 mgg
-1 for PCL/bacteria web samples, and 112.15 mgg
-1 for PLA/bacteria web samples. The bacteria immobilized webs were then evaluated for 5 reuses at starting dye concentration of 100 mg/L and found at the end of the test to be potentially reusable (removal capacity of PCL/bacteria:95.36%), with higher bacterial count immobilization and faster removal of dyes. Overall, their findings indicate that electrospun nanofiber webs are viable platforms for bacterial integration and that webs immobilized with bacteria can be employed as starting inoculants for the removal of textile dyes from aqueous medium [
91].
Polydopamine (PDA) nanoparticles have a high adsorption capacity and can be utilized as an adsorbent. On the other hand, nano-sized PDA adsorbents are prone to aggregation and so have severe limitations in the adsorption field. To address this issue, Wang et al. produced the PCL/PEO copolymer by electrospinning and blended it with PDA. They discovered that modifying the surface and porosity of the produced nanofibers enhanced their adsorption capability. The PCL/PEO@PDA composite illustrated a high number of active sites for MB and MO adsorption. It is important to note that the PCL/PEO@PDA-45 composite as an adsorbent showed a better matched adsorption capacity for the anionic dye MO (60.22 mgg
-1) than that of the cationic dye MB (14.85 mgg
-1). Furthermore, the PCL/PEO@PDA blends were reusable numerous times and performed well as adsorbents. The removal effectiveness of the PCL/PEO@PDA adsorbent on MO dye reduced from 99% to 93% after eight reuses, confirming the adsorbent’s outstanding stability and recyclability [
92].
Self-assembly nanohybrid structures GO@PCL, CNT@PCL, and GO-CNT@PCL produced by wet electrospinning-aided with a 3-dimensional fibrous PCL network surrounded by graphene oxide (GO) layers on which carbon nanotube (CNT) brushes were stuck. They studied the influence of surface chemistry on the sorption ability of fluffy scaffolds nanohybrid materials towards water soluble organic dyes such as MB and MO. Given that such a cationic MB dye may interact with aromatic and oxygenated areas of composites, all of the compounds perform quite well in terms of MB removal. GO-CNT@PCL outperformed the other nanohybrid samples, with a sorption capacity of 400 mgg
-1 and an elimination efficiency of almost 100%. In the instance of MO removal, GO-CNT@PCL demonstrated 100% effectiveness with more than 80 mgg
-1 adsorption in 6 h, likely due to the combination of wettability by GO and the amount of active sites by CNTs [
93].
Three PEG/PCL copolymers were prepared with various topologies but the same mol ratio of PEG to PCL. Different techniques were used to characterize these compounds, which included di-block (Di-PEG-PCL), tri-block (Tri-PEG-PCL), and multi-block (Multi-PEG-PCL) copolymers. The influence of topology on the efficiency of MB removal from aqueous medium was researched. The multi-block copolymer outperforms other topologies in terms of adsorption efficiency. The regression coefficient data showed that the Freundlich isotherm (R
2= 0.9840) accurately describes the MB adsorption by copolymers [
94].
6.1.2. Dye Removal by PCL/Metal Oxide Composites
Metal oxides are added to PCL to improve dyeability, thermal stability, adhesion, and other properties. Because it is miscible with a wide range of metal oxides, flexible, biocompatible, and mechanically suitable, it has the exceptional ability to enhance the characteristics of other materials, which results in a wide range of applications.
The electrospinning method was used to create high surface area porous PCL membranes containing Fe
3O
4 nanoparticles. In the existence of H
2O
2 and UV light, they were tested as degradation catalysts in Fenton reactions to breakdown cationic MB dye. The results showed that the fiber catalyst system (fiber diameter: 713 ± 139 nm for 15% PCL) performed well in terms of MB removal (99% MB) and was functional after 6 cycles (96% MB). PCL membranes may interact strongly with organic compounds because to their hydrophobic surfaces. The excellent catalytic properties of the composites are attributable to the synergy of the porous surface (pore size spans from 2.43 to 6.56 μm) and the implanted Fe
3O
4 nanoparticles. It also has the benefit of being environmentally safe and readily separated without the use of an external magnetic field [
95].
PCL nanofibrous membranes integrated with hydroxyapatite (HAP) adjusted with varying concentrations of Cu(II) ions were created. A variety of spectrometric, microscopic, and surface science methods were used to describe the architectures, morphologies, and surface roughness’s of the built (Cu-HAP@PCL) membranes. Examination of the surface morphology showed that these membranes present as web fibers with different diameters ranging from 0.45–1.5, 0.45–1.21, 0.21–1.5, 0.3–1.1 to 0.2–0.9 μm; however, the average roughness increased exponentially with increasing Cu(II) ion content. The maximum degradations of MB dye were achieved after 70 minutes of visible light irradiation utilizing the constructed Cu-HAP@PCL membranes, with values of 88.6%, 89.4%, 91.0%, 91.1%, and 94.3%. The degradation mechanism can be summarized by the following reactions.
Hydroxyl ions (OH*) and superoxide scavengers (O
2*
−) are the most efficient ions in the destruction of MB dye. Because these ions have a strong chemical activity while interacting with MB molecules, small fragments of molecules may be formed [
96].
Elias et al. investigated the efficiency of a PCL-organically modified montmorillonite clay (Cloisite 10A) nanocomposite membrane in the removal and degradation of rhodamine B from aqueous systems under VIS light (50 W). A nanocomposite containing 9 by weight of Cloisite 10A effectively converts rhodamine B into environmentally friendly products in less than 3 hours. C10A’s adsorptivity and -OH groups on the surface promote electron-hole pair separation and improve photocatalytic activity [
97].
The feasibility of immobilizing TiO
2 nanoparticles (NPs) on PCL beads and foams for the photodegradation of textile dyes in wastewater is discussed in this work. PCL foams were created by treating PCL beads in supercritical carbon dioxide in an ecologically friendly manner. Within 24 hours of exposure to sun-like illumination, PCL beads and foams filled with TiO
2 NPs were utilized as photocatalysts to degrade the textile dyes C.I. acid orange 7 and C.I. basic yellow 28 from aqueous solutions. Unlike the PCL beads, the PCL foams completely discolored the dye solution after 24 hours of illumination. PCL foams also had exceptional buoyancy that lasted longer than four weeks. Furthermore, their photocatalytic activity was sustained after three cycles of photodegradation, demonstrating that the buoyant photocatalyst outperformed the non-buoyant PCL beads in terms of photocatalytic activity. As a result, the PCL foams with immobilized TiO
2 nanoparticles have high photocatalytic activity and maintained floatability, making them a feasible choice for practical usage as a floating photocatalyst in textile industry wastewater management [
98].
Geravand and his colleague [
99] developed a biodegradable membrane made of PCL/MXene nanosheets (Ti
3C
2(OH)
2). Using hydrophilic MXene as the nanofiller resulted in significant improvements in biodegradability, water permeability, and antifouling characteristics. The findings demonstrated that the PCL membrane combined with 4 wt% MXene displayed the maximum hydrophilicity and pure water permeance (PWP), which were nearly four times higher than the neat PCL membrane (5.99 vs 1.43 L/m
2.h.bar). Furthermore, the membrane containing 1% MXene exhibited 98.92% rejection of crystal violet ([CV]=50 ppm). All three mechanical features improved with rising the MXene concentration up to 3wt% (elastic modulus from 19.87±0.07 to 36.61±0.52 MPa, tensile strength from 5.14±0.27 to 10.51±0.33 MPa, and elongation at break from 316±6 to 359±7%), however they declined with a continual rise in MXene concentration. The mechanical performance of membranes is affected by a variety of parameters, including MX distribution uniformity, polymer aggregation, and augmented membrane porosity [
99].
As photocatalytic materials, neat TiO
2 nanoparticles (TiO
2 NPs) have limited reusability. To achieve effective photocatalysis, certain high surface area supports are added to the TiO
2 loading. Porous electrospun PCL fiber mats were utilized in the study to support the capacity and dispersion of TiO
2. The porous PCL mats can provide a broad contact surface area for excellent TiO
2 photocatalytic activity. Furthermore, the inclusion of rectorite (REC) might lower fiber diameters, induce stabilization of the anatase phase, and increase specific surface area, which could be favorable to photocatalysis. More notably, REC improved the performance of porous PCL/TiO
2 mats, resulting in high photocatalytic degradation. The findings suggested that porous PCL/TiO
2/REC mats might be good photocatalysts for the degradation of organic dyes like Rhodamine B. After 3 hours, the crimson solution turned translucent while the mats became red. At the end of the experiment, the photocatalytic activity of TiO
2 NPs and fibrous mats all achieved 98%. In the first 45 minutes, the photocatalytic effectiveness of PCL/TiO
2/REC mats was greater than that of neat TiO
2 NPs, confirming that REC expedited the photocatalytic process [
100].
The solution casting approach to create TiO
2 nanoparticles embedded polymer films from two biodegradable polymers such as cellulose acetate (CA) and PCL was used. The photo-degradation rate rose with rising content of TiO
2 NPs in CA and PCL films. TiO
2-PCL films had the highest photocatalytic efficiency of the two types of polymer materials tested. After 3 hours of UV-A light exposure, PCL film combined with 5% TiO
2 had the greatest MB degradation rate (72%), followed by 5% CA film, with 53% dye degradation. As a result of the significant quantity of NPs around the pores and cracks on the film, the porous structure of TiO
2 in PCL-TiO
2 film could produce high MB degradation [
101].
Solution casting was used to create the PCL and Fe
2O
3/PCL nanocomposites sheets/films. The morphological analysis revealed that the Fe
2O
3 nanoparticles (250 nm) were well disseminated and lodged inside the PCL matrix. The thermal stability of Fe
2O
3/PCL was poorer than that of pure PCL, which might be attributed to the activity of Fe
2O
3 as a catalyst in the thermal degradation of PCL. According to the DSC investigations, the crystallization temperature of the Fe
2O
3/PCL was somewhat higher than that of pure PCL. The polarized optical microscopy studies revealed that the size of Fe
2O
3/PCL spherulites was less than that of pure PCL. The UV-Vis spectra demonstrate that as the irradiation period and the number of Fe
2O
3 nanoparticles in the nanocomposites increase, so did the photodegradation of rhodamine B (RhB) dye. Within 2 and 10 hours, pure PCL photodegraded between 24 and 72% of the RhB dye, while Fe
2O
3 (6 wt%)/PCL composites degraded around 72 and 98% of the dye, respectively [
102].
A simple hydrothermal approach was used to create hydroxyapatite (HAP) nanorods that were hydrophobically modified using lauric acid (LA). Pickering emulsion template technique was used to load HAP compound modified by LA (RHAP) and magnetite (m, Fe
3O
4) NPs as emulsifiers on PCL microspheres. The structure, constituents, and morphology of synthesized pure HAP nanorods (hydrophilic, water contact angle 11.7
o) and m-RHAP-PCL microspheres (hydrophobic, water contact angle 111.3
o) were analyzed by XRD, SEM, FTIR, and TGA. MG was used as a model dye to study the adsorption capability of m-RHAP-PCL microspheres. The highest adsorption capacity (q
max) of m-RHAP-PCL was 609 mgg
-1, and its relative adsorption performance was greater than that of pure HAP, showing that it has better MG adsorption potential. The values of R
L (from 0.157 to 0.263, which were much smaller than 1) and 1/n (0.204-0.290, which were less than 0.5) suggested that the adsorption process had occurred on its own. Moreover, the adsorbent recovers easily in magnetic fields and its ability to remove MG remains unchanged over four cycles, demonstrating the reusable nature and stability of the m-RHAP-PCL adsorbent for MG sorption [
103].
A chitosan/PCL-block poly(ethylene glycol)/SiO
2 aerogel@polydopamine (CS/PCL-b-PEG/SA@PDA) membrane was developed for the adsorption and removal of Congo red (CR) dye. Using simultaneous electrospinning electrospray technology, SiO
2 aerogel with nanoporous network architecture was immobilized into multicomponent polymer fibers, followed by PDA modification. The composite adsorbent exhibited a highest CR adsorption capacity of 598.8 mgg
-1 and showed remarkable reusability. Because of the significant amount of NH
2, COO
-, and OH groups in their structures and amphiphilic characteristics, CS and PCL-b-PEG were chosen as adsorbent template substances in this research [
104].
