Preprint
Article

Unbounded Donoho-Stark-Elad-Bruckstein-Ricaud-Torrésani Uncertainty Principle

Altmetrics

Downloads

117

Views

113

Comments

0

This version is not peer-reviewed

Submitted:

18 September 2023

Posted:

18 September 2023

You are already at the latest version

Alerts
Abstract
Let $(\Omega, \mu)$, $(\Delta, \nu)$ be measure spaces. Let $(\{f_\alpha\}_{\alpha\in \Omega}, \{\tau_\alpha\}_{\alpha\in \Omega})$ and $(\{g_\beta\}_{\beta\in \Delta}, \{\omega_\beta\}_{\beta\in \Delta})$ be unbounded continuous 1-Schauder frames for a Banach space $\mathcal{X}$. Then for every $x \in ( \mathcal{D}(\theta_f) \cap\mathcal{D}(\theta_g))\setminus\{0\}$, we show that \begin{align}\label{UB} \mu(\operatorname{supp}(\theta_f x))\nu(\operatorname{supp}(\theta_g x)) \geq \frac{1}{\left(\displaystyle\sup_{\alpha \in \Omega, \beta \in \Delta}|f_\alpha(\omega_\beta)|\right)\left(\displaystyle\sup_{\alpha \in \Omega , \beta \in \Delta}|g_\beta(\tau_\alpha)|\right)}. \end{align} where \begin{align*} &\theta_f:\mathcal{D}(\theta_f) \ni x \mapsto \theta_fx \in \mathcal{L}^1(\Omega, \mu); \quad \theta_fx: \Omega \ni \alpha \mapsto (\theta_fx) (\alpha):= f_\alpha (x) \in \mathbb{K},\\ &\theta_g: \mathcal{D}(\theta_g) \ni x \mapsto \theta_gx \in \mathcal{L}^1(\Delta, \nu); \quad \theta_gx: \Delta \ni \beta \mapsto (\theta_gx) (\beta):= g_\beta (x) \in \mathbb{K}. \end{align*} We call Inequality (\ref{UB}) as \textbf{Unbounded Donoho-Stark-Elad-Bruckstein-Ricaud-Torr\'{e}sani Uncertainty Principle}. Along with recent \textbf{Functional Continuous Uncertainty Principle} (derived in [arXiv:2308.00312v1 [math.FA], 1 August 2023]), Inequality (\ref{UB}) also improves Ricaud-Torr\'{e}sani uncertainty principle \textit{[IEEE Trans. Inform. Theory, 2013]}. In particular, it improves Elad-Bruckstein uncertainty principle \textit{[IEEE Trans. Inform. Theory, 2002]} and Donoho-Stark uncertainty principle \textit{[SIAM J. Appl. Math., 1989]}.
Keywords: 
Subject: Computer Science and Mathematics  -   Analysis

MSC:  42C15

1. Introduction

Given a collection { τ j } j = 1 n in a finite dimensional Hilbert space H over K ( R or C ), define
θ τ : H h θ τ h ( h , τ j ) j = 1 n K n .
Most general form of discrete uncertainty principle for finite dimensional Hilbert spaces is the following.
Theorem 1.1.  (Donoho-Stark-Elad-Bruckstein-Ricaud-Torrésani Uncertainty Principle) [1,2,3] Let { τ j } j = 1 n , { ω j } j = 1 n be two Parseval frames for a finite dimensional Hilbert space H . Then
θ τ h 0 + θ ω h 0 2 2 θ τ h 0 θ ω h 0 1 max 1 j , k n | τ j , ω k | 2 , h H { 0 } .
Recently, Theorem 1.1 has been derived for Banach spaces using the following notion.
 Definition 1.2. 
[4] Let ( Ω , μ ) be a measure space. Let { τ α } α Ω be a collection in a Banach space X and { f α } α Ω be a collection in X * . The pair ( { f α } α Ω , { τ α } α Ω ) is said to be acontinuous p-Schauder framefor X ( 1 p < ) if the following holds.
(i)
For every x X , the map Ω α f α ( x ) K is measurable.
(ii)
For every x X ,
x p = Ω | f α ( x ) | p d μ ( α ) .
(iii)
For every x X , the map Ω α f α ( x ) τ α X is weakly measurable.
(iv)
For every x X ,
x = Ω f α ( x ) τ α d μ ( α ) ,
where the integral is weak integral.
Given a continuous p-Schauder frame ( { f α } α Ω , { τ α } α Ω ) for X , define
θ f : X x θ f x L p ( Ω , μ ) ; θ f x : Ω α ( θ f x ) ( α ) f α ( x ) K
 Theorem  1.3.  (Functional Continuous Donoho-Stark-Elad-Bruckstein-Ricaud-Torrésani Uncertainty Principle) [4,5,6] Let ( Ω , μ ) , ( Δ , ν ) be measure spaces. Let ( { f α } α Ω , { τ α } α Ω ) and ( { g β } β Δ , { ω β } β Δ ) be continuous p-Schauder frames for a Banach space X . Then
(i)
for p > 1 , we have
μ ( supp ( θ f x ) ) 1 p ν ( supp ( θ g x ) ) 1 q 1 sup α Ω , β Δ | f α ( ω β ) | , x X { 0 } ; ν ( supp ( θ g x ) ) 1 p μ ( supp ( θ f x ) ) 1 q 1 sup α Ω , β Δ | g β ( τ α ) | , x X { 0 } .
where q is the conjugate index of p.
(ii)
for p = 1 , we have
μ ( supp ( θ f x ) ) 1 sup α Ω , β Δ | f α ( ω β ) | , ν ( supp ( θ g x ) ) 1 sup α Ω , β Δ | g β ( τ α ) | .
In this paper, we derive an unbounded uncertainty principle which contains Theorem 1.1 as a particular case.

