Preprint Article Version 8 This version is not peer-reviewed

On the Interpretation of Cosmic Acceleration

Version 1 : Received: 7 September 2023 / Approved: 13 September 2023 / Online: 13 September 2023 (10:05:21 CEST)
Version 2 : Received: 18 September 2023 / Approved: 18 September 2023 / Online: 25 September 2023 (04:49:46 CEST)
Version 3 : Received: 6 January 2024 / Approved: 8 January 2024 / Online: 8 January 2024 (06:37:58 CET)
Version 4 : Received: 27 January 2024 / Approved: 29 January 2024 / Online: 29 January 2024 (04:48:12 CET)
Version 5 : Received: 11 April 2024 / Approved: 11 April 2024 / Online: 12 April 2024 (04:53:47 CEST)
Version 6 : Received: 28 June 2024 / Approved: 1 July 2024 / Online: 1 July 2024 (08:12:07 CEST)
Version 7 : Received: 16 August 2024 / Approved: 20 August 2024 / Online: 21 August 2024 (13:38:50 CEST)
Version 8 : Received: 4 September 2024 / Approved: 9 September 2024 / Online: 9 September 2024 (11:22:34 CEST)

A peer-reviewed article of this Preprint also exists.

Gaztanaga, E. On the Interpretation of Cosmic Acceleration. Symmetry 2024, 16, 1141, doi:10.3390/sym16091141. Gaztanaga, E. On the Interpretation of Cosmic Acceleration. Symmetry 2024, 16, 1141, doi:10.3390/sym16091141.

Abstract

In relativity, the Newtonian concepts of velocity and acceleration are observer-dependent quantities that vary with the chosen frame of reference. It is well established that in the comoving frame, cosmic expansion is currently accelerating; however, in the rest frame, this expansion is actually decelerating. In this paper, we explore the implications of this distinction. The traditional measure of cosmic acceleration, denoted by q, is derived from the comoving frame and describes the acceleration of the scale factor a for a 3D space-like homogeneous sphere. We introduce a new parameter qE representing the acceleration experienced between observers within the light cone. By comparing qE to the traditional q using observational data from Type Ia supernovae (SN) and the radial clustering of galaxies and quasars (BAO)—including the latest results from DESI2024—our analysis demonstrates that qE aligns more closely with these data. The core argument of the paper is that Λ—regardless of its origin—creates an event horizon that divides the manifold into two causally disconnected regions analogous to conditions inside a black hole’s interior, thereby allowing for a rest-frame perspective qE in which cosmic expansion appears to be decelerating and the horizon acts like a friction term. Such a horizon suggests that the universe cannot maintain homogeneity outside. The observed cosmological constant Λ can then be interpreted not as a driver of new dark energy or a modification of gravity but as a boundary term exerting an attractive force, akin to a rubber band, resisting further expansion and preventing event horizon crossings. This interpretation calls for a reconsideration of current cosmological models and the assumptions underlying them.

Keywords

cosmology; dark energy; general relativity; black holes

Subject

Physical Sciences, Astronomy and Astrophysics

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.