A mat of graphene oxide (GO) nanosheets was employed to dope fine powder of magnetite nanoparticles (MNPs) with varying amounts of copper ions (Cu(II)). These compositions (Cu
xFe
3-xO
4/GO) were fully integrated into PCL electrospun nanofibrous membranes. The morphological characteristics of the membranes revealed that diameters were varied with Cu(II) ions variation, starting at 0.35-1.06 μm and 1.8-3.9 μm without Cu, being 0.19-0.45 μm and 0.75-1.42 μm for the greatest contribution of Cu, while GO scattered grains of 0.56-1.5 μm were observed. The toughness at the highest additional dopant was 4.69 ± 0.29 MJ/m
3, while the tensile strength was adjusted to around 8.96 ± 0.45 MPa. These nanofiber membranes’ ability to capture MB dye from aqueous medium was also tested. The created nanofiber membrane could absorb 95.1% of the MB after 36 min of contact time, and the composition was still stable after 5 removals with a performance of about 90.1% for the 0.8Cu-MNPs-GO@PCL [
105].
Electrospinning technology was used to create high surface area porous PCL membranes with Fe
3O
4 NPs. SEM, XRD, IR spectroscopy, magnetometry, and strain-stress curves were used to investigate the morphology, chemical composition, magnetic and mechanical features. In the presence of H
2O
2 and UV light, they were tested as catalysts in Fenton reactions to deteriorate MB. The results showed that the fibrous catalyst system performed well in terms of MB removal (99% MB) and was usable after 6 cycles (96% MB). The composites’ outstanding catalytic properties are caused by the interaction of embedded Fe
3O
4 NPs with the porous surface. It also has the advantage of being environmentally friendly and easily separated without the use of an outside magnetic field [
106].
Ring-opening polymerization was used to create a PCL/Fe
3O
4 magnetic nanocomposite (PCL/Fe
3O
4 MNC) in this research. Then, as a new adsorbent, PCL/Fe
3O
4 MNC was utilized to capture remazol brilliant violet 5R (RBV 5R) from aqueous solution. The response surface methodology (RSM) was employed to maximize the adsorption procedure and define the optimum conditions. At a contact time of 168 minutes, a PCL/Fe
3O
4 MNC amount of 0.40 g and an RBV 5R concentration of 7.18 mgL
-1, 95.40% RBV 5R removal was obtained. ATR tests revealed that the chemical bonding in PCL/Fe
3O
4 MNC did not change significantly before and after the adsorption method [
107].
PCL composite was used not only for dye removal but also for oil separation. By incorporating SiO
2 aerogel, exceptional superhydrophobic PCL membranes with an alternating hierarchical micro-nanometer structure were created. When the SiO
2 aerogel content in the PCL membrane was 0.5% (PCL/SiO
2-a0.5), the maximum water contact angle (WCA) of 166.8±1.5° was acquired, which was greater than other published polymer-based membranes. The surface energy of the PCL membrane was reduced by SiO
2 aerogel. The internal structure of the PCL/SiO
2-a0.5 membrane, which was made up of micro-nano spheres and fibers, increased the porosity of the membrane, allowing for more adsorption area for water-in-oil separation. In the meantime, the PCL/SiO
2-a0.5 membrane demonstrated exceptional chemical stability, self-cleaning ability, and reusability [
108].
Uzunok and Sönmez improved the hydrophobicity of PCL by incorporating different silane-based cross-linkers such as tris [3-(trimethoxysilyl)propyl] isocyanurate, tetraethyl orthosilicate, and 1,8-bis(triethoxysilyl)octane for the removal of oil from aqueous system. The obtained sorbents showed high and quick absorption properties in the range of 5450-51000 mg.g
-1. After 10 cycles of oil sorption, the sorbents demonstrated high oil sorption capacity and reusability without any loss [
109].
PCL blends/composites have an important place not only in dye and heavy metal removal, but also in oil cleaning. The use of oil-soaked adsorbents in the recovery and clean-up of oil spills is gaining importance day by day. Recently, magnetic nanoparticle (MNP)-based absorbers have attracted interest as a new method both to treat oil spills and to reduce the amount of labor required. Eom et al. performed the synthesis of MNP embedded PCL adsorbent, which can be easily collected under magnetic field, has oleophilic and environmentally friendly properties. MNP embedded PCL adsorbent (MNP/PCL) exhibited perfect Arabian light (AL) crude oil absorption capacity (45.7 g/g) and reduced the absorption time of oil-immersed sorbent because of its electrospun structure. In the future, such sorbents may be applicable in large scale oil spill projects [
110].
6.1.3. Heavy Metal Removal by PCL Composites/Blends
PCL is one of the promising compounds for manufacturing biocompatible membranes due to its outstanding structure and superior mechanical and physical features. PCL nanocomposites have also found usage in removing of heavy metal ions from aqueous system. Bio-nanocomposites CD-PCL-TiO
2 was utilized as an adsorbent material in removing of Pb(II) ions from wastewater after a two-step process of sol gel synthesis of TiO
2 particles and polymer solution blending. The highest removal of Pb(II) ions was 98% at pH 9.7, concentration 10 ppm, and dosage of 0.005 g. This method has a significant advantage in that it does not introduce any secondary pollutants into the treated water [
111].
Liakos et al. mixed the solutions of 8.42% by weight PCL in dichloromethane with sodium alginate (SA) (5, 10, 15, 20, 25 or 30% by weight based on PCL) and the resulting films were placed in a heat extruder to form PCL/SA filaments.
The goal of this study is to develop new composite filaments relying on thermoplastic PCL polymers, which are water resistant and compatible with 3D printing technologies, to be used in environmental remediation by removing toxic metal ions. The interplay and stability of SA with PCL was because of the creation of hydrogen bonds between the former’s hydroxyl groups and the latter’s carbonyl groups. The resulting composite filaments with 30%SA had a highest adsorption capacity of around 90 mgg
-1 for heavy metals such as copper(II) ions in aqueous system [
112]. It was shown that the pure PCL filament did not absorb any Cu ions and all the SA-containing filaments showed Cu ions adsorption capabilities.
Electrospinning was used to create nanostructured membranes of cellulose acetate (CA) with varying PCL loadings (0%, 10%, 20%, and 30%) in removing of Pb
2+ ions from aqueous medium. Using instrumental techniques revealed that the introduction of PCL into CA resulted in a finer fiber radius, increasing the membrane’s surface area and thus increasing the number of adsorption sites. According to the findings, Pb
2+ ion adsorption capacity was increased from 43.96 mgg
-1 of pristine CA membrane to 70.50 mgg
-1 of CA/10%PCL filled membrane. Furthermore, the findings of this experiment agreed best with the pseudo second-order kinetics and Freundlich isotherm, both of which accurately described the adsorption process [
113].
Coaxial electrospinning was used to create core-shell-structured CA-PCL/CS nanofibers with outstanding hexavalent chromium (Cr(VI)) removal performance. In an acidic environment, the influence of the core/shell ratio on the adsorption ability was investigated. The findings demonstrated that when compared to the CS powder adsorbent, all core-shell-structured fibrous demonstrated improved adsorption and durability. CA-PCL/CS fibrous with a core/shell ratio of 0.442 absorbed 126 mgg
-1 of Cr(VI) ions at RT. Adsorption kinetics showed that chemisorption was the rate-limiting step due to significant electron transfer, sharing or exchange between CA-PCL/CS nanofibers and Cr(VI) ions [
114].
Benhacine et al. combined PCL with silver montmorillonite (Ag-MMT) to produce nanocomposite membranes. SEM analysis revealed that the synthesized membranes had homogeneous sponge microstructures. Gradual incorporation of nanoparticles (2, 3, and 5 wt%) into the PCL matrix resulted in a significant increase in membrane thickness. The authors of the current study administered the treatment to actual wastewater samples and documented a decrease in the concentrations of nitrates by 15.12% and sulphates by 45.61%, along with significant reductions in the levels of Pb, Zn, and Cd, by 41.38%, 53.57%, and 61.11%, respectively [
115].
Irandoost et al. prepared nanofiber nanocomposite of PCL adsorbent modified by binary fillers such as nanoclay and zeolite clinoptilolite NPs to improve the adsorption properties. Lead removal studies have shown that each component in the nanofibrous adsorbent has a synergistic effect on the Pb(II) adsorption capacity (19.92 mg/g). In thermodynamic studies, negative ΔG values (between -0.173 and -3.003 kj/mol) indicated spontaneous Pb(II) adsorption in all temperatures and concentrations [
116].
Using the electro-spinning method, a composite membrane based on PCL/cellulose nanofibers (CNF) with various ratios was fabricated with the goal of developing organic membranes with excellent mechanical features for removing impurities from tap water. The resulting green and environmentally friendly membranes exhibited structures containing nanometric porosity. Water quality variables evaluated after filtration with the PCL/CNF membranes revealed 100% turbidity removal, 100% conductivity and heavy metal removal ranging from 75% to 99% for iron and chromium [
117].
6.1.4. Adsorption Mechanism of Dyes/Metal Ions onto PCL Composites/Blends
Water-insoluble homo-PCL polymers are not very effective against environmental pollution such as heavy metal ions and dyes due to their low adsorption efficiency, low pore volumes, low pore sizes and high hydrophobic properties. Instead, PCL blends/composites are preferred as effective adsorbents for removing dyes and metal ions from an aqueous medium [
118,
119]. The blend of a polymer including functional groups with a hydrophilic polymer like cellulose, chitosan, and chitin in various ratios is crucial for enhancing hydrophilicity, raising adsorption active sites, and decreasing cost. Understanding the adsorption mechanism of dyes or heavy metal ions on PCL adsorbents is critical for optimizing the adsorption method and improving the efficiency of PCL nanofibers in dye removal. The adsorption of dyes or metal ions on the surface of nanofiber materials is controlled by solution conditions (such as pH and temperature), nanofiber nature (like porosity, area of surface, functional moieties, and surface morphology), and dye nature (like neutral, cationic, and anionic forms, and molecular size of dyes) [
120,
121]. The adsorption mechanism may be unclear due to the variety of factors influencing dyes or metal ions adsorption onto the surface of nanofibrous. It is essential to carry out isotherm, kinetic, thermodynamic, and spectroscopic studies, in addition to looking at the impact of pH in order to gain a clear and comprehensive understanding of the adsorption mechanism. According to various studies [
122,
123,
124], dyes or metal ions removal from effluents using pure PCL, PCL blends, and PCL composites are most likely accomplished through hydrogen bonding, van der Waals (VDW) forces, stacking, hydrophobic interactions, electrostatic interactions, and pore filling. The interactions are influenced by the type of functional moieties on the surface of PCL nanofibrous, their morphology, and the type of filler added to the nanofibrous. These interactions, which operate concurrently to varying degrees, can be utilized to explain the adsorption mechanism of dyes and metal ions [
84,
125,
126,
127].
Draoua et al. investigated the MB dye removal adsorption performance of a PCL-PEG-PCL/Bentonite nanocomposite [
88]. They came to the conclusion that the sorption mechanism is dependent on the hydrophobic interaction between the dye and the copolymer’s hydrophobic block (PCL), as well as the electrostatic interaction between the surface (the SiO- and AlO-) and the edge moieties of bentonite and the dye’s sulfonic group.
Alrafai et al. [
96] studied the degradation mechanism of MB on the surface of PCL nanofiber membranes associated with hydroxyapatite (HAP) doped with varying quantities of Cu(II) ions (Cu–HAP@PCL). The degradation efficiency of MB dye on the fabricated Cu–HAP@PCL membranes indicated that the maximum degradation of 94.3% was accomplished after 70 min exposure to visible light. They discovered that the degradation efficiency is primarily increased by increasing the Cu contribution and the lengthening of the irradiation time [
96].
Chen et al., for example, used FTIR and XPS techniques to investigate the adsorption mechanism of CR dye on the surface of CS/PCL-b-PEG/SA@PDA membrane. They came to the conclusion that dye adsorption was accomplished through a combination of interactions like hydrophobic, hydrogen bond interactions (between the adsorbent’s amine and hydroxyl groups and the CR’s sulfonate groups), and adsorption space on porous membrane [
104].
Pekdemir et al. suggested that there are two possible mechanisms for dye adsorption on the adsorbent surface. They are chemical and physical interactions between the dye compound (RBV-5R) and the polymer (PCL/Fe
3O
4) nanocomposite. The hydrogen bonding, π–π interactions, and VDW interactions between the adsorbing agent and the dye compound are thought to control the adsorption rate in the model [
107].
Hussain et al. crosslinked tannin (TA)-reinforced 3-aminopropyltriethoxysilane (APTES) with PCL fabricated via electrospinning and investigated colorimetric performance of membrane for Fe
2+/3+ ions. They discovered that Fe ions bind to the crosslinked composite membrane due to FeTA complexation to form PCL-FeTA-APTES. According to the results of adsorption filtration, PCL-FeTA-APTES membrane is reusable and has higher MB dye adsorption (32.04 mgg
-1) than PCL-TA-APTES membrane (14.96 mgg
-1). This finding showed that the adsorption mechanism is influenced by high adsorption sites on the PCL-FeTA-APTES membrane, which allows the weak π-π interaction and electrostatic attraction between the cationic dye compounds and anionic adsorption sites of the membrane [
128].
Figure 5 outlines adsorption mechanisms of heavy metal ions and dyes onto PCL-blends and PCL-composites.
Lee et al. prepared coffee/PCL composite filters from coffee grounds and PCL and utilized them to eliminate Cu(II) ions from aqueous system [
129]. They discovered that for 50 and 100 M Cu(II) ions, the removal efficiency of coffee/PCL composites was 96.6% for 4 hours (q
max=25.91 mg/g). All samples’ adsorption processes exhibited both monolayer and multilayer adsorption characteristics. The adsorption of Cu(II) ions was attributed to the strong binding or interaction between adsorbent and adsorbate.
In the study of Ramírez-Rodríguez et al., the hybrid membrane of PCL-whey protein isolate (PCL-WPI) adsorbed significant amount of Cr in just under 60 minutes because of abundance of adsorption sites on the adsorbing agent surface. However, the adsorption of Cr dropped significantly with time because of occupation of the active sites of the membrane and adsorption equilibrium was reached after 3.5 h [
130].
The dynamic elimination of arsenic from aqueous medium with an adsorption membrane composed of an iron-intercalated montmorillonite-filled PCL matrix (Fe-MMT/PCL) was performed by Pena et al. [
131]. According to parametric studies, longer breakthrough times are associated with a low flow rate (20 mLmin
-1), a low starting inlet concentration (2 ppm), and a thick nanofiber membrane (0.75 mm).
Composite membranes with functionalized fillers are being investigated for selecting adsorption. Carbon Quantum Dots-Polyacrylonitrile(PAN)/PCL nanocomposite membranes are prepared by electrospinning and are designed for Cu(II) adsorption. The maximum adsorption capacity of a nanofiber mat with respect to contact time was 63.45 mgg
-1, with a highest adsorption efficiency of 90.74%. CQD in PAN and PAN/PCL membrane magnified the fiber size distribution from 50-100 nm to 150-250 nm, increasing the hydrophilicity of the PAN/PCL membrane. The physical adsorption method, which involves VDW forces and hydrogen bonds between adsorbent and adsorbate, governs the adsorption behavior [
132].
The surface chemistry of the cellulose acetate (CA)/PCL electrospun fibers immobilized wit the novel mercury-favored organic dye (NF06) sensor was discovered to effectively facilitate the sensor’s fluorescence resonance energy transfer (FRET). Following Hg(II) chelation, both mobile and immobilized NF06 carried out FRET via a ring-open mechanism. Since the thiorhodamine-6 G acceptor stayed in a cyclic spirolactam in the lack of Hg(II), the FRET process was found to inhibit. However, due to the favorable electrostatic interactions between Hg(II) and the N- and S-atoms of NF06, an NF06:Hg(II) complex could easily form once Hg(II) was present. Consequently, the thio-R6 GH evolved from a ring-closed to a ring-opened spirolactam version [
133].
Bernhardt et al. [
134] studied the ability of PLLA to enhance the adsorption capacity of PCL in removing Rose Bengal from aqueous system. Solid samples of the PLLA-PCL-PLLA system were discovered to quickly eliminate over 90% of Rose Bengal from aqueous medium, resulting in the fully vanishing of the distinctive pink color. Rose Bengal was also effectively removed from water by solutions of the copolymers in CH
2Cl
2. Large inclusion formation constant (K
i) values ranging from 1.0x10
5 to 7.9 x10
5 M
-1 were obtained, and an average adsorption capacity of 6.2x10
-7 mol/g polymer was determined. The increased adsorption capacity was attributed the hydrophilicity of co-polymer because of the PLLA [
134].
As a result, it was found that the formation of novel functional groups that increase the number of adsorption sites on the nanofibrous surface, increases the adsorption capacity of polymer nanofibrous when they are combined with one or more polymeric materials. Additionally, for describing the adsorption process of cationic, anionic dyes and heavy metal ions on the surface of blends and composites of PCL, the Langmuir and PSO models were the best isotherm and kinetic models.
Table 3 and
Table 4 give some examples of PCL blends and composites for removing dyes and toxic metal ions from aqueous system, but it is not easy to compare them. Because the results vary greatly depending on experimental conditions like temperature, initial concentration, adsorbent amount, contact time, and pH. As a result, PCL blends and composites with high adsorption capacity were prepared and studied.
PCL-Blends/Composites |
Time |
Dyes |
Adsorption Capacity, mg.g-1
|
Ref. |
PCL/(50%)PCD |
2h |
MB |
11.2 |
[85] |
CS/P5K Nanofibrous Membranes |
2h |
CR |
291.55 |
[87] |
PCL-PEG-PCL/Bentonite A2 |
1.5h |
MB |
600 |
[88] |
Bacteria/PCL Webs |
48h |
Setazol Blue BRF-X |
109.75 |
[91] |
PCL/PEO@PDA-45 |
45h |
MO |
60.22 |
[92] |
GO-CNT@PCL |
6h |
MO |
80 |
[93] |
Tri-PEG-PCL |
2h |
MB |
193.51 |
[94] |
Multi-PEG-PCL |
2h |
MB |
256.01 |
[94] |
m-RHAp-PCL Microspheres |
55h |
MG |
609.76 |
[103] |
CS/PCL-b-PEG/SA@PDA-24 |
24h |
CR |
598.8 |
[104] |
PCL-FeTA-APTES |
- |
MB |
32.04 |
[128] |
PCL-BIX80 |
2h |
MB |
79 |
[135] |
PCL-BIX80 |
2h |
BG |
254 |
[135] |
PCL/PEI/TTL |
8h |
MG |
36.5 |
[136] |
PCL-Blends/Composites |
Time |
Heavy Metal Ions |
Adsorption Capacity, mg.g-1
|
Ref. |
PCL/30%SA Filaments |
30 days |
Cu(II) |
93.3 |
[112] |
CA/10%PCL Membrane |
6h |
Pb(II) |
70.50 |
[113] |
CA–PCL/CS |
? |
Cr(VI) |
126 |
[114] |
PCL/Clay/Zeolite |
2h |
Pb(II) |
19.92 |
[116] |
Coffee/PCL |
4h |
Cu(II) |
25.91 |
[129] |
CQD/PAN/PCL |
? |
Cu(II) |
63.45 |
[132] |
10%PCL/5%Clay Fiber |
72h |
Cd(II), Cr(III), Pb(II) |
29.59, 27.23, 32.88 |
[137] |
PCL-CuHCF |
40 min |
Cs(I), Co(II) |
178.7, 85.06 |
[138] |
PCL/Mg micromotor |
3 min |
Ag(I) |
0.635 |
[139] |
Fe-MMt/PCL |
6h |
Hg(II) |
14.25 |
[140] |
CMKC-coated PCL scaffolds |
1 min |
Ca(II) |
2.186 |
[141] |
TPCL |
30 min |
Pb(II), Cd(II) |
10.27, 5.81 |
[142] |