2. Unbounded Donoho-Stark-Elad-Bruckstein-Ricaud-Torrésani Uncertainty Principle

We first generalize Definition 1.2 using unbounded linear functionals. Our motivation to do so is the theory of unbounded frames (also known as semi frames or pseudo frames) for Hilbert and Banach spaces, see [7,8,9,10].
 Definition  2.1. 
Let ( Ω , μ ) be a measure space. Let { τ α } α Ω be a collection in a Banach space X and { f α } α Ω be a collection of linear functions on X (which may not be bounded). The pair ( { f α } α Ω , { τ α } α Ω ) is said to be aunbounded continuous p-Schauder frameorcontinuous semi p-Schauder framefor X if the following conditions holds.
(i)
For every x X , the map Ω α f α ( x ) K is measurable.
(ii)
The map
θ f : D ( θ f ) x θ f x L 1 ( Ω , μ ) ; θ f x : Ω α ( θ f x ) ( α ) f α ( x ) K
is well-defined (need not be bounded).
(iii)
For every x X , the map Ω α f α ( x ) τ α X is weakly measurable.
(iv)
For every x D ( θ f ) ,
x = Ω f α ( x ) τ α d μ ( α ) ,
where the integral is weak integral.
 Theorem  2.2.  (Unbounded Donoho-Stark-Elad-Bruckstein-Ricaud-Torrésani Uncertainty Principle) Let ( Ω , μ ) , ( Δ , ν ) be measure spaces. Let ( { f α } α Ω , { τ α } α Ω ) and ( { g β } β Δ , { ω β } β Δ ) be unbounded continuous 1-Schauder frames for a Banach space X . Then for every x ( D ( θ f ) D ( θ g ) ) { 0 } , we have
μ ( supp ( θ f x ) ) ν ( supp ( θ g x ) ) 1 sup α Ω , β Δ | f α ( ω β ) | sup α Ω , β Δ | g β ( τ α ) | .
Proof. 
Let x D ( θ f ) { 0 } . Then
θ f x = Ω | f α ( x ) | d μ ( α ) = supp ( θ f x ) | f α ( x ) | d μ ( α ) = supp ( θ f x ) f α Δ g β ( x ) ω β d ν ( β ) d μ ( α ) = supp ( θ f x ) Δ g β ( x ) f α ( ω β ) d ν ( β ) d μ ( α ) = supp ( θ f x ) supp ( θ g x ) g β ( x ) f α ( ω β ) d ν ( β ) d μ ( α ) supp ( θ f x ) supp ( θ g x ) | g β ( x ) f α ( ω β ) | d ν ( β ) d μ ( α ) sup α Ω , β Δ | f α ( ω β ) | supp ( θ f x ) supp ( θ g x ) | g β ( x ) | d ν ( β ) d μ ( α ) = sup α Ω , β Δ | f α ( ω β ) | μ ( supp ( θ f x ) ) supp ( θ g x ) | g β ( x ) | d ν ( β ) = sup α Ω , β Δ | f α ( ω β ) | μ ( supp ( θ f x ) ) θ g x .
Therefore
1 sup α Ω , β Δ | f α ( ω β ) | θ f x μ ( supp ( θ f x ) ) θ g x .
On the other way, let x D ( θ g ) { 0 } . Then
θ g x = Δ | g β ( x ) | d ν ( β ) = supp ( θ g x ) | g β ( x ) | d ν ( β ) = supp ( θ g x ) g β Ω f α ( x ) τ α d μ ( α ) d ν ( β ) = supp ( θ g x ) Ω f α ( x ) g β ( τ α ) d μ ( α ) d ν ( β ) = supp ( θ g x ) supp ( θ f x ) f α ( x ) g β ( τ α ) d μ ( α ) d ν ( β ) supp ( θ g x ) supp ( θ f x ) | f α ( x ) g β ( τ α ) | d μ ( α ) d ν ( β ) sup α Ω , β Δ | g β ( τ α ) | supp ( θ g x ) supp ( θ f x ) | f α ( x ) | d μ ( α ) d ν ( β ) = sup α Ω , β Δ | g β ( τ α ) | ν ( supp ( θ g x ) ) supp ( θ f x ) | f α ( x ) | d μ ( α ) = sup α Ω , β Δ | g β ( τ α ) | ν ( supp ( θ g x ) ) θ f x .
Therefore
1 sup α Ω , β Δ | g β ( τ α ) | θ g x ν ( supp ( θ g x ) ) θ f x .
Multiplying Inequalities (3) and (4) we get
1 sup α Ω , β Δ | f α ( ω β ) | sup α Ω , β Δ | g β ( τ α ) | θ f x θ g x μ ( supp ( θ f x ) ) ν ( supp ( θ g x ) ) θ g x θ f x , x ( D ( θ f ) D ( θ g ) ) { 0 } .
A cancellation of θ f x θ g x gives the required inequality. □
 Corollary . 2.3.
 Let ( { f j } j = 1 n , { τ j } j = 1 n ) and ( { g k } k = 1 m , { ω k } k = 1 m ) be collections in a Banach space X such that
x = j = 1 n f j ( x ) τ j = k = 1 m g k ( x ) ω k , x X .
Then for every x X { 0 } ,
θ f x 0 θ g x 0 1 max 1 j n , 1 k m | f j ( ω k ) | max 1 j n , 1 k m | g k ( τ j ) | ,
where
θ f : X x ( f j ( x ) ) j = 1 n 1 ( [ n ] ) ; θ g : X x ( g k ( x ) ) k = 1 m 1 ( [ m ] ) .
Even though by multiplying two inequalities in (2) we get Inequality (3) for continuous 1-Schauder frames, observe that the conclusion in (2) is stronger (with stronger assumption) than that of Theorem 2.2.
Note that proof of Theorem 2.2 does not work for unbounded continuous p-Schauder frames for p > 1 (even by using Holder’s inequality). We are therefore left over with following problem.
 Problem . 2.4.
What is the unbounded version of Theorem 2.2 for p > 1 ?

References

  1. Donoho, D.L.; Stark, P.B. Uncertainty principles and signal recovery. SIAM J. Appl. Math. 1989, 49, 906–931. [Google Scholar] [CrossRef]
  2. Elad, M.; Bruckstein, A.M. A generalized uncertainty principle and sparse representation in pairs of bases. IEEE Trans. Inform. Theory 2002, 48, 2558–2567. [Google Scholar] [CrossRef]
  3. Ricaud, B.; Torrésani, B. Refined support and entropic uncertainty inequalities. IEEE Trans. Inform. Theory 2013, 59, 4272–4279. [Google Scholar] [CrossRef]
  4. Krishna, K.M. Functional Continuous Uncertainty Principle. arXiv:2308.00312v1 [math.FA] 1 August 2023.
  5. Krishna, K.M. Functional Donoho-Stark-Elad-Bruckstein-Ricaud-Torrésani Uncertainty Principle. arXiv: 2304. 03324v1, [math.FA] 5 April 2023.
  6. Krishna, K.M. An Endpoint Functional Continuous Uncertainty Principle. 10.20944/preprints202308.1108.v1, 15 August 2023. 15 August.
  7. Liu, B.; Liu, R.; Zheng, B. Parseval p-frames and the Feichtinger conjecture. J. Math. Anal. Appl. 2015, 424, 248–259. [Google Scholar] [CrossRef]
  8. Christensen, O. Frames and pseudo-inverses. J. Math. Anal. Appl. 1995, 195, 401–414. [Google Scholar] [CrossRef]
  9. Antoine, J.P.; Balazs, P. Frames, semi-frames, and Hilbert scales. Numer. Funct. Anal. Optim. 2012, 33, 736–769. [Google Scholar] [CrossRef]
  10. Antoine, J.P.; Balazs, P. Frames and semi-frames. J. Phys. A 2011, 44, 205201, 25. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated