Sort by
Photon-Field Interactions: A Relativistic and Quantum Approach
M. M. Shamshiri
Posted: 26 December 2024
Cosmic Free Energy – Dynamics of Reality (Paper 2)
Rohit Patra
The framework presented in this paper explores the dynamic instability of cosmic nodes—localized regions of concentrated energy—at the Planck scale. We propose that these nodes are governed by the interplay of pressure gradients and quantum fluctuations, leading to a continuous redistribution of energy without the establishment of stable equilibrium. Unlike classical thermodynamic systems that tend toward equilibrium, cosmic nodes are in a constant state of flux, where energy densities oscillate unpredictably. Pressure gradients drive the movement of energy, compressing it into high-density regions, while quantum fluctuations add inherent randomness, ensuring perpetual instability. This framework challenges traditional models of static or equilibrium-based systems, offering a fresh perspective on the evolution of energy fields at fundamental scales. The implications of this model extend to cosmological phenomena such as cosmic inflation, quantum foam, and large-scale energy redistribution in the early universe. By bridging concepts in quantum gravity and cosmology, this work contributes to a deeper understanding of the universe’s dynamic, non-static nature, potentially reshaping our understanding of cosmic evolution and energy behavior at the Planck scale.
The framework presented in this paper explores the dynamic instability of cosmic nodes—localized regions of concentrated energy—at the Planck scale. We propose that these nodes are governed by the interplay of pressure gradients and quantum fluctuations, leading to a continuous redistribution of energy without the establishment of stable equilibrium. Unlike classical thermodynamic systems that tend toward equilibrium, cosmic nodes are in a constant state of flux, where energy densities oscillate unpredictably. Pressure gradients drive the movement of energy, compressing it into high-density regions, while quantum fluctuations add inherent randomness, ensuring perpetual instability. This framework challenges traditional models of static or equilibrium-based systems, offering a fresh perspective on the evolution of energy fields at fundamental scales. The implications of this model extend to cosmological phenomena such as cosmic inflation, quantum foam, and large-scale energy redistribution in the early universe. By bridging concepts in quantum gravity and cosmology, this work contributes to a deeper understanding of the universe’s dynamic, non-static nature, potentially reshaping our understanding of cosmic evolution and energy behavior at the Planck scale.
Posted: 26 December 2024
Integrating Electromagnetic Interactions into the QMM Framework
Florian Neukart,
Eike Marx,
Valerii Vinokur
We present a framework extending the Quantum Memory Matrix (QMM) principles, originally formulated to reconcile quantum mechanics and gravity, to the domain of electromagnetism. In this discretized space--time approach, Planck-scale quantum cells act as memory units that store information via local quantum imprints of field interactions. By introducing gauge-invariant imprint operators for the electromagnetic field, we maintain unitarity, locality, and the equivalence principle while encoding electromagnetic data directly into the fabric of space--time. This construction ensures that black hole evaporation, including for charged black holes, respects unitarity, with initially hidden quantum information emerging through subtle, non-thermal correlations in the emitted radiation. The QMM framework also imposes a natural ultraviolet cutoff, potentially modifying vacuum polarization and charge renormalization, and may imprint observable signatures in the cosmic microwave background or large-scale structures from primordial electromagnetic fields. Compared to other unification proposals, QMM does not rely on nonlocal processes or exotic geometries, favoring a local, covariant, and gauge-invariant mechanism. Although direct Planck-scale tests remain challenging, indirect observational strategies—ranging from gravitational wave analyses to laboratory analog experiments—could probe QMM-like phenomena and guide the development of a fully unified theory encompassing all fundamental interactions.
We present a framework extending the Quantum Memory Matrix (QMM) principles, originally formulated to reconcile quantum mechanics and gravity, to the domain of electromagnetism. In this discretized space--time approach, Planck-scale quantum cells act as memory units that store information via local quantum imprints of field interactions. By introducing gauge-invariant imprint operators for the electromagnetic field, we maintain unitarity, locality, and the equivalence principle while encoding electromagnetic data directly into the fabric of space--time. This construction ensures that black hole evaporation, including for charged black holes, respects unitarity, with initially hidden quantum information emerging through subtle, non-thermal correlations in the emitted radiation. The QMM framework also imposes a natural ultraviolet cutoff, potentially modifying vacuum polarization and charge renormalization, and may imprint observable signatures in the cosmic microwave background or large-scale structures from primordial electromagnetic fields. Compared to other unification proposals, QMM does not rely on nonlocal processes or exotic geometries, favoring a local, covariant, and gauge-invariant mechanism. Although direct Planck-scale tests remain challenging, indirect observational strategies—ranging from gravitational wave analyses to laboratory analog experiments—could probe QMM-like phenomena and guide the development of a fully unified theory encompassing all fundamental interactions.
Posted: 26 December 2024
Finite-Size Scaling in the Ageing Dynamics of the 1D Glauber-Ising Model
Malte Henkel
Posted: 26 December 2024
Investigation of the Ionospheric Effects of the Solar Eclipse of April 8, 2024 Using Multi-Instrument Measurements
Aritra Sanyal,
Bhuvnesh Brawar,
Sovan Kumar Maity,
Shreyam Jana,
Jean Marie Polard,
Peter Newton,
Stelios M. Potirakis,
Haris Haralambous,
Georgios Balasis,
James Brundell
Posted: 26 December 2024
Extending the QMM Framework to the Strong and Weak Interactions
Florian Neukart,
Eike Marx,
Valerii Vinokur
Posted: 26 December 2024
Simulation of Arc Discharge in Argon/Methane Mixture Taking Into Account Evaporation of Anode Material in Problems of Synthesis of Functional Nanostructures
Almaz Saifutdinov,
Boris Timerkaev
Posted: 26 December 2024
Acoustic Emission during Rubber-Like Deformation in Ni51Fe18Ga27Co4 Single Crystalline Shape Memory Alloy
Lajos Daróczi,
Sarah M Kamel,
László Z. Tóth,
Elena Yu Panchenko,
Yuri I Chumljakov,
Dezső L. Beke
Posted: 25 December 2024
Dirac Fermion of a Monopole Pair (MP) Model of 4D Space-Time and Its Wider Implications
Samuel Yuguru
In quantum mechanics (QM), the electron of spin-charge, ±1/2 in probabilistic distribution about a nucleus of an atom is described by non-relativistic Schrödinger wave equation. Its transformation to Dirac fermion of a complex four-component spinor is incorporated into relativistic quantum field theory (QFT) based on Dirac theory. The link between QM and QFT on the basis of space-time structure remains lacking without the development of a proper, complete theory of quantum gravity. In this study, how a proposed MP model of 4D space-time mimicking hydrogen atom type is able to combine both QM and QFT into a proper perspective is explored. The electron of a point-particle and its transformation to Dirac fermion appears consistent with Dirac belt trick while sustaining unitarity of spin-charge and wave-particle duality with center of mass reference frame relevant to Newtonian gravity assigned to the point-boundary of the spherical model. Such a tool appears dynamic and is compatible with basic aspects of both QM and QFT such as non-relativistic wave function and its collapse, quantized Hamiltonian, Dirac spinors, Weyl spinors, Marjorana fermions and Lorentz transformation. How all these relate to space-time curvature for an elliptical orbit without invoking a framework of space-time fabric is plotted for general relativity and a multiverse of the MP models at a hierarchy of scales is proposed for further investigations.
In quantum mechanics (QM), the electron of spin-charge, ±1/2 in probabilistic distribution about a nucleus of an atom is described by non-relativistic Schrödinger wave equation. Its transformation to Dirac fermion of a complex four-component spinor is incorporated into relativistic quantum field theory (QFT) based on Dirac theory. The link between QM and QFT on the basis of space-time structure remains lacking without the development of a proper, complete theory of quantum gravity. In this study, how a proposed MP model of 4D space-time mimicking hydrogen atom type is able to combine both QM and QFT into a proper perspective is explored. The electron of a point-particle and its transformation to Dirac fermion appears consistent with Dirac belt trick while sustaining unitarity of spin-charge and wave-particle duality with center of mass reference frame relevant to Newtonian gravity assigned to the point-boundary of the spherical model. Such a tool appears dynamic and is compatible with basic aspects of both QM and QFT such as non-relativistic wave function and its collapse, quantized Hamiltonian, Dirac spinors, Weyl spinors, Marjorana fermions and Lorentz transformation. How all these relate to space-time curvature for an elliptical orbit without invoking a framework of space-time fabric is plotted for general relativity and a multiverse of the MP models at a hierarchy of scales is proposed for further investigations.
Posted: 25 December 2024
Research on Simulation Optimization of MEMS Microfluidic Structures at the Microscale
Changhu Wang,
Weiyun Meng
Abstract: Microfluidic systems have become a hot topic in Micro-Electro-Mechanical System (MEMS) research, with micropumps serving as a key element due to their role in determining structural and flow dynamics within these systems. This study aims to analyze the influence of different structural obstacles within microfluidics on micropump efficiency and to offer guidance for improving microfluidic system designs. In this context, a MEMS-based micropump valve structure was developed, and simulations were conducted to examine the effects of the valve on microfluidic oscillations. The research explored various configurations, including valve positions and quantities, yielding valuable insights for optimizing microfluidic transport mechanisms at the microscale.
Abstract: Microfluidic systems have become a hot topic in Micro-Electro-Mechanical System (MEMS) research, with micropumps serving as a key element due to their role in determining structural and flow dynamics within these systems. This study aims to analyze the influence of different structural obstacles within microfluidics on micropump efficiency and to offer guidance for improving microfluidic system designs. In this context, a MEMS-based micropump valve structure was developed, and simulations were conducted to examine the effects of the valve on microfluidic oscillations. The research explored various configurations, including valve positions and quantities, yielding valuable insights for optimizing microfluidic transport mechanisms at the microscale.
Posted: 25 December 2024
of 431