Preprint
Article

Multi-granulation double fuzzy rough sets

Altmetrics

Downloads

107

Views

116

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

11 September 2023

Posted:

13 September 2023

You are already at the latest version

Alerts
Abstract
Based on the definition of double fuzzy relations, two types of new rough set models are constructed, which are multi-granulation double fuzzy rough sets called optimistic and pessimistic multi-granulation double fuzzy rough sets, and some of their properties were studied. In addition, we study the relationship between optimistic and pessimistic multi-granulation double fuzzy rough sets and double fuzzy rough sets.
Keywords: 
Subject: Computer Science and Mathematics  -   Mathematics

1. Introduction and preliminaries

Undoubtedly, the theory of rough sets, proposed by Pawlak [19,20], has become a well-established mathematical tool for the study of uncertainty in a wide variety of applications and intelligent systems characterized by inadequate and incomplete information where the equivalence classes created by the equivalence relation are used to define the lower and upper approximations to approximate an undefinable set. More over, in recent years, it has been widely used in a variety of fields, such as granular computing, graph theory, algebraic systems, partially ordered sets, medical diagnosis, data mining, conflict analysis (see, for example, [4,5,10,21,22,27]).
The generalization and extension of the rough set model is an important direction in the study of set theory. On the one hand, one such trend was introduced by Qian et al. [23,24], which has been called the multi-granulation rough set. It is defined by a family of equivalence relations, while Pawlak’s rough set is defined by only one equivalence relation, producing two types of multi-granulation rough sets called the optimistic multi-granulation rough set and the pessimistic multi-granulation rough set. The word "optimistic" is used in the lower and upper approximation to denote the idea that in multi independent granular structures, at least one granular structure must satisfy the inclusion relation between the equivalence class and the undefinable set, whereas the word "pessimistic" denotes the idea that each granular structure must satisfy the inclusion relation between the equivalence class and the undefinable set. Following that, a number of researchers looked into multi-granulation rough set models based on various types of relationships, and they came up with a number of interesting ideas (see, for example, [12,13,14,15,16,25])
On the other hand, one of these trends is to combine other theories that deal with uncertain knowledge, such as fuzzy set and rough set theory. While fuzzy set theory deals with potential uncertainties associated with inaccurate cases, perceptions, and preferences, we find that approximate sets, in turn, deal with uncertainty caused by ambiguity of information. Because the two types of uncertainty can occur in real-world problems, numerous approaches to combining fuzzy set theory with approximation set theory have been proposed. Rough fuzzy sets and fuzzy rough sets were presented by Dubois and Prade based on approximations of fuzzy sets by crisp approximation spaces and crisp sets by fuzzy approximation spaces, respectively [6,7]. In the same framework, the researchers presented an approach to enrich coarse fuzzy rough sets and rough fuzzy sets, (see for example, [2,9,11,17,18,28,29]).
As a result of the intuitionistic fuzzy sets given by Atanassov [3], which give the membership and nonmembership degrees to which an element belongs, dealing with incomplete and inaccurate information is more flexible and effective compared to Zadeh’s fuzzy sets [30].
Working under tthe name "intuitionistic" has sparked and doubts debate over the term’s applicability, particularly when dealing with of complete lattice L. Garcia and Rodabaugh [8] put an end to these doubts in 2005. They proved that in mathematics and applications, this word is inappropriate. They concluded that they work under the name "double".
The main contributions of the present paper are to further investigations into multi-granulation double fuzzy approximation spaces, mainly including double fuzzy upper and lower approximation operators with respect to multi-granulation double fuzzy approximation spaces. By using more than one pair of double fuzzy relations on U, two kinds of double fuzzy sets were introduced and the relationship between them was studied.
Throughout this paper, Let U = { x 1 , x 2 , . . . x n } be a nonempty and finite set of objects and I = [ 0 , 1 ] . A fuzzy set is a map from U to I. The set of all fuzzy sets on U is denoted by I U . R is a fuzzy binary relation on U i.e. R ( x , y ) [ 0 , 1 ] for any x , y U . The set of all fuzzy binary relation on U is denoted by I U × U .
Definition 1.1. [1] Let U and V be two arbitrary sets. A double fuzzy relation on U × V is a pair ( R , R * ) of maps R , R * : U × V I such that R ( x , y ) 1 R * ( x , y ) for all ( x , y ) U × V . If R , R * : U × U I , ( R , R * ) is called a double fuzzy relation on U. R ( x , y ) (resp. R * ( x , y ) ), referred to as the degree of relation (resp. non-relation ) between x and y.
Definition 1.2. [1] Let U be an arbitrary universal set and ( R , R * ) a double fuzzy relation on U. Then for each fuzzy set λ on U , the pairs ( R ̲ R λ , R ̲ R * * λ ) , ( R ¯ R λ , R ¯ R * * λ ) of maps R ̲ R λ , R ̲ R * * λ , R ¯ R λ , R ¯ R * * λ : U I are called double fuzzy lower approximation and double fuzzy upper approximation of a fuzzy set λ , respectively and are defined as follows: For all x U ,
( R ̲ R λ ) ( x ) = y U ( ( 1 R ( x , y ) ) λ ( y ) ) , ( R ̲ R * * λ ) ( x ) = y U ( ( 1 R * ( x , y ) ) ( 1 λ ( y ) ) )
( R ¯ R λ ) ( x ) = y U ( R ( x , y ) λ ( y ) ) , ( R ¯ R * * λ ) ( x ) = y U ( R * ( x , y ) ( 1 λ ( y ) ) ) .
The quaternary ( R ̲ R λ , R ̲ R * * λ , R ¯ R λ , R ¯ R * * λ ) is called double fuzzy rough set of λ . The pairs ( R ̲ R , R ̲ R * * ) , ( R ¯ R , R ¯ R * * ) of operators R ̲ R , R ̲ R * * , R ¯ R , R ¯ R * * : I U I U are called double fuzzy lower approximation and double fuzzy upper approximation operators, respectively.
Definition 1.3. [1] For all x , y U a double fuzzy relation ( R , R * ) on U is called:
(1) Double fuzzy reflexive if R ( x , x ) = 1 and R * ( x , x ) = 0 .
(2) Double fuzzy transitive if R ( x , z ) y U ( R ( x , y ) R ( y , z ) ) and R * ( x , z ) y U ( R * ( x , y ) R * ( y , z ) ) z U .
(3) Double fuzzy symmetric if R ( x , y ) = R ( y , x ) and R * ( x , y ) = R * ( y , x ) .

2. Optimistic Multi-granulation double fuzzy rough sets

Definition 2.1. Let U be an arbitrary universal set and ( R 1 , R 1 * ) and ( R 2 , R 2 * ) are double fuzzy relations on U. Then for each fuzzy set λ on U , the pairs ( OR R 1 + R 2 ̲ λ , OR R 1 * + R 2 * * ̲ λ ) and ( OR R 1 + R 2 ¯ λ , OR R 1 * + R 2 * * ¯ λ ) of maps OR R 1 + R 2 ̲ λ , OR R 1 * + R 2 * * ̲ λ ,   OR R 1 + R 2 ¯ λ , OR R 1 * + R 2 * * ¯ λ : U I are called optimistic two-granulation double fuzzy lower approximation and optimistic two-granulation double fuzzy upper approximation of a fuzzy set λ , respectively and are defined as follows: For all x U ,
( OR R 1 + R 2 ̲ λ ) ( x ) = y U ( ( 1 R 1 ( x , y ) ) λ ( y ) ) y U ( ( 1 R 2 ( x , y ) ) λ ( y ) ) ;
( OR R 1 * + R 2 * * ̲ λ ) ( x ) = y U ( ( 1 R 1 * ( x , y ) ) 1 λ ( y ) ) y U ( ( 1 R 2 * ( x , y ) ) 1 λ ( y ) ) ;
( OR R 1 + R 2 ¯ λ ) ( x ) = y U ( R 1 ( x , y ) λ ( y ) ) y U ( R 2 ( x , y ) λ ( y ) ) ;
( OR R 1 * + R 2 * * ¯ λ ) ( x ) = y U ( R 1 * ( x , y ) 1 λ ( y ) ) y U ( R 2 * ( x , y ) 1 λ ( y ) ) .
The quaternary ( OR R 1 + R 2 ̲ λ , OR R 1 * + R 2 * * ̲ λ , OR R 1 + R 2 ¯ λ , OR R 1 * + R 2 * * ¯ λ ) is called optimistic two-granulation double fuzzy rough set of λ (in short, OTGDFRS). The pairs ( OR R 1 + R 2 ̲ , OR R 1 * + R 2 * * ̲ ) and ( OR R 1 + R 2 ¯ , OR R 1 * + R 2 * * ¯ ) of operators OR R 1 + R 2 ̲ , OR R 1 * + R 2 * * ̲ , OR R 1 + R 2 ¯ , OR R 1 * + R 2 * * ¯ : U I are called optimistic two-granulation double fuzzy lower approximation and optimistic two-granulation double fuzzy upper approximation operators, respectively.
The OTGDFRS approximations are defined by many separate pairs of double fuzzy relations, whereas the normal double fuzzy rough approximations are represented by those produced by only one pair of double fuzzy relation, as can be seen from the preceding definition. In fact, when ( R 1 , R 1 * ) = ( R 2 , R 2 * ) , the OTGDFRS degenerates into a double fuzzy rough set. To put it another way, a double fuzzy rough set model is a subset of the OTGDFRS.
Proposition 2.2. Let U be an arbitrary universal set and ( R 1 , R 1 * ) and ( R 2 , R 2 * ) be a double fuzzy relations on U. Then for each λ I U we obtain the following:
(1) OR R 1 + R 2 ̲ λ = R R 1 ̲ λ R R 2 ̲ λ and OR R 1 * + R 2 * * ̲ λ = R R 1 * * ̲ λ R R 2 * * ̲ λ .
(2) OR R 1 + R 2 ¯ λ = R R 1 ¯ λ R R 2 ¯ λ and OR R 1 * + R 2 * * ¯ λ = R R 1 * * ¯ λ R R 2 * * ¯ λ .
Proof. The proofs follow directly from Definition 1.2 and Definition 2.1.
Theorem 2.3. Let U be an arbitrary universal set and ( R 1 , R 1 * ) and ( R 2 , R 2 * ) be a double fuzzy relations on U. Then for each λ I U we obtain the following:
(1)
OR R 1 + R 2 ¯ λ 1 ˜ OR R 1 * + R 2 * * ¯ λ and OR R 1 + R 2 ̲ λ 1 ˜ OR R 1 * + R 2 * * ̲ λ .
(2)
OR R 1 + R 2 ̲ 1 ˜ = 1 ˜ and OR R 1 * + R 2 * * ̲ 1 ˜ = 0 ˜ .
(3)
OR R 1 + R 2 ¯ 0 ˜ = 0 ˜ and OR R 1 * + R 2 * * ¯ 0 ˜ = 1 ˜ .
(4)
OR R 1 + R 2 ¯ ( 1 ˜ λ ) = 1 ˜ OR R 1 + R 2 ̲ λ and OR R 1 * + R 2 * * ¯ ( 1 ˜ λ ) = 1 ˜ OR R 1 * + R 2 * * ̲ λ .
(5)
OR R 1 + R 2 ̲ ( 1 ˜ λ ) = 1 ˜ OR R 1 + R 2 ¯ λ and OR R 1 * + R 2 * * ̲ ( 1 ˜ λ ) = 1 ˜ OR R 1 * + R 2 * * ¯ λ .
Proof. (1) For each x U , λ I U we have
( 1 ˜ ( OR R 1 * + R 2 * * ¯ λ ) ) ( x ) = 1 y U ( R 1 * ( x , y ) 1 λ ( y ) ) y U ( R 2 * ( x , y ) 1 λ ( y ) ) = 1 y U ( R 1 * ( x , y ) 1 λ ( y ) ) 1 y U ( R 2 * ( x , y ) 1 λ ( y ) ) = y U 1 R 1 * ( x , y ) 1 λ ( y ) y U 1 R 2 * ( x , y ) 1 λ ( y ) = y U 1 R 1 * ( x , y ) λ ( y ) y U 1 R 2 * ( x , y ) λ ( y ) y U ( R 1 ( x , y ) λ ( y ) ) y U ( R 2 ( x , y ) λ ( y ) ) = ( OR R 1 + R 2 ¯ λ ) ( x ) for all x U .
Hence, OR R 1 + R 2 ¯ λ 1 ˜ OR R 1 * + R 2 * * ¯ λ . Similarly, OR R 1 + R 2 ̲ λ 1 ˜ OR R 1 * + R 2 * * ̲ λ .
(2) Since, for each x U , 1 ˜ ( x ) = 1 , we obtain
( OR R 1 + R 2 ̲ 1 ˜ ) ( x ) = y U ( ( 1 R 1 ( x , y ) ) 1 ˜ ( y ) ) y U ( ( 1 R 2 ( x , y ) ) 1 ˜ ( y ) ) = 1 = 1 ˜ ( x ) ,
and
( OR R 1 * + R 2 * * ̲ 1 ˜ ) ( x ) = y U ( ( 1 R i ( x , y ) ) 1 1 ˜ ( y ) ) y U ( ( 1 R i ( x , y ) ) 1 1 ˜ ( y ) ) = 0 = 0 ˜ ( x ) .
Therefore, we obtain OR R 1 + R 2 ̲ 1 ˜ = 1 ˜ and OR R 1 * + R 2 * * ̲ 1 ˜ = 0 ˜ .
(3) It is similar to the proof of (2).
(4) For each x U , we have
OR R 1 * + R 2 * * ¯ ( 1 ˜ λ ) ( x ) = y U ( R 1 * ( x , y ) 1 ( 1 λ ( y ) ) ) y U ( R 2 * ( x , y ) 1 ( 1 λ ( y ) ) ) = 1 y U ( 1 R 1 * ( x , y ) 1 λ ( y ) ) 1 y U ( 1 R 2 * ( x , y ) 1 λ ( y ) ) = 1 y U ( 1 R 1 * ( x , y ) 1 λ ( y ) ) y U ( 1 R 2 * ( x , y ) 1 λ ( y ) ) = 1 OR R 1 * + R 2 * * ̲ λ ( x ) .
Thus, we obtain OR R 1 * + R 2 * * ¯ ( 1 ˜ λ ) = 1 ˜ OR R 1 * + R 2 * * ̲ λ . Similarly, we can prove OR R 1 + R 2 ¯ ( 1 ˜ λ ) = 1 ˜ OR R 1 + R 2 ̲ λ
(5) Similarly to that of (4).
Theorem 2.4. Let U be an arbitrary universal set and ( R 1 , R 1 * ) and ( R 2 , R 2 * ) be a double fuzzy relations on U. Then for each λ , μ I U :
(1)
OR R 1 + R 2 ̲ ( λ μ ) OR R 1 + R 2 ̲ λ OR R 1 + R 2 ̲ μ and
OR R 1 * + R 2 * * ̲ ( λ μ ) OR R 1 * + R 2 * * ̲ λ OR R 1 * + R 2 * * ̲ μ .
(2)
OR R 1 + R 2 ¯ ( λ μ ) OR R 1 + R 2 ¯ λ OR R 1 + R 2 ¯ μ and
OR R 1 * + R 2 * * ¯ ( λ μ ) OR R 1 * + R 2 * * ¯ λ OR R 1 * + R 2 * * ¯ μ .
(3)
If λ μ , then OR R 1 + R 2 ̲ λ OR R 1 + R 2 ̲ μ and OR R 1 * + R 2 * * ̲ λ OR R 1 * + R 2 * * ̲ μ .
(4)
If λ μ , then OR R 1 + R 2 ¯ λ OR R 1 + R 2 ¯ μ and OR R 1 * + R 2 * * ¯ λ OR R 1 * + R 2 * * ¯ μ .
(5)
OR R 1 + R 2 ̲ ( λ μ ) OR R 1 + R 2 ̲ λ OR R 1 + R 2 ̲ μ and
OR R 1 * + R 2 * * ̲ ( λ μ ) OR R 1 * + R 2 * * ̲ λ OR R 1 * + R 2 * * ̲ μ .
(6)
OR R 1 + R 2 ¯ ( λ μ ) OR R 1 + R 2 ¯ λ OR R 1 + R 2 ¯ μ and
OR R 1 * + R 2 * * ¯ ( λ μ ) OR R 1 * + R 2 * * ¯ λ OR R 1 * + R 2 * * ¯ μ .
Proof. (1) For each x U and λ , μ I U , we have
( OR R 1 + R 2 ̲ ( λ μ ) ) ( x ) = y U ( ( 1 R 1 ( x , y ) ) ( λ μ ) ( y ) ) y U ( ( 1 R 2 ( x , y ) ) ( λ μ ) ( y ) ) = y U ( ( 1 R 1 ( x , y ) ) ( λ ) ( y ) y U ( ( 1 R 1 ( x , y ) ) ( μ ) ( y ) y U ( ( 1 R 2 ( x , y ) ) ( λ ) ( y ) y U ( ( 1 R 2 ( x , y ) ) ( μ ) ( y ) = ( R R 1 ̲ λ ) ( x ) ( R R 1 ̲ μ ) ( x ) ( R R 2 ̲ λ ) ( x ) ( R R 2 ̲ μ ) ( x ) ( R R 1 ̲ λ ) ( x ) ( R R 2 ̲ λ ) ( x ) ( R R 1 ̲ μ ) ( x ) ( R R 2 ̲ μ ) ( x ) = ( OR R 1 + R 2 ̲ λ ) ( x ) ( OR R 1 + R 2 ̲ μ ) ( x ) .
Also, for each x U , we have
( OR R 1 * + R 2 * * ̲ ( λ μ ) ) ( x ) = y U ( ( 1 R 1 * ( x , y ) ) 1 ( λ μ ) ( y ) ) y U ( ( 1 R 2 * ( x , y ) ) 1 ( λ μ ) ( y ) ) = y U ( ( 1 R 1 * ( x , y ) ) ( 1 λ ( y ) 1 μ ( y ) ) y U ( ( 1 R 2 * ( x , y ) ) ( 1 λ ( y ) 1 μ ( y ) ) = y U ( ( 1 R 1 * ( x , y ) ) ( 1 λ ( y ) y U ( ( 1 R 1 * ( x , y ) ) ( 1 μ ( y ) y U ( ( 1 R 2 * ( x , y ) ) ( 1 λ ( y ) y U ( ( 1 R 2 * ( x , y ) ) ( 1 μ ( y ) = ( R R 1 * * ̲ λ ) ( x ) ( R R 1 * * ̲ μ ) ( x ) ( R R 2 * * ̲ λ ) ( x ) ( R R 2 * * ̲ μ ) ( x ) ( R R 1 * * ̲ λ ) ( x ) ( R R 2 * * ̲ λ ) ( x ) ( R R 1 * * ̲ μ ) ( x ) ( R R 2 * * ̲ μ ) ( x ) = ( OR R 1 * + R 2 * * ̲ λ ) ( x ) ( OR R 1 * + R 2 * * ̲ μ ) ( x )
(2) Similar to (1).
(3) If λ μ , then for all y U , λ ( y ) μ ( y ) we have
y U ( 1 R 1 ( x , y ) λ ( y ) ) y U ( 1 R 1 ( x , y ) μ ( y ) )
and
y U ( 1 R 2 ( x , y ) λ ( y ) ) y U ( 1 R 2 ( x , y ) μ ( y ) ) .
Form Equations (2.1) and (2.2) we have
y U ( 1 R 1 ( x , y ) λ ( y ) ) y U ( 1 R 2 ( x , y ) λ ( y ) ) y U ( 1 R 1 ( x , y ) μ ( y ) ) y U ( 1 R 2 ( x , y ) μ ( y ) ) .
Therefore, OR R 1 + R 2 ̲ λ OR R 1 + R 2 ̲ μ . Also,
y U ( 1 R 1 * ( x , y ) 1 λ ( y ) ) y U ( 1 R 1 * ( x , y ) 1 μ ( y ) )
and
y U ( 1 R 2 * ( x , y ) 1 λ ( y ) ) y U ( 1 R 2 * ( x , y ) 1 μ ( y ) ) .
Form Equations (2.3) and (2.4) we have
y U ( 1 R 1 * ( x , y ) 1 λ ( y ) ) y U ( 1 R 2 * ( x , y ) 1 λ ( y ) ) y U ( 1 R 1 * ( x , y ) 1 μ ( y ) ) y U ( 1 R 2 * ( x , y ) 1 μ ( y ) )
Hence OR R 1 * + R 2 * * ̲ λ OR R 1 * + R 2 * * ̲ μ .
(4) Similar to (3).
(5) Since λ λ μ and μ λ μ , by (3) we have
OR R 1 + R 2 ̲ λ OR R 1 + R 2 ̲ ( λ μ ) and OR R 1 + R 2 ̲ μ OR R 1 + R 2 ̲ ( λ μ ) .
Therefore OR R 1 + R 2 ̲ λ OR R 1 + R 2 ̲ μ OR R 1 + R 2 ̲ ( λ μ ) . Also, we have
OR R 1 * + R 2 * * ̲ λ OR R 1 * + R 2 * * ̲ ( λ μ ) and OR R 1 * + R 2 * * ̲ μ OR R 1 * + R 2 * * ̲ ( λ μ ) .
This implies that OR R 1 * + R 2 * * ̲ λ OR R 1 * + R 2 * * ̲ μ OR R 1 * + R 2 * * ̲ ( λ μ ) .
(6) Similar to (5).
Example 2.5. Let U = { x , y , z } . Define R 1 , R 1 * , R 2 , R 2 * : U × U I as follows:
R 1 = 0.2 0.4 0.7 0.9 0.3 0.7 0.6 0.3 0.2 R 1 * = 0.1 0.6 0.2 0.0 0.6 0.2 0.3 0.0 0.7
R 2 = 0.1 0.5 0.6 0.4 0.3 0.8 0.7 0.2 0.3 R 2 * = 0.2 0.3 0.0 0.1 0.6 0.1 0.3 0.6 0.6
Define λ , μ I U as follows:
λ = { ( x , 0.5 ) , ( y , 0.7 ) , ( z , 0.1 ) } ,
μ = { ( x , 0.4 ) , ( y , 0.2 ) , ( z , 0.8 ) } ,
λ μ = { ( x , 0.4 ) , ( y , 0.2 ) , ( z , 0.1 ) } .
Then,
( OR R 1 + R 2 ̲ λ ) ( x ) = 0.4 , ( OR R 1 + R 2 ̲ λ ) ( y ) = 0.4 , ( OR R 1 + R 2 ̲ λ ) ( z ) = 0.5
( OR R 1 + R 2 ̲ μ ) ( x ) = 0.6 , ( OR R 1 + R 2 ̲ μ ) ( y ) = 0.7 , ( OR R 1 + R 2 ̲ μ ) ( z ) = 0.4
( OR R 1 + R 2 ̲ ( λ μ ) ) ( x ) = 0.2 , ( OR R 1 + R 2 ̲ ( λ μ ) ) ( y ) = 0.4 , ( OR R 1 + R 2 ̲ ( λ μ ) ) ( z ) = 0.4
Therefore, OR R 1 + R 2 ̲ ( λ μ ) OR R 1 + R 2 ̲ λ OR R 1 + R 2 ̲ μ .
( OR R 1 * + R 2 * * ̲ λ ) ( x ) = 0.5 , ( OR R 1 * + R 2 * * ̲ λ ) ( y ) = 0.5 , ( OR R 1 * + R 2 * * ̲ λ ) ( z ) = 0.5
( OR R 1 * + R 2 * * ̲ μ ) ( x ) = 0.2 , ( OR R 1 * + R 2 * * ̲ μ ) ( y ) = 0.2 , ( OR R 1 * + R 2 * * ̲ μ ) ( z ) = 0.6
( OR R 1 * + R 2 * * ̲ ( λ μ ) ) ( x ) = 0.6 , ( OR R 1 * + R 2 * * ̲ ( λ μ ) ) ( y ) = 0.6 , ( OR R 1 * + R 2 * * ̲ ( λ μ ) ) ( z ) = 0.6 .
Therefore, OR R 1 * + R 2 * * ̲ ( λ μ ) OR R 1 * + R 2 * * ̲ λ OR R 1 * + R 2 * * ̲ μ .
Theorem 2.6. Let ( R 1 , R 1 * ) and ( R 2 , R 2 * ) be a double fuzzy relations on an universal set U. Then the following statements are equivalent:
(1)
( R 1 , R 1 * ) and ( R 2 , R 2 * ) are a double fuzzy reflexive relations.
(2)
λ OR R 1 + R 2 ¯ λ and 1 ˜ λ OR R 1 * + R 2 * * ¯ λ .
(3)
OR R 1 + R 2 ̲ λ λ and OR R 1 * + R 2 * * ̲ λ 1 ˜ λ .
Proof. ( 1 ) ( 2 ) Let ( R 1 , R 1 * ) and ( R 2 , R 2 * ) are a double fuzzy reflexive relations. Then R i ( x , x ) = 1 and R i * ( x , x ) = 0 for all i { 1 , 2 } and x U . Therefore,
λ ( x ) = 1 λ ( x ) = R 1 ( x , x ) λ ( x ) R 2 ( x , x ) λ ( x ) y U ( R 1 ( x , y ) λ ( y ) ) y U ( R 2 ( x , y ) λ ( y ) ) = OR R 1 + R 2 ¯ λ
and
1 ˜ λ ( x ) = 0 1 ˜ λ ( x ) = R 1 * ( x , x ) 1 ˜ λ ( x ) R 2 * ( x , x ) 1 ˜ λ ( x ) y U ( R 1 * ( x , y ) 1 ˜ λ ( y ) ) y U ( R 2 * ( x , y ) 1 ˜ λ ( y ) ) = OR R 1 * + R 2 * * ¯ λ .
( 2 ) ( 1 ) Suppose that there exists some x U such that R i ( x , x ) = a i 1 and R i * ( x , x ) = b i 0 for all i { 1 , 2 } , then we can define fuzzy set δ x : U I as:
δ x ( y ) = 1 , if y = x 0 , if y x .
Then
OR R 1 + R 2 ¯ δ x ( x ) = y U ( R 1 ( x , y ) δ x ( y ) ) y U ( R 2 ( x , y ) δ x ( y ) ) = R 1 ( x , x ) R 2 ( x , x ) = a 1 a 2 1 = δ x ( x )
and
OR R 1 * + R 2 * * ¯ δ x ( x ) = y U ( R 1 * ( x , y ) 1 δ x ( y ) ) y U ( R 2 * ( x , y ) 1 δ x ( y ) ) = R 1 * ( x , x ) R 2 * ( x , x ) = b 1 b 2 0 = 1 δ x ( x ) .
Therefore δ x OR R 1 + R 2 ¯ δ x and 1 ˜ δ x OR R 1 * + R 2 * * ¯ δ x . This is a contradiction. Hence, R i ( x , x ) = 1 and R i * ( x , x ) = 0 for all i { 1 , 2 } and x U .
( 2 ) ( 3 ) It is easy from Theorem 2.3 (4), (5).
Theorem 2.7. Let ( R 1 , R 1 * ) and ( R 2 , R 2 * ) be a double fuzzy relations on an universal set U. Then the following statements are equivalent:
(1)
( R 1 , R 1 * ) and ( R 2 , R 2 * ) are a double fuzzy transitive relations.
(2)
OR R 1 + R 2 ¯ ( OR R 1 + R 2 ¯ λ ) OR R 1 + R 2 ¯ λ and
OR R 1 * + R 2 * * ¯ ( 1 ˜ OR R 1 * + R 2 * * ¯ λ ) OR R 1 * + R 2 * * ¯ λ .
(3)
OR R 1 + R 2 ̲ ( OR R 1 + R 2 ̲ λ ) OR R 1 + R 2 ̲ λ and
OR R 1 * + R 2 * * ̲ ( 1 ˜ OR R 1 * + R 2 * * ̲ ) OR R 1 * + R 2 * * ̲ λ .
Proof. ( 1 ) ( 2 ) For each λ I U ,
OR R 1 + R 2 ¯ ( OR R 1 + R 2 ¯ λ ) ( x ) = y U ( R 1 ( x , y ) ( OR R 1 + R 2 ¯ ) ( y ) y U ( R 2 ( x , y ) ( OR R 1 + R 2 ¯ ) ( y ) = b 1 b 2 0 = 1 δ x ( x ) .
In the following, by extending the optimistic two-granulation double fuzzy rough set, we will introduce the optimistic multi-granulation double fuzzy rough set (in short, OMGDFRS) and its accompanying properties.
Definition 2.6. Let U be arbitrary sets and the pairs ( R i , R i * ) such that 1 i m a double fuzzy relations on U. Then ( U , R , R * ) is called the multi-granulation double fuzzy approximation space (in short, MGDFAS), where R = { R 1 , R 2 , . . . R i } and R * = { R 1 * , R 2 * , . . . R i * } .
Definition 2.7. Let ( U , R , R * ) be a MGDFAS. Then for each fuzzy set λ on U , the pairs ( OR Σ m i = 1 R i ̲ λ , OR Σ m i = 1 R i * * ̲ λ ) and ( OR Σ m i = 1 R i ¯ λ , OR Σ m i = 1 R i * * ¯ λ ) of maps OR Σ m i = 1 R i ̲ λ , OR Σ m i = 1 R i * * ̲ λ ,   OR Σ m i = 1 R i ¯ λ , OR Σ m i = 1 R i * * ¯ λ : U I are called optimistic multi-granulation double fuzzy lower approximation and optimistic multi-granulation double fuzzy upper approximation of a fuzzy set λ , respectively are defined as follows: For all x U ,
( OR Σ m i = 1 R i ̲ λ ) ( x ) = m i = 1 y U ( ( 1 R i ( x , y ) ) λ ( y ) ) ,
( OR Σ m i = 1 R i * * ̲ λ ) ( x ) = m i = 1 y U ( ( 1 R i * ( x , y ) ) 1 λ ( y ) ) ,
( OR Σ m i = 1 R i ¯ λ ) ( x ) = m i = 1 y U ( R i ( x , y ) λ ( y ) ) ,
( OR Σ m i = 1 R i * * ¯ λ ) ( x ) = m i = 1 y U ( R i * ( x , y ) 1 λ ( y ) ) .
The quaternary ( OR Σ m i = 1 R i ̲ λ , OR Σ m i = 1 R i * * ̲ λ , OR Σ m i = 1 R i ¯ λ , OR Σ m i = 1 R i * * ¯ λ ) is called optimistic multi-granulation double fuzzy rough set of λ (in short, OMGDFRS).
The pairs ( OR Σ m i = 1 R i ̲ , OR Σ m i = 1 R i * * ̲ ) and ( OR Σ m i = 1 R i ¯ , OR Σ m i = 1 R i * * ¯ ) of operators OR Σ m i = 1 R i ̲ , OR Σ m i = 1 R i * * ̲ , OR Σ m i = 1 R i ¯ , OR Σ m i = 1 R i * * ¯ : I U I U are called optimistic multi-granulation double fuzzy lower approximation and optimistic multi-granulation double fuzzy upper approximation operators, respectively.
Proposition 2.8. Let ( U , R , R * ) be a MGDFAS. Then for each λ I U we obtain the following:
(1) OR Σ m i = 1 R i ̲ λ = m i = 1 R R i ̲ λ and OR Σ m i = 1 R i * * ̲ λ = m i = 1 R R i * * ̲ λ .
(2) OR Σ m i = 1 R i ¯ λ = m i = 1 R R i ¯ λ and OR Σ m i = 1 R i * * ¯ λ = m i = 1 R R i * * ¯ λ .
Proof. Similarly to Proposition 2.2.
Theorem 2.9. Let ( U , R , R * ) be a MGDFAS. Then for each λ I U we obtain the following:
(1) OR Σ m i = 1 R i ¯ λ 1 ˜ OR Σ m i = 1 R i * * ¯ λ and OR Σ m i = 1 R i ̲ λ 1 ˜ OR Σ m i = 1 R i * * ̲ λ .
(2) OR Σ m i = 1 R i ̲ 1 ˜ = 1 ˜ and OR Σ m i = 1 R i * * ̲ 1 ˜ = 0 ˜ .
(3) OR Σ m i = 1 R i ¯ 0 ˜ = 0 ˜ and OR Σ m i = 1 R i * * ¯ 0 ˜ = 1 ˜ .
(4) OR Σ m i = 1 R i ¯ ( 1 ˜ λ ) = 1 ˜ OR Σ m i = 1 R i ̲ λ and OR Σ m i = 1 R i * * ¯ ( 1 ˜ λ ) = 1 ˜ OR Σ m i = 1 R i * * ̲ λ .
(5) OR Σ m i = 1 R i ̲ ( 1 ˜ λ ) = 1 ˜ OR Σ m i = 1 R i ¯ λ and OR Σ m i = 1 R i * * ̲ ( 1 ˜ λ ) = 1 ˜ OR Σ m i = 1 R i * * ¯ λ .
Proof. It is similar to the Proof of Theorem 2.3.
Theorem 2.10. Let ( U , R , R * ) be a MGDFAS. Then for each λ , μ I U we obtain the following:
(1)
OR Σ m i = 1 R i ̲ ( λ μ ) OR Σ m i = 1 R i ̲ λ OR Σ m i = 1 R i ̲ μ and
OR Σ m i = 1 R i * * ̲ ( λ μ ) OR Σ m i = 1 R i * * ̲ λ OR Σ m i = 1 R i * * ̲ μ .
(2)
OR Σ m i = 1 R i ¯ ( λ μ ) OR Σ m i = 1 R i ¯ λ OR Σ m i = 1 R i ¯ μ and
OR Σ m i = 1 R i * * ¯ ( λ μ ) OR Σ m i = 1 R i * * ¯ λ OR Σ m i = 1 R i * * ¯ μ .
(3)
If λ μ , then OR Σ m i = 1 R i ̲ λ OR Σ m i = 1 R i ̲ μ and OR Σ m i = 1 R i * * ̲ λ OR Σ m i = 1 R i * * ̲ μ .
(4)
If λ μ , then OR Σ m i = 1 R i ¯ λ OR Σ m i = 1 R i ¯ μ and OR Σ m i = 1 R i * * ¯ λ OR Σ m i = 1 R i * * ¯ μ .
(5)
OR Σ m i = 1 R i ̲ ( λ μ ) OR Σ m i = 1 R i ̲ λ OR Σ m i = 1 R i ̲ μ and
OR Σ m i = 1 R i * * ̲ ( λ μ ) OR Σ m i = 1 R i * * ̲ λ OR Σ m i = 1 R i * * ̲ μ .
(6)
OR Σ m i = 1 R i ¯ ( λ μ ) OR Σ m i = 1 R i ¯ λ OR Σ m i = 1 R i ¯ μ and
OR Σ m i = 1 R i * * ¯ ( λ μ ) OR Σ m i = 1 R i * * ¯ λ OR Σ m i = 1 R i * * ¯ μ .
Proof. It is similarly to the Proof of Theorem 2.4.

3. Pessimistic Multi-granulation double fuzzy rough sets

Definition 3.1. Let U be an arbitrary universal set and ( R 1 , R 1 * ) and ( R 2 , R 2 * ) a double fuzzy relations on U. Then for each fuzzy set λ on U , the pairs ( PR R 1 + R 2 ̲ λ , PR R 1 * + R 2 * * ̲ λ ) and ( PR R 1 + R 2 ¯ λ , PR R 1 * + R 2 * * ¯ λ ) of maps PR R 1 + R 2 ̲ λ , PR R 1 * + R 2 * * ̲ λ , PR R 1 + R 2 ¯ λ , PR R 1 * + R 2 * * ¯ λ : U I are called pessimistic two-granulation double fuzzy lower approximation and pessimistic two-granulation double fuzzy upper approximation of a fuzzy set λ , respectively and are defined as follows: For all x U ,
( PR R 1 + R 2 ̲ λ ) ( x ) = y U ( ( 1 R 1 ( x , y ) ) λ ( y ) ) y U ( ( 1 R 2 ( x , y ) ) λ ( y ) ) ;
( PR R 1 * + R 2 * * ̲ λ ) ( x ) = y U ( ( 1 R 1 * ( x , y ) ) 1 λ ( y ) ) y U ( ( 1 R 2 * ( x , y ) ) 1 λ ( y ) ) ;
( PR R 1 + R 2 ¯ λ ) ( x ) = y U ( R 1 ( x , y ) λ ( y ) ) y U ( R 2 ( x , y ) λ ( y ) ) ;
( PR R 1 * + R 2 * * ¯ λ ) ( x ) = y U ( R 1 * ( x , y ) 1 λ ( y ) ) y U ( R 2 * ( x , y ) 1 λ ( y ) ) .
The quaternary ( PR R 1 + R 2 ̲ λ , PR R 1 * + R 2 * * ̲ λ , PR R 1 + R 2 ¯ λ , PR R 1 * + R 2 * * ¯ λ ) is called pessimistic two-granulation double fuzzy rough set of λ (in short, PTGDFRS). The pairs ( PR R 1 + R 2 ̲ , PR R 1 * + R 2 * * ̲ ) and ( PR R 1 + R 2 ¯ , PR R 1 * + R 2 * * ¯ ) of operators PR R 1 + R 2 ̲ , PR R 1 * + R 2 * * ̲ , PR R 1 + R 2 ¯ , PR R 1 * + R 2 * * ¯ : U I are called pessimistic two-granulation double fuzzy lower approximation and pessimistic two-granulation double fuzzy upper approximation operators, respectively.
The PTGDFRS approximations are defined by many separate pairs of double fuzzy relations, whereas the normal double fuzzy rough approximations are represented by those produced by only one pair of double fuzzy relation, as can be seen from the preceding definition. In fact, when ( R 1 , R 1 * ) = ( R 2 , R 2 * ) , the PTGDFRS degenerates into a double fuzzy rough set. To put it another way, a double fuzzy rough set model is a subset of the PTGDFRS.
Proposition 3.2. Let U be an arbitrary universal set, ( R 1 , R 1 * ) and ( R 2 , R 2 * ) be a double fuzzy relations on U. Then for each λ I U we have the following:
(1)
PR R 1 + R 2 ̲ λ = R R 1 ̲ λ R R 2 ̲ λ and PR R 1 * + R 2 * * ̲ λ = R R 1 * * ̲ λ R R 2 * * ̲ λ .
(2)
PR R 1 + R 2 ¯ λ = R R 1 ¯ λ R R 2 ¯ λ and PR R 1 * + R 2 * * ¯ λ = R R 1 * * ¯ λ R R 2 * * ¯ λ .
Proof. They can be proved by Definition 1.2 and Definition 3.1.
Theorem 3.3. Let U be an arbitrary universal set, ( R 1 , R 1 * ) and ( R 2 , R 2 * ) be a double fuzzy relations on U. Then for each λ I U we have the following:
(1)
PR R 1 + R 2 ¯ λ 1 ˜ PR R 1 * + R 2 * * ¯ λ and PR R 1 + R 2 ̲ λ 1 ˜ PR R 1 * + R 2 * * ̲ λ .
(2)
PR R 1 + R 2 ̲ 1 ˜ = 1 ˜ and PR R 1 * + R 2 * * ̲ 1 ˜ = 0 ˜ .
(3)
PR R 1 + R 2 ¯ 0 ˜ = 0 ˜ and PR R 1 * + R 2 * * ¯ 0 ˜ = 1 ˜ .
(4)
PR R 1 + R 2 ¯ ( 1 ˜ λ ) = 1 ˜ PR R 1 + R 2 ̲ λ and PR R 1 * + R 2 * * ¯ ( 1 ˜ λ ) = 1 ˜ PR R 1 * + R 2 * * ̲ λ .
(5)
PR R 1 + R 2 ̲ ( 1 ˜ λ ) = 1 ˜ PR R 1 + R 2 ¯ λ and PR R 1 * + R 2 * * ̲ ( 1 ˜ λ ) = 1 ˜ PR R 1 * + R 2 * * ¯ λ .
Proof. (1) For each x U , λ I U we have
( 1 ˜ ( PR R 1 * + R 2 * * ¯ λ ) ) ( x ) = 1 y U ( R 1 * ( x , y ) 1 λ ( y ) ) y U ( R 2 * ( x , y ) 1 λ ( y ) ) = 1 y U ( R 1 * ( x , y ) 1 λ ( y ) ) 1 y U ( R 2 * ( x , y ) 1 λ ( y ) ) = y U 1 R 1 * ( x , y ) 1 λ ( y ) y U 1 R 2 * ( x , y ) 1 λ ( y ) = y U 1 R 1 * ( x , y ) λ ( y ) y U { 1 R 2 * ( x , y ) λ ( y ) } y U ( R 1 ( x , y ) λ ( y ) ) y U ( R 2 ( x , y ) λ ( y ) ) = ( PR R 1 + R 2 ¯ λ ) ( x ) for all x U .
Hence, PR R 1 + R 2 ¯ λ 1 ˜ PR R 1 * + R 2 * * ¯ λ . Similarly, PR R 1 + R 2 ̲ λ 1 ˜ PR R 1 * + R 2 * * ̲ λ .
(2) Since, for each x U , 1 ˜ ( x ) = 1 , we obtain
( PR R 1 + R 2 ̲ 1 ˜ ) ( x ) = y U ( ( 1 R 1 ( x , y ) ) 1 ˜ ( y ) ) y U ( ( 1 R 2 ( x , y ) ) 1 ˜ ( y ) ) = 1 = 1 ˜ ( x ) ,
and
( PR R 1 * + R 2 * * ̲ 1 ˜ ) ( x ) = y U ( ( 1 R i ( x , y ) ) 1 1 ˜ ( y ) ) y U ( ( 1 R i ( x , y ) ) 1 1 ˜ ( y ) ) = 0 = 0 ˜ ( x ) .
Therefore, we obtain PR R 1 + R 2 ̲ 1 ˜ = 1 ˜ and PR R 1 * + R 2 * * ̲ 1 ˜ = 0 ˜ .
(3) Similar to (2).
(4) For each x U , we have
OR R 1 * + R 2 * * ¯ ( 1 ˜ λ ) ( x ) = y U ( R 1 * ( x , y ) 1 ( 1 λ ( y ) ) ) y U ( R 2 * ( x , y ) 1 ( 1 λ ( y ) ) ) = 1 y U ( 1 R 1 * ( x , y ) 1 λ ( y ) ) 1 y U ( 1 R 2 * ( x , y ) 1 λ ( y ) ) = 1 y U ( 1 R 1 * ( x , y ) 1 λ ( y ) ) y U ( 1 R 2 * ( x , y ) 1 λ ( y ) ) = 1 PR R 1 * + R 2 * * ̲ λ ( x ) .
Thus, we obtain PR R 1 * + R 2 * * ¯ ( 1 ˜ λ ) = 1 ˜ PR R 1 * + R 2 * * ̲ λ . Similarly,we can prove PR R 1 + R 2 ¯ ( 1 ˜ λ ) = 1 ˜ PR R 1 + R 2 ̲ λ .
(5) It is similar to the proof of (4).
Theorem 3.4. Let U be an arbitrary universal set, ( R 1 , R 1 * ) and ( R 2 , R 2 * ) be a double fuzzy relations on U. Then for each λ , μ I U we obtain the following:
(1)
PR R 1 + R 2 ̲ ( λ μ ) = PR R 1 + R 2 ̲ λ PR R 1 + R 2 ̲ μ and
PR R 1 * + R 2 * * ̲ ( λ μ ) = PR R 1 * + R 2 * * ̲ λ PR R 1 * + R 2 * * ̲ μ .
(2)
PR R 1 + R 2 ¯ ( λ μ ) = PR R 1 + R 2 ¯ λ PR R 1 + R 2 ¯ μ and
PR R 1 * + R 2 * * ¯ ( λ μ ) = PR R 1 * + R 2 * * ¯ λ PR R 1 * + R 2 * * ¯ μ .
(3)
If λ μ , then PR R 1 + R 2 ̲ λ PR R 1 + R 2 ̲ μ and PR R 1 * + R 2 * * ̲ λ PR R 1 * + R 2 * * ̲ μ .
(4)
If λ μ , then PR R 1 + R 2 ¯ λ PR R 1 + R 2 ¯ μ and PR R 1 * + R 2 * * ¯ λ PR R 1 * + R 2 * * ¯ μ .
(5)
PR R 1 + R 2 ̲ ( λ μ ) PR R 1 + R 2 ̲ λ PR R 1 + R 2 ̲ μ and
PR R 1 * + R 2 * * ̲ ( λ μ ) PR R 1 * + R 2 * * ̲ λ PR R 1 * + R 2 * * ̲ μ .
(6)
PR R 1 + R 2 ¯ ( λ μ ) PR R 1 + R 2 ¯ λ PR R 1 + R 2 ¯ μ and
PR R 1 * + R 2 * * ¯ ( λ μ ) PR R 1 * + R 2 * * ¯ λ PR R 1 * + R 2 * * ¯ μ .
Proof. (1) For each x U , λ , μ I U ,
( PR R 1 + R 2 ̲ ( λ μ ) ) ( x ) = y U ( ( 1 R 1 ( x , y ) ) ( λ μ ) ( y ) ) y U ( ( 1 R 2 ( x , y ) ) ( λ μ ) ( y ) ) = y U ( ( 1 R 1 ( x , y ) ) ( λ ) ( y ) y U ( ( 1 R 1 ( x , y ) ) ( μ ) ( y ) y U ( ( 1 R 2 ( x , y ) ) ( λ ) ( y ) y U ( ( 1 R 2 ( x , y ) ) ( μ ) ( y ) = ( R R 1 ̲ λ ) ( x ) ( R R 1 ̲ μ ) ( x ) ( R R 2 ̲ λ ) ( x ) ( R R 2 ̲ μ ) ( x ) = ( R R 1 ̲ λ ) ( x ) ( R R 2 ̲ λ ) ( x ) ( R R 1 ̲ μ ) ( x ) ( R R 2 ̲ μ ) ( x ) = ( PR R 1 + R 2 ̲ λ ) ( x ) ( PR R 1 + R 2 ̲ μ ) ( x ) .
Also, for each x U ,
( PR R 1 * + R 2 * * ̲ ( λ μ ) ) ( x ) = y U ( ( 1 R 1 * ( x , y ) ) 1 ( λ μ ) ( y ) ) y U ( ( 1 R 2 * ( x , y ) ) 1 ( λ μ ) ( y ) ) = y U ( ( 1 R 1 * ( x , y ) ) ( 1 λ ( y ) 1 μ ( y ) ) y U ( ( 1 R 2 * ( x , y ) ) ( 1 λ ( y ) 1 μ ( y ) ) = y U ( ( 1 R 1 * ( x , y ) ) ( 1 λ ( y ) y U ( ( 1 R 1 * ( x , y ) ) ( 1 μ ( y ) y U ( ( 1 R 2 * ( x , y ) ) ( 1 λ ( y ) y U ( ( 1 R 2 * ( x , y ) ) ( 1 μ ( y ) = ( R R 1 * * ̲ λ ) ( x ) ( R R 1 * * ̲ μ ) ( x ) ( R R 2 * * ̲ λ ) ( x ) ( R R 2 * * ̲ μ ) ( x ) = ( R R 1 * * ̲ λ ) ( x ) ( R R 2 * * ̲ λ ) ( x ) ( R R 1 * * ̲ μ ) ( x ) ( R R 2 * * ̲ μ ) ( x ) = ( OR R 1 * + R 2 * * ̲ λ ) ( x ) ( OR R 1 * + R 2 * * ̲ μ ) ( x )
(2) It is similar to the proof of (1).
(3) If λ μ , then for all y U , λ ( y ) μ ( y ) . Therefore,
y U ( 1 R 1 ( x , y ) λ ( y ) ) y U ( 1 R 1 ( x , y ) μ ( y ) )
and
y U ( 1 R 2 ( x , y ) λ ( y ) ) y U ( 1 R 2 ( x , y ) μ ( y ) ) .
Form equations (3.1) and (3.2) we have
y U ( 1 R 1 ( x , y ) λ ( y ) ) y U ( 1 R 2 ( x , y ) λ ( y ) ) y U ( 1 R 1 ( x , y ) μ ( y ) ) y U ( 1 R 2 ( x , y ) μ ( y ) )
Thus, PR R 1 + R 2 ̲ λ PR R 1 + R 2 ̲ μ , also,
y U ( 1 R 1 * ( x , y ) 1 λ ( y ) ) y U ( 1 R 1 * ( x , y ) 1 μ ( y ) )
and
y U ( 1 R 2 * ( x , y ) 1 λ ( y ) ) y U ( 1 R 2 * ( x , y ) 1 μ ( y ) ) .
Form equations (3.3) and (3.4) we have
y U ( 1 R 1 * ( x , y ) 1 λ ( y ) ) y U ( 1 R 2 * ( x , y ) 1 λ ( y ) ) y U ( 1 R 1 * ( x , y ) 1 μ ( y ) ) y U ( 1 R 2 * ( x , y ) 1 μ ( y ) )
Thus, PR R 1 * + R 2 * * ̲ λ PR R 1 * + R 2 * * ̲ μ .
(4) It is similar to the proof of (3).
(5) Since λ λ μ and μ λ μ , by (3) we have
PR R 1 + R 2 ̲ λ PR R 1 + R 2 ̲ ( λ μ ) and PR R 1 + R 2 ̲ μ PR R 1 + R 2 ̲ ( λ μ ) .
Therefore PR R 1 + R 2 ̲ λ PR R 1 + R 2 ̲ μ PR R 1 + R 2 ̲ ( λ μ ) . Also, we have
PR R 1 * + R 2 * * ̲ λ PR R 1 * + R 2 * * ̲ ( λ μ ) and PR R 1 * + R 2 * * ̲ μ PR R 1 * + R 2 * * ̲ ( λ μ ) .
This implies that PR R 1 * + R 2 * * ̲ λ PR R 1 * + R 2 * * ̲ μ PR R 1 * + R 2 * * ̲ ( λ μ ) .
(6) It is similar to the proof of (5).
Example 3.5. Let U = { x , y , z } . Define R 1 , R 1 * , R 2 , R 2 * : U × U I as in the example 2.5 and λ , μ I U as in the example 2.5. Then
( PR R 1 + R 2 ̲ μ ) ( x ) = 0.7 , ( PR R 1 + R 2 ̲ μ ) ( y ) = 0.8 , ( PR R 1 + R 2 ̲ μ ) ( z ) = 0.4 ,
( PR R 1 + R 2 ̲ λ ) ( x ) = 0.5 , ( PR R 1 + R 2 ̲ λ ) ( y ) = 0.5 , ( PR R 1 + R 2 ̲ λ ) ( z ) = 0.5 ,
( PR R 1 + R 2 ̲ ( λ μ ) ) ( x ) = 0.2 , ( PR R 1 + R 2 ̲ ( λ μ ) ) ( y ) = 0.4 , ( PR R 1 + R 2 ̲ ( λ μ ) ) ( z ) = 0.4 ,
Therefore, PR R 1 + R 2 ̲ ( λ μ ) PR R 1 + R 2 ̲ λ PR R 1 + R 2 ̲ μ .
( PR R 1 * + R 2 * * ̲ μ ) ( x ) = 0.2 , ( PR R 1 * + R 2 * * ̲ μ ) ( y ) = 0.2 , ( PR R 1 * + R 2 * * ̲ μ ) ( z ) = 0.6 ,
( PR R 1 * + R 2 * * ̲ λ ) ( x ) = 0.3 , ( PR R 1 * + R 2 * * ̲ λ ) ( y ) = 0.5 , ( PR R 1 * + R 2 * * ̲ λ ) ( z ) = 0.3 ,
( PR R 1 * + R 2 * * ̲ ( λ μ ) ) ( x ) = 0.6 , ( PR R 1 * + R 2 * * ̲ ( λ μ ) ) ( y ) = 0.6 , ( PR R 1 * + R 2 * * ̲ ( λ μ ) ) ( z ) = 0.6 .
Therefore, PR R 1 * + R 2 * * ̲ ( λ μ ) PR R 1 * + R 2 * * ̲ λ PR R 1 * + R 2 * * ̲ μ .
In the following, by extending the pessmistic two-granulation double fuzzy rough set, we will introduce the pessmistic multi-granulation double fuzzy rough set (in short, PMGDFRS) and its accompanying properties.
Definition 3.6. Let ( U , R , R * ) be a MGDFAS such that 1 i m . Then for each fuzzy set λ on U , the pairs ( PR Σ m i = 1 R i ̲ λ , PR Σ m i = 1 R i * * ̲ λ ) and ( PR Σ m i = 1 R i ¯ λ , PR Σ m i = 1 R i * * ¯ λ ) of maps PR Σ m i = 1 R i ̲ λ , PR Σ m i = 1 R i * * ̲ λ ,   PR Σ m i = 1 R i ¯ λ , PR Σ m i = 1 R i * * ¯ λ : U I are called pessimistic multi-granulation double fuzzy lower approximation and pessimistic multi-granulation double fuzzy upper approximation of a fuzzy set λ , respectively and are defined as follows: For all x U ,
( PR Σ m i = 1 R i ̲ λ ) ( x ) = m i = 1 y U ( ( 1 R i ( x , y ) ) λ ( y ) )
( PR Σ m i = 1 R i * * ̲ λ ) ( x ) = m i = 1 y U ( ( 1 R i * ( x , y ) ) 1 λ ( y ) )
( PR Σ m i = 1 R i ¯ λ ) ( x ) = m i = 1 y U ( R i ( x , y ) λ ( y ) )
( PR Σ m i = 1 R i * * ¯ λ ) ( x ) = m i = 1 y U ( R i * ( x , y ) 1 λ ( y ) ) .
The quaternary ( PR Σ m i = 1 R i ̲ λ , PR Σ m i = 1 R i * * ̲ λ , PR Σ m i = 1 R i ¯ λ , PR Σ m i = 1 R i * * ¯ λ ) is called pessimistic multi-granulation double fuzzy rough set of λ (in short, PMGDFRS).
The pairs ( PR Σ m i = 1 R i ̲ , PR Σ m i = 1 R i * * ̲ ) and ( PR Σ m i = 1 R i ¯ , PR Σ m i = 1 R i * * ¯ ) of operators PR Σ m i = 1 R i ̲ , PR Σ m i = 1 R i * * ̲ , PR Σ m i = 1 R i ¯ , PR Σ m i = 1 R i * * ¯ : I U I U are called pessimistic multi-granulation double fuzzy lower approximation and pessimistic multi-granulation double fuzzy upper approximation operators, respectively.
Proposition 3.7. Let ( U , R , R * ) be a MGDFAS. Then for each λ I U we obtain the following:
(1)
PR Σ m i = 1 R i ̲ λ = m i = 1 R R i ̲ λ and PR Σ m i = 1 R i * * ̲ λ = m i = 1 R R i * * ̲ λ .
(2)
PR Σ m i = 1 R i ¯ λ = m i = 1 R R i ¯ λ and PR Σ m i = 1 R i * * ¯ λ = m i = 1 R R i * * ¯ λ .
Proof. It is similar to the proof of Proposition 3.2.
Theorem 3.8.Let ( U , R , R * ) be a MGDFAS. Then for each λ I U we have
(1)
PR Σ m i = 1 R i ¯ λ 1 ˜ PR Σ m i = 1 R i * * ¯ λ and PR Σ m i = 1 R i ̲ λ 1 ˜ PR Σ m i = 1 R i * * ̲ λ .
(2)
PR Σ m i = 1 R i ̲ 1 ˜ = 1 ˜ and PR Σ m i = 1 R i * * ̲ 1 ˜ = 0 ˜ .
(3)
PR Σ m i = 1 R i ¯ 0 ˜ = 0 ˜ and PR Σ m i = 1 R i * * ¯ 0 ˜ = 1 ˜ .
(4)
PR Σ m i = 1 R i ¯ ( 1 ˜ λ ) = 1 ˜ PR Σ m i = 1 R i ̲ λ and PR Σ m i = 1 R i * * ¯ ( 1 ˜ λ ) = 1 ˜ PR Σ m i = 1 R i * * ̲ λ .
(5)
PR Σ m i = 1 R i ̲ ( 1 ˜ λ ) = 1 ˜ PR Σ m i = 1 R i ¯ λ and PR Σ m i = 1 R i * * ̲ ( 1 ˜ λ ) = 1 ˜ PR Σ m i = 1 R i * * ¯ λ .
Proof. It is similar to the proof of Theorem 3.3.
Theorem 3.9. Let ( U , R , R * ) be a MGDFAS. Then for each λ , μ I U we obtain the following:
(1)
PR Σ m i = 1 R i ̲ ( λ μ ) = PR Σ m i = 1 R i ̲ λ PR Σ m i = 1 R i ̲ μ and
PR Σ m i = 1 R i * * ̲ ( λ μ ) = PR Σ m i = 1 R i * * ̲ λ PR Σ m i = 1 R i * * ̲ μ .
(2)
PR Σ m i = 1 R i ¯ ( λ μ ) = PR Σ m i = 1 R i ¯ λ PR Σ m i = 1 R i ¯ μ and
PR Σ m i = 1 R i * * ¯ ( λ μ ) = PR Σ m i = 1 R i * * ¯ λ PR Σ m i = 1 R i * * ¯ μ .
(3)
If λ μ , then PR Σ m i = 1 R i ̲ λ PR Σ m i = 1 R i ̲ μ and PR Σ m i = 1 R i * * ̲ λ PR Σ m i = 1 R i * * ̲ μ .
(4)
If λ μ , then PR Σ m i = 1 R i ¯ λ PR Σ m i = 1 R i ¯ μ and PR Σ m i = 1 R i * * ¯ λ PR Σ m i = 1 R i * * ¯ μ .
(5)
PR Σ m i = 1 R i ̲ ( λ μ ) PR Σ m i = 1 R i ̲ λ PR Σ m i = 1 R i ̲ μ and
PR Σ m i = 1 R i * * ̲ ( λ μ ) PR Σ m i = 1 R i * * ̲ λ PR Σ m i = 1 R i * * ̲ μ .
(6)
PR Σ m i = 1 R i ¯ ( λ μ ) PR Σ m i = 1 R i ¯ λ PR Σ m i = 1 R i ¯ μ and
PR Σ m i = 1 R i * * ¯ ( λ μ ) PR Σ m i = 1 R i * * ¯ λ PR Σ m i = 1 R i * * ¯ μ .
Proof. It is similar to the proof of Theorem 3.4.
Proposition 3.10. Let U be an arbitrary universal set, ( R 1 , R 1 * ) and ( R 2 , R 2 * ) be a double fuzzy relations on U. Then for each i { 1 , 2 } and λ I U we obtain the following:
(1) PR R 1 + R 2 ̲ λ R R i ̲ λ OR R 1 + R 2 ̲ λ and PR R 1 * + R 2 * * ̲ λ R R i * * ̲ λ OR R 1 * + R 2 * * ̲ λ .
(2) PR R 1 + R 2 ¯ λ R R i ¯ λ OR R 1 + R 2 ¯ λ and PR R 1 * + R 2 * * ¯ λ R R i * * ¯ λ OR R 1 * + R 2 * * ¯ λ .
Proof. It can be proven by, Propositions 2.2 and 3.2.
Proposition 3.11. Let ( U , R , R * ) be a MGDFAS. Then for each λ I U and 1 i m we obtain the following:
(1) PR Σ m i = 1 R i ̲ λ R R i ̲ λ OR Σ m i = 1 R i ̲ λ and PR Σ m i = 1 R i * * ̲ λ R R i * * ̲ λ OR Σ m i = 1 R i * * ̲ λ .
(2) PR Σ m i = 1 R i ¯ λ R R i ¯ λ PR Σ m i = 1 R i ¯ λ and PR Σ m i = 1 R i * * ¯ λ R R i * * ¯ λ OR Σ m i = 1 R i * * ¯ λ .
Proof. It can be proven by, Propositions 2.8 and 3.7.

4. Conclusion

It has been discovered that the rough set theory is a potent theory with numerous applications in the artificial intelligence fields of pattern recognition, machine learning, and automated knowledge acquisition. In this study, the idea of double fuzzy rough sets was introduced, which was seen as a generalization of fuzzy rough sets.

Conflicts of Interest

The authors declare that there is no conflicts of interest regarding the publication of this paper.

References

  1. A. A. Abd El-Latif and A. A. Ramadan, On L-double fuzzy rough sets, Iranian Journal of Fuzzy Systems, 13 (3) (2016), 125-142. [CrossRef]
  2. A. A. Allam, M. Y. Bakier, Sh. S. Abd-Allah, Rough fuzzy sets via multifunction, Annals of fuzzy mathematics and informatics, 19 (1) (2020), 89-94. [CrossRef]
  3. K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20(1) (1986), 87-96. [CrossRef]
  4. J. K. Chen and J. J. Li, An application of rough sets to graph theory, Information Sciences, 201 (2012), 114-127. [CrossRef]
  5. H. Chen, T. Li, C. Luo, S.-J. Horng and G. Wang, A decision-theoretic rough set approach for dynamic data mining. IEEE Trans. Fuzzy Syst. 2015, 23, 1958–1970. [CrossRef]
  6. Dubois, H. Prade, Rough fuzzy sets and fuzzy rough sets, Int. J. Gen. Syst. 17 (1990) 191-208. [CrossRef]
  7. D. Dubois, H. Prade, Putting rough sets and fuzzy sets together, in: R. Slowinski (Ed.), Intelligent Decision Support: Handbook of Applications and Advances of the Sets Theory, Kluwer, Dordrecht, 1992, pp. 203–232.
  8. J. G. Garcia and S. E. Rodabaugh, Order-theoretic, topological, categorical redundancides of intervalvalued sets, grey sets, vague sets, interval-valued intuitionistic sets, intuitionistic fuzzy sets and topologies, Fuzzy Sets and Systems, 156 (2005), 445-484. [CrossRef]
  9. A. M. Ghroutkhar and H. M. Nahi, Fuzzy–rough set models and fuzzy-rough data reduction, Croatian Operational Research Review, 11(2020), 67–80. [CrossRef]
  10. A. A. Estaji, M. R. Hooshmandasl and B. Davvaz, Rough set theory applied to lattice theory, Information Sciences, 200 (2012), 108-122. [CrossRef]
  11. I. Ismail, S. E. Abbas, Fuzzy rough sets with a fuzzy ideal, Journal of the egyptian mathematical society, (2020), 28-36. [CrossRef]
  12. J. Y. Liang, F. Wang, C. Y. Dang and Y. H. Qian, An efficient rough feature selection algorithm with a multi-granulation view, International Journal of Approximate Reasoning, 50 (2012), 912-926. [CrossRef]
  13. G. P. Lin, Y. H. Qian and J. J. Li, NMGRS: neighborhood-based multi-granulation rough sets, International Journal of Approximate Reasoning, 53 (7) (2012), 1080-1093. [CrossRef]
  14. C. H. Liu and M. Z. Wang, Covering fuzzy rough set based on multi-granulations, International Conference on Uncertainty Reasoning and Knowledge Engineering, 2011, pp. 146-149. [CrossRef]
  15. C. H. Liu, D. Q. Miao and J. Qian, On multi-granulation covering rough sets, International Journal of Approximate Reasoning, 55(6) (2014), 1404-1418. [CrossRef]
  16. J. M. Ma, W. X. Zhang, Y. Leung and X. X. Song, Granular computing and dual Galois connection, Information Sciences, 177 (2007), 5365-5377. [CrossRef]
  17. J.S. Mi, Y. Leung, H.Y. Zhao and T. Feng, Generalized fuzzy rough sets determined by a triangular norm, Information Sciences, 178 (2008), 3203–3213. [CrossRef]
  18. Y. Ouyang, Z.D. Wang and H.P. Zhang, On fuzzy rough sets based on tolerance relations, Information Sciences, 180 (2010), 532–542. [CrossRef]
  19. Z. Pawlak, Rough sets, International Journal of Computer and Information Sciences, 11 (1982), 341-356.
  20. Z. Pawlak, Rough Sets, Theoretical Aspects of Reasoning about Data, Kluwer Academic Publishers, Dordrecht, Boston, 1991.
  21. Z. Pawlak, Rough sets, decision algorithms and Bayes’s theorem, Europe Journal of Operational Research 136 (2002), 181–189. [CrossRef]
  22. W. Pedrycz, Granular computing: aanalysis and design of intelligent systems, CRC Press, Boca Raton, 2013.
  23. Y. H. Qian and J. Y. Liang, Rough Set Method Based on Multi-granulations. The 5th IEEE International Conference on Cognitive Informatics, Beijing, China, (2006), 297-304. [CrossRef]
  24. Y. H. Qian, J. Y. Liang, Y. Y. Yao and C. Y. Dang, MGRS: A multi-granulation rough set, Information Sciences, 180 (6) (2010), 949-970. [CrossRef]
  25. Y. H. She and X. L. He, On the structure of the multi-granulation rough set model, Knowledge-Based systems, 36 (2012), 81-92. [CrossRef]
  26. A P. Sostak, On a fuzzy topological structure, Suppl. Rend. Circ. Matin. Pulerms Ser. II, 11 (1985), 89-103.
  27. R.W. Swiniarski and A. Skowron, Rough set method in feature selection and recognition, Pattern Recognition Letter 24 (2003), 833–849. [CrossRef]
  28. W. Tang, J. Wu and D. Zheng, On Fuzzy Rough Sets and Their Topological Structures, Hindawi Publishing Corporation, Mathematical Problems in Engineering. [CrossRef]
  29. W.Z. Wu, J.S. Mi and W.X. Zhang, Generalized fuzzy rough sets, Information Sciences, 151 (2003), 263–282. [CrossRef]
  30. L. A. Zadeh, Fuzzy sets, Information and Control, 8 (1965), 338-353.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated