Preprint
Review

Colorectal Cancer Stem Cells and Targeted Agents

Altmetrics

Downloads

109

Views

38

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

14 October 2023

Posted:

17 October 2023

You are already at the latest version

Alerts
Abstract
Once discovered, cancer stem cells have become a hot topic in the research of cancer therapy. These cells possess stem cell-like self-renewal and differentiation capacities and are important factors that dominate cancer metastasis, therapy- resistance and recurrence. What's worse, their own characteristics make them difficult to be eliminated. Colorectal cancer is the third most common cancer and the second leading cause of cancer death worldwide. Targeting colorectal cancer stem cells (CRCSCs) can inhibit colorectal cancer metastasis, enhance therapeutic efficacy, and reduce recurrence. Here, we introduced the origin, marker proteins, identification, cultivation and research techniques of CRCSCs, summarized the signaling pathways that regulate the stemness of CRCSCs, such as Wnt, JAK/STAT3, Notch, and Hh signaling pathway. In addition to these, we also reviewed anti-CRCSC drugs targeting signaling pathways,markers,and other regulators in recent years. These will help researchers gain insight into the current agents targeting to CRCSCs, explore new cancer drugs, and propose potential therapy.
Keywords: 
Subject: Biology and Life Sciences  -   Cell and Developmental Biology

1. Introduction

In 1994, John and Bonnet isolated and identified cancer cells with stemness from leukemia cells, and proposed the concept of "leukemia stem cells (LSCs)"[1]. This is the first confirmation of the existence of stem cells in cancer, a major breakthrough in the field of cancer stem cells (CSCs) research. In 2003, Dontu and colleagues isolated CSCs from breast cancer cells [2], which was the first time to prove the existence of CSCs in solid tumors. In the following years, CSCs were found in brain tumor, prostate cancer, lung cancer, colorectal cancer and other tumors [3-6]. Nowadays, the theory of CSCs has gained consensus and has attracted high attentions in cancer treatment research. CSCs are a small population of cancer cells with stemness like stem cells. They can fulfill self-renewal through symmetrical division and asymmetric division to produce daughter cells with stemness or normal cancer cells [7]. Besides, CSCs can form cancer cells with different degrees of differentiation and reconstitute the complete cancer cell repertoire of the original cancer [8, 9]. And normal cancer cells without CSC properties can dedifferentiate back into CSCs through a bidirectional interconversion process [10]. This is a major reason for cancer cell heterogeneity [11]. For a good clinical outcome, cancer cells with or without properties of CSCs must be eradicated. During the development of cancer, CSCs are important factors that lead to metastasis, therapy-resistance, and recurrence [12-14]. CSCs are often accompanied by an epithelial to mesenchymal transition phenotype, and they interact with stromal cells, endothelial cells, and others to promote angiogenesis, stem-like cancer cell differentiation, and accelerate metastasis [15]. The cell cycle of CSCs arrests in G0 phase, so they are resistant to cycle specific chemotherapy drugs [16]. Due to their DNA synthesis asynchrony and enhanced DNA repair, CSCs are resistant to DNA damaging drugs [16]. And CSCs are highly expressed in drug transporters and anti-apoptotic proteins such as Bcl-2, which endows them with the ability to pump chemotherapy drugs out of the cell and resist programmed cell death [16]. Recent research suggested that resting cancer stem cells can evade immune surveillance and lay the seeds for cancer recurrence [17, 18]. This makes CSCs more difficult to eliminate than cancer cells
Colorectal cancer (CRC) is the third most common malignant tumor. In recent years, with the popularization of early screening for colorectal cancer and the advancement of treatment methods, the mortality rate of colorectal cancer has decreased [19]. However, metastasis and recurrence are still the leading causes of death in most end-stage CRC patients. Reducing metastasis and recurrence remains an urgent problem in CRC therapy. Colorectal cancer stem cells (CRCSCs) may be the initial cells of colon cancer [20], promoting colon cancer metastasis [21, 22], and also being one of the main culprits of therapy-resistance and recurrence [23](Figure 1).Eliminating CRCSCs can promote colon cancer therapeutic effects[24-26].Here, we reviewed the origin and identification of colorectal stem cells, and summarized the potential therapeutic targets of CRCSCs and the current research status of agents targeting CRCSCs. These will help researchers gain insight into the current agents targeting CRCSCs, explore new drugs, and propose potential therapy.
CRCSCs not only divide into CRCSCs, but can also produce ordinary cancer cells through proliferation or differentiation. Due to their quiescent state, high differentiation activity, and other properties, CRCSCs can promote metastasis, therapeutic resistance, and recurrence.

2. Colorectal cancer stem cells

2.1. Origin of CRCSCs

Researchers generally believe that CSCs have two main origins, derived from normal cells that acquire mesenchymal or traits [27] or transformed from normal adult stem cells [28]. The same holds true for the origin of CRCSCs. Leucine-rich repeat-containing G-protein coupled receptor 5 (LGR5) expressed selectively in the intestinal crypt-base columnar cells [29]. Meanwhile,this is the first proved marker of CRCSCs. In mouse models, genetic inactivation of the key colorectal cancer (CRC) driver gene Adenomatous Polyposis Coli (Apc) in LGR5+ cells precipitated rapid tumor induction [30]. By downregulating β-Catenin and YAP signaling pathways, Protein kinase C ζ( PKC ζ ) can inhibit intestinal stem cell function. And PKC ζ deficiency can lead to an increase in stem cell activity in organoid cultures. Tumorigenic activity increased in LGR5+PKC ζ deficiency mice [31]. These evidence suggests that CRCSCs seem to originate from intestinal stem cells. However, selective and effective killing of Lgr5+ cells had no impact on primary tumor growth [24], and the migratory cells that seed and colonize distant organs were frequently LGR5- at dissemination [32]. Recent research using single cell sequencing technology have shown that subpopulations both of LGR5+ and LGR5- cancer cells have elevated rDNA transcription and protein synthesis characteristic of functional stem cell activity [33] and that lineage conversion between cell types can be driven by the combination of key CRC driver genes and microenvironmental extracellular signaling [34].Vazquez and colleagues also confirmed that the intestine contains two types of stem cells, LGR5+ crypt-base columnar stem cells (CBCs) and LGR5 regenerative stem cells (RSC) using single cell sequencing technology. The two stem cell populations can coexist during tumorigenesis, exhibit dynamic plasticity, and complement each other to achieve homeostasis. The relative abundance of CBC-RSC is related to epithelial mutation and microenvironment signal destruction [35]. With the advancement of research technology, it is certain to uncover the origin of CRCSCs.

2.2. Identification of CRCSCs

The sorting of cancer stem cells mainly relies on flow cytometry and magnetic activation sorting. The most commonly used basis is cancer stem cell marker proteins. Previous studies have found that CSCs have specific markers, including CD133, ALDH1, CD44, EpCAM, etc [36]. CSC markers vary with the type of tumors. There are also some biomarkers for CRCSCs. The marker proteins located on the cell membrane include LGR5 [37], CD133[38, 39], CD44[40]、CD26[41]、CD24[42]、CD29 [43]、CD166 [44] and EpCAM [45]. Acetaldehyde dehydrogenase1 (ALDH1) is an intracellular enzyme that oxidizes aldehydes and mediates the control of differentiation pathways. It is currently widely used as a marker for identifying and isolating various types of normal stem cells and CSCs [44, 46]. Oct4[47]、Sox2[48] and Nanog[49] are transcription factors as marker located in the nucleus. (Figure 1)
CSCs sorting methods include flow cytometry and magnetic activated cell sorting. By combining fluorescent labeled antibodies with cancer stem cell markers, flow cytometry can select CSCs expressing related markers from cancer cells. Side population (SP) cells, characterized by the ability to efflux the fluorescent dye hoechst33342 out of the cell, appear non-fluorescent when tested by flow cytometry. SP cell sorting method is mainly used to sort CSCs with strong drug resistance [50]. Magnetic activated cell sorting utilizes antibodies attached to magnetic beads to bind to CSC markers, adsorbing the corresponding cancer stem cells onto a separation column, while unbound cells pass through the separation column. Cancer stem cells with positive surface labeling can be obtained by elution from the separation column[51, 52] Single-cell omics technology is a powerful tool for exploring CSCs[53, 54]. Single-cell omics technology can characterize and type CSCs in tumors, and establishing a stemness model has prospective clinical implications for prognostic evaluation [35, 55]

2.3. Cultivation of CRCSCs

It is worth emphasizing that although the research results of cancer stem cells have broad prospects for practical clinical applications, they are still in the initial stage. To successfully unleash the enormous potential of cancer stem cell research achievements, there are still many urgent issues to be addressed. To understand the physiological activity of CSCs, the first step is to obtain them. For solid tumor, the commonly used method to enrich cancer stem cells is non-adhesive culture with serum-free culture [56, 57]. CSCs with self-renewal capacity are able to survive under non-adherent conditions and maintain clonogenic activity, whereas non-CSCs undergo anoikis by loss of anchorage.
Three dimensional(3D) culture has emerged as a cell culture method in vitro in recent years. By using hydrogel to mimic extracellular matrix and applying different culture conditions, 3D culture can create a similar microenvironment in vivo[58]. Different gel materials have different porosity, permeability, surface chemical and mechanical properties, which will have different effects on cell growth and differentiation [59]. 3D culture can be used to enrich stem cells or study cell differentiation [60]. Organoid is an advanced version of three-dimensional culture, which is a 3D micro cell cluster formed by directional differentiation of stem cells [61]. Organoids have the ability to self-renewal, self-organized, and can highly mimic the structure and function of organs in vivo. They have been widely used in the study of organ diseases, drug toxicity and cancer therapy [62, 63].

3. Agents targeting CRCSCs

Clearing all cancer cells can cure cancer, but some CSCs are drug-resistant and quiescent,require targeted therapy. Several agents targeting CSCs have been approved for clinical trial [64]. CRCSCs also have various types of targeted drugs

3.1. Targeting CRCSC markers

Marker proteins are targets for rapid screening of CRCs. In order to enhance the specificity of therapeutic strategies, researchers often choose ligands or antibodies against CSC surface makers (Table 1). MCLA-158 is an EGFR and Lgr5 targeting bispecific antibody with strong growth inhibitory effects on CRC organoids. Simultaneously, it exhibits strong anti-tumor activity in xenograft models derived from patients with high expression of LGR5 and EGFR [65]. In mouse orthotopic xenograft models derived from CRC patients, MCLA-158 treatment not only reduced the size of the primary tumor, but also effectively suppressed metastasis, including KRAS mutant tumors resistant to cetuximab. Currently, researchers are conducting clinical trials of MCLA-158 in various solid tumors (NCT03526835) [65]. Catumaxomab is the first T cell binding bispecific antibody approved by the European Medicines Agency (EMA) in 2009 for the treatment of malignant ascites [66]. Catumaxomab is a three functional bispecific antibody that binds to EpCAM on cancer cells and CD3 on T cells. It also binds to FcγR to recruit immune helper cells [66]. Catumaxomab can effectively eliminate CD133+/EpCAM+CSC in malignant ascites of patients with advanced ovarian cancer, gastric cancer and pancreatic cancer, which indicates that it has potential therapeutic application it has potential therapeutic application in eradicating CSCs of epithelial cancer[67, 68]. Similar to catumaxomab, solidomab is also a bispecific antibody targeting EpCAM and CD3. Solidomab treatment effectively eradicated EpCAM+ CSCs from colon or pancreatic cancer patients inoculated into NOD / SCID mice [69, 70].
In addition to antibodies, there are oncolytic virotherapy and CSCs vaccines for targeted marker therapies. Oncolytic viruses are a class of viruses with tumor killing functions. Oncolytic virotherapy is an emerging new tumor treatment that utilizes oncolytic viruses to selectively destroy tumor cells while leaving normal cells intact. Using the properties of oncolytic viruses combined with receptors on tumor cells, researchers have screened or engineered oncolytic viruses that target cancer stem cells [94]. Due to the characteristics of virus vectors, oncolytic virotherapy can trigger immunogenic cells death, release tumor related antigens and elicit anti-tumor immune response, which can exert stronger anti-cancer effect [94]. The oncolytic viruses with CD133-targeting moti effectively infected and killed CD133+ CRCSCs, and inhibited the growth of CRC xenotransplantation model [73]. Oncolytic virotherapy is a potential therapy, but it still needs further research. CSCs vaccines are also a type of immunotherapy under research. For example, B16F10 CD133+/CD44+ CSCs vaccine can effectively inhibit melanoma growth in mice and reduce CSC population within tumors [95]. Although no cancer stem cell vaccine has entered clinical trials at this time, the efficacy of a vaccine targeting metastatic CRC has been reassuring and has raised hope [96].

3.2. Targeting signaling pathway

Multiple signaling pathways are involved in the self-renewal, proliferation, apoptosis, and angiogenesis processes of CRCSCs. Currently, it is believed that specifically targeting cell signaling pathways to inhibit the effects of CRCSCs is a major development direction for CRC therapy.

3.2.1. Wnt signaling pathway

The Wnt pathway plays a critical role in controlling epithelial stem cell self-renewal, and its dysregulation will cause colorectal carcinogenesis [97, 98]. The canonical Wnt pathway downstream signaling is regulated by the level of β-catenin (Figure 2). TRAF2- and NCK-interacting kinase (TNIK) is an essential activator of Wnt target genes [97]. The inhibitory activity of TNIK inhibitors such as NCB0846 on CRCSCs has been confirmed [74]. Epigallocatechin gallate (EGCG), is one kind of the catechins from green tea. It has been proven to effectively inhibit stem cells from various cancers [99, 100]. EGCG can inhibit the stemness of CRC cells by downregulating the expression of markers such as CD133, CD44, NANOG, OCT4, ALDH1 and Wnt/β-catenin signaling pathway [75, 76]. The small molecule inhibitor XAV939 significantly downregulated CSC markers in colon cancer cells and increased apoptosis induced by chemotherapy drugs [77]. Phenethyl isothiocyanate (PEITC) and sulforaphane are a natural product present in many cruciferous vegetables with anti-cancer activities in clinical trials [78, 101]. Importantly, PEITC inhibited the properties of CRCSCs through downregulation of the Wnt/β-catenin pathway, and decreased the percentage of CD133+ cells [78, 79]. Salinomycin, an anti-bacterial polyether isolated from Streptomyces albus, selectively eliminated CD133+ cells in CRC [102]. Salinomycin induced caspase activation, increased DNA damage and caused disruption of the Wnt/β-catenin/TCF complex and apoptosis of human CRCSCs, and decreased tumor growth and expression of CSC-related Wnt genes, including LGR5 [80, 103]. In addition to these, there are many drugs that reduce CSC stemness by targeting the Wnt signaling pathway, such as pan-inhibitor of histone demethylases JIB04 [81], lysine-specific demethylase 1 inhibitor CBB1003 [82] and so on. (Table 1)
Marker proteins and regulators in the pathway are the most prominent targets in CRCSC therapy.

3.2.2. Hedgehog signaling pathway

The Hedgehog (Hh) signaling pathway plays an essential role in the growth and differentiation of gastrointestinal tissue [104]. In canonical Hh signaling, Hh ligands (sonic Hh, Indian Hh, or desert Hh) bind to the patched (PTCH) transmembrane receptor, which leads to the release of smoothened (SMO) and consequent activation of a downstream cascade. In this process, GLI protein will be activated and become transcriptional activators of the downstream targets of the Hh signaling pathway.The Hh-GLI pathway is involved in maintaining the self-renewal ability of CRCSCs [105, 106]. (Figure 2)
Vismodegib (also named Ericdge, GDC-0449) is a Hedgehog signaling pathway inhibitor used in clinical practice approved by the US Food and Drug Administration for the treatment of basal cell carcinoma. Vismodegib targets a subpopulation of CSCs in basal cell carcinoma[107].Studies have shown that vismodegib can inhibit the stemness of CRCSCS and the expression of markers CD44 and ALDH1 [108]. Cyclopamine is a natural alkaloid that can inhibit the Hh-GLI signaling pathway by inhibiting SMO. After cyclopamine treatment, the mRNA levels of CSC markers and genes related to Hh signaling, including PTCH1, SMO, and GLI1, decreased in stem cells derived from HCT116 [109].Given the regulation of CRCSCs by Hh signaling pathway, more new inhibitors are being developed.(Table 2)

3.2.3. Notch signaling pathway

Notch signaling is involved in the regulation of cell differentiation, proliferation, and tumorigenesis [130]. The pathway consists of four receptors (Notch1-4) and five ligands (Jagged-1, Jagged-2, Delta-1, Delta-3, Delta-4) and DNA binding proteins. The interaction between receptors and ligands will initiate protein cleavage cascade reactions, leading to the activation of Notch target genes [131]. Gamma secretase inhibitors (GSIs) can inhibit Notch signaling by preventing the proteolytic cleavage of Notch receptors [132] (Figure 2). However, RO4929097, one of the GSIs, failed to achieve excellent results in clinical trials [110]. More GSIs are under investigation. DLL4 is an activator protein of the non-canonical Notch signaling pathway.DLL4 antibody was confirmed to be effective against both KRAS wild-type and mutant CRC cells, effectively eradicating CRCSCS and enhancing the antitumor effect of irinotecan [111, 133].In addition, Honokiol, Quercetin, and others have also been shown to have the ability to inhibit CRCSC stemness [112, 113]. (Table 2)

3.2.4. PI3K/Akt/mTOR signaling pathway

The PI3K/Akt/mTOR signaling pathway plays a crucial role in cell metabolism and proliferation, and is closely related to the CRCSC phenotype [134]. Studies have demonstrated that components of the PI3K / Akt signaling pathway are overexpressed in CRC in vitro and in vivo [123, 135]. The combination of PI3K and MEK inhibitors can induce CRCSC death and regression of tumor xenografts [136]. BEZ235, a dual pathway inhibitor of mTOR and PI3K, could inhibit the proliferation of CRCSCs and the expression of its markers CD133 and LGR5, thus suppressing the stemness of CRCSCs [115]. LY294002 is a PI3K inhibitor based on the flavonoid quercetin. LY294002 blocked Akt phosphorylation through the PI3K/Akt signaling pathway and inhibited liver CSC proliferation and tumorigenicity in vitro and in vivo [116]. Treatment with LY294002 resulted in decreased proliferation, spheroid formation, and self-renewal properties, together with reduced Akt phosphorylation and cyclin D1 expression in CRCSCs in vitro [116]. Piplartine is an alkaloid amide isolated from peppers. It was reported to inhibit stemness properties in leukemia and oral cancer [117, 136]. In combination with auranofin, piplartine reduced the expression levels of surface marker CD44v9, eliminated CRCSCs, and inhibted CRC growth [117]. Rapamycin is a mTOR inhibitor and used clinically as an immunosuppressive drug, It can decrease the spheroid-forming ability and ALDH1 activity in CRC cell lines [118]. Cotreatment with 5-FU and oxaliplatin, rapamycin reduced CRCSCs subpopulation. Metformin, was also reported to reduce the CSC population in different types of cancer [137]. Metformin can not only reduce the proliferation of CSC population in mouse xenografts [119], but also effectively reduce CSCs in patients with colorectal and other gastrointestinal cancers in a pilotclinical trial [138]. There are also many drugs that targeting PI3K/Akt/mTOR signaling pathway to inhibit CRCSCs, such as Atractylenolide I, Taselisib and so on[120, 121].

3.2.5. JAK/STAT3 signaling pathway

JAK / STAT signaling is closely related to cancer growth and metastasis .In cancer cells, JAK / STAT signaling can be activated by multiple mechanisms, most notably STAT3 activation [139]. High STAT3 activity was found in CRC-SCs, but not in normal colon epithelial cells [140]. The latest study revealed that the JAK2 / STAT3 signaling pathway promoted the persistence and radio-resistance of CRCSCs [141]. Curcumin is a polyphenol from Curcuma longa, and GO-Y030 is a novel curcumin analog. Curcumin and its analog GO-Y030 as drug candidates to eliminate CRC-SCs by suppressing STAT3 activity [124]. Napabucasin, also named BBI608,is an orally administered STAT3 inhibitor with anti-CSC activity against various types of cancer [142, 143]. It showed a significant survival benefit compared to placebo in CRC clinical trials [125].These preclinical and clinical data indicate that napabucasin is a promising anti-CSC drug in CRC therapy. It is the most advanced drug in development that targets cell signaling pathways to eradicate CRC-SCs and the only one with published results from phase III clinical trials. Napabucasin may be the first anti-CRC drug approved for clinical use targeting CSCs. (Figure 2)
There are other signaling pathways such as TGF-β, Hippo et al regulating CSCs stemness. Various signaling pathways do not operate independently and often act in crosstalk to influence cancer progression [22, 104, 128, 144, 145]. (Table 2)

3.3. Other agents targeting CRCSCs

FBXL5 E3 ligase plays an important role in maintaining the stemness of CDCSCs. Anandamide uptake inhibitor AM404 can suppress FBXL5 expression and inhibit CRCSC dedifferentiation, migration, and drug resistance [146]. Prexasertib, also named LY2606368, is an investigational checkpoint kinase inhibitor. By inhibiting checkpoint kinase (CHK) 1, LY2606368 affected DNA replication in most CRCSCs[261]. ASR352 and NSC30049 are all CHK1 inhibitor [147, 148]. RAB5/7, which is associated with the endo lysosomal pathway, plays an important role in the survival and maintenance of CSCs through the mitophagic pathway. Mefloquine, an anti-malaria drug, has been identified as a new inhibitor of RAB. In the PDX model of colorectal cancer, mefloquine can target RAB5/7 to inhibit the mitophagic pathway and induce mitochondrial-induced apoptosis, thereby exerting anti-tumor effects without significant side effects [149]. At present, there are many other types of CCSCs antagonists, such as pitavastatin [150], histone deacetylase inhibitor trichostatin A [151], and inhibitors of the post-translational sumoylation modification pathway [152], among others. They may play an important role in targeting CRCSCs in future. (Table 3)

4. Future prospect

Despite significant progress in research on therapeutic drugs for CRCSCs, cancer treatment still faces many challenges. Tumor microenvironment (TME) plays a major role in determining cell fate and behavioral choices [158, 159]. Under the complex interaction of TME, reversible transformation can be achieved between tumorigenic and non-tumorigenic cells. This is the reason why it is difficult to completely remove CSCs [160]. Cancer-associated fibroblasts (CAFs) play a significant positive role in the development and transfer of CRCSCs [161]. Tumor is an entity composed of multiple heterogeneous cells. Different subtypes of CSCs may have different resistance mechanisms, and therefore, each cancer subtype may require unique therapies [162]. The plethora of contributing factors in cancer and the complex regulatory network, making it difficult to eradicate cancer with a single therapeutic intervention.
Fortunately, researchers never give up. In order to achieve effective treatment, more extensive and in-depth research has been conducted in molecular and cellular aspects, including the synergistic targeting of CRCSCs and TME in cancer treatment. Fibroblast activation protein (FAP) is a type II membrane-bound glycoprotein which is overexpressed in CAFs and activated fibroblasts at wound healing/inflammatory sites. FAP inhibitor has been developed to target CAFs to improve TME [163]. In response to the problem of tumor stem cell heterogeneity, anti CSC drugs with diverse targets have been or are currently being developed. And many of them have been incorporated into clinical or preclinical trials. In the face of different responses of different patients to therapeutic approaches, prognosis prediction and personalized treatment are the best solutions. Single cell omics and organoid technology can assist in achieving this goal. Using large-scale omics technologies can subtype cancer and build predictive models for treatment response [35, 55]. In vitro culture of patient derived tumor organoids can enable prediction of drug sensitivity and resistance, and achieve precision treatment [164]. In summary, in the face of different treatment responses in patients, the heterogeneity of cancer stem cells, and the complex regulatory mechanisms of cancer, researchers have been struggling to decipher them.

5. Conclusions

CRCSCs are a small group of stem cells in colon cancer that have unlimited proliferation, self-renewal, and differentiation, playing an important role in drug resistance, metastasis, and recurrence. CSCs are like seeds of cancer, which cannot be ignored in cancer treatment. The advancement of modern medical technology has given us a certain level of understanding of colon cancer stem cells, but we have not fully understood them. Regarding the current situation of CCSCs targeted inhibitors, it is important to strengthen the synergistic effect between drugs. By combining drugs targeting CCSCs with other treatment methods, we can prevent cancer metastasis and recurrence while reducing the occurrence of drug resistance, which will improve the effectiveness of current CRC treatment. Cancer and the tissue involved are a whole, and treatment should adopt a systematic approach, striving to completely eliminate the seeds to prevent metastasis and recurrence. CRCSCs targeted inhibitors, as an emerging treatment method for CRC, although there are still many unclear mechanisms to be discovered, it can be expected that in the future, these drugs will play an undeniable role in preventing colon cancer metastasis and recurrence. Certainly, a complete cancer treatment not only requires targeted treatment for CRCSC, but also targeted combination therapy for non-CRCSC and TME, as well as the entire tumor. In order to benefit all patients, personalized therapy is the ultimate goal. Single-cell omics technology and organoid technology have contributed to a deeper understanding of the different aspects of cancer stem cells and to the development of more effective treatments for cancer. Achieving this goal still requires considerable attempts and collaboration from researchers.

Author Contributions

X.B. proposed the theme of the manuscript. H.Z. and R.H searched, consulted literatures, and wrote the manuscript, while Z.W. and J.X. revised the manuscript. H.Z. and R.H made the same contribution to the manuscript. All authors read and approved the final manuscript.

Funding

This research was supported by Shenzhen Science and Technology Program (JCYJ20210324133602007), Construction Funds of Key Medical Disciplines in Longhua District, Shenzhen (MKD202007090211) and. Inflammation and Immune Mediated Diseases Laboratory of Anhui Province Open Project (IMMDL20220009).

Institutional Review Board Statement

Not Applicable.

Informed Consent Statement

Not Applicable.

Data Availability Statement

Not Applicable.

Acknowledgments

We would like to thank the Support from the Shenzhen “Healthcare San Ming Project”.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Lapidot, T.; Sirard, C.; Vormoor, J.; Murdoch, B.; Hoang, T.; Caceres-Cortes, J.; Minden, M.; Paterson, B.; Caligiuri, M. A.; Dick, J. E., A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 1994, 367, (6464), 645-8. [CrossRef]
  2. Dontu, G.; Al-Hajj, M.; Abdallah, W. M.; Clarke, M. F.; Wicha, M. S., Stem cells in normal breast development and breast cancer. Cell proliferation 2003, 36 Suppl 1, (Suppl 1), 59-72.
  3. Singh, S. K.; Clarke, I. D.; Terasaki, M.; Bonn, V. E.; Hawkins, C.; Squire, J.; Dirks, P. B., Identification of a cancer stem cell in human brain tumors. Cancer research 2003, 63, (18), 5821-8.
  4. Maitland, N. J.; Collins, A., A tumour stem cell hypothesis for the origins of prostate cancer. BJU international 2005, 96, (9), 1219-23. [CrossRef]
  5. Lam, J. S.; Yamashiro, J.; Shintaku, I. P.; Vessella, R. L.; Jenkins, R. B.; Horvath, S.; Said, J. W.; Reiter, R. E., Prostate stem cell antigen is overexpressed in prostate cancer metastases. Clinical cancer research : an official journal of the American Association for Cancer Research 2005, 11, (7), 2591-6.
  6. O'Brien, C. A.; Pollett, A.; Gallinger, S.; Dick, J. E., A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 2007, 445, (7123), 106-10.
  7. Boman, B. M.; Wicha, M. S., Cancer stem cells: a step toward the cure. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 2008, 26, (17), 2795-9.
  8. Reya, T.; Morrison, S. J.; Clarke, M. F.; Weissman, I. L., Stem cells, cancer, and cancer stem cells. Nature 2001, 414, (6859), 105-11.
  9. Chen, K.; Huang, Y. H.; Chen, J. L., Understanding and targeting cancer stem cells: therapeutic implications and challenges. Acta pharmacologica Sinica 2013, 34, (6), 732-40. [CrossRef]
  10. Chaffer, C. L.; Brueckmann, I.; Scheel, C.; Kaestli, A. J.; Wiggins, P. A.; Rodrigues, L. O.; Brooks, M.; Reinhardt, F.; Su, Y.; Polyak, K.; Arendt, L. M.; Kuperwasser, C.; Bierie, B.; Weinberg, R. A., Normal and neoplastic nonstem cells can spontaneously convert to a stem-like state. Proceedings of the National Academy of Sciences of the United States of America 2011, 108, (19), 7950-5.
  11. Prasetyanti, P. R.; Medema, J. P., Intra-tumor heterogeneity from a cancer stem cell perspective. Molecular cancer 2017, 16, (1), 41. [CrossRef]
  12. Bütof, R.; Dubrovska, A.; Baumann, M., Clinical perspectives of cancer stem cell research in radiation oncology. Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology 2013, 108, (3), 388-96.
  13. Rich, J. N., Cancer stem cells in radiation resistance. Cancer research 2007, 67, (19), 8980-4. [CrossRef]
  14. Hermann, P. C.; Huber, S. L.; Herrler, T.; Aicher, A.; Ellwart, J. W.; Guba, M.; Bruns, C. J.; Heeschen, C., Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell stem cell 2007, 1, (3), 313-23.
  15. Oskarsson, T.; Batlle, E.; Massagué, J., Metastatic stem cells: sources, niches, and vital pathways. Cell stem cell 2014, 14, (3), 306-21.
  16. Abdullah, L. N.; Chow, E. K., Mechanisms of chemoresistance in cancer stem cells. Clinical and translational medicine 2013, 2, (1), 3. [CrossRef]
  17. Yao, J.; Liu, Y.; Yang, J.; Li, M.; Li, S.; Zhang, B.; Yang, R.; Zhang, Y.; Cui, X.; Feng, C., Single-Cell Sequencing Reveals that DBI is the Key Gene and Potential Therapeutic Target in Quiescent Bladder Cancer Stem Cells. Frontiers in genetics 2022, 13, 904536. [CrossRef]
  18. Antonica, F.; Santomaso, L.; Pernici, D.; Petrucci, L.; Aiello, G.; Cutarelli, A.; Conti, L.; Romanel, A.; Miele, E.; Tebaldi, T.; Tiberi, L., A slow-cycling/quiescent cells subpopulation is involved in glioma invasiveness. Nature communications 2022, 13, (1), 4767. [CrossRef]
  19. Sung, H.; Ferlay, J.; Siegel, R. L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F., Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin 2021, 71, (3), 209-249.
  20. Marhaba, R.; Klingbeil, P.; Nuebel, T.; Nazarenko, I.; Buechler, M. W.; Zoeller, M., CD44 and EpCAM: cancer-initiating cell markers. Current molecular medicine 2008, 8, (8), 784-804. [CrossRef]
  21. Gaiser, M. R.; Lämmermann, T.; Feng, X.; Igyarto, B. Z.; Kaplan, D. H.; Tessarollo, L.; Germain, R. N.; Udey, M. C., Cancer-associated epithelial cell adhesion molecule (EpCAM; CD326) enables epidermal Langerhans cell motility and migration in vivo. Proceedings of the National Academy of Sciences of the United States of America 2012, 109, (15), E889-97. [CrossRef]
  22. Cheung, P.; Xiol, J.; Dill, M. T.; Yuan, W. C.; Panero, R.; Roper, J.; Osorio, F. G.; Maglic, D.; Li, Q.; Gurung, B.; Calogero, R. A.; Yilmaz Ö, H.; Mao, J.; Camargo, F. D., Regenerative Reprogramming of the Intestinal Stem Cell State via Hippo Signaling Suppresses Metastatic Colorectal Cancer. Cell stem cell 2020, 27, (4), 590-604.e9.
  23. Shimokawa, M.; Ohta, Y.; Nishikori, S.; Matano, M.; Takano, A.; Fujii, M.; Date, S.; Sugimoto, S.; Kanai, T.; Sato, T., Visualization and targeting of LGR5(+) human colon cancer stem cells. Nature 2017, 545, (7653), 187-192. [CrossRef]
  24. de Sousa e Melo, F.; Kurtova, A. V.; Harnoss, J. M.; Kljavin, N.; Hoeck, J. D.; Hung, J.; Anderson, J. E.; Storm, E. E.; Modrusan, Z.; Koeppen, H.; Dijkgraaf, G. J.; Piskol, R.; de Sauvage, F. J., A distinct role for Lgr5(+) stem cells in primary and metastatic colon cancer. Nature 2017, 543, (7647), 676-680. [CrossRef]
  25. Wang, H.; Gong, P.; Chen, T.; Gao, S.; Wu, Z.; Wang, X.; Li, J.; Marjani, S. L.; Costa, J.; Weissman, S. M.; Qi, F.; Pan, X.; Liu, L., Colorectal Cancer Stem Cell States Uncovered by Simultaneous Single-Cell Analysis of Transcriptome and Telomeres. Advanced science (Weinheim, Baden-Wurttemberg, Germany) 2021, 8, (8), 2004320. [CrossRef]
  26. Ohta, Y.; Fujii, M.; Takahashi, S.; Takano, A.; Nanki, K.; Matano, M.; Hanyu, H.; Saito, M.; Shimokawa, M.; Nishikori, S.; Hatano, Y.; Ishii, R.; Sawada, K.; Machinaga, A.; Ikeda, W.; Imamura, T.; Sato, T., Cell-matrix interface regulates dormancy in human colon cancer stem cells. Nature 2022, 608, (7924), 784-794. [CrossRef]
  27. Perekatt, A. O.; Shah, P. P.; Cheung, S.; Jariwala, N.; Wu, A.; Gandhi, V.; Kumar, N.; Feng, Q.; Patel, N.; Chen, L.; Joshi, S.; Zhou, A.; Taketo, M. M.; Xing, J.; White, E.; Gao, N.; Gatza, M. L.; Verzi, M. P., SMAD4 Suppresses WNT-Driven Dedifferentiation and Oncogenesis in the Differentiated Gut Epithelium. Cancer research 2018, 78, (17), 4878-4890.
  28. Mani, S. A.; Guo, W.; Liao, M. J.; Eaton, E. N.; Ayyanan, A.; Zhou, A. Y.; Brooks, M.; Reinhard, F.; Zhang, C. C.; Shipitsin, M.; Campbell, L. L.; Polyak, K.; Brisken, C.; Yang, J.; Weinberg, R. A., The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 2008, 133, (4), 704-15.
  29. Barker, N.; van Es, J. H.; Kuipers, J.; Kujala, P.; van den Born, M.; Cozijnsen, M.; Haegebarth, A.; Korving, J.; Begthel, H.; Peters, P. J.; Clevers, H., Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 2007, 449, (7165), 1003-7.
  30. Barker, N.; Ridgway, R. A.; van Es, J. H.; van de Wetering, M.; Begthel, H.; van den Born, M.; Danenberg, E.; Clarke, A. R.; Sansom, O. J.; Clevers, H., Crypt stem cells as the cells-of-origin of intestinal cancer. Nature 2009, 457, (7229), 608-11.
  31. Llado, V.; Nakanishi, Y.; Duran, A.; Reina-Campos, M.; Shelton, P. M.; Linares, J. F.; Yajima, T.; Campos, A.; Aza-Blanc, P.; Leitges, M.; Diaz-Meco, M. T.; Moscat, J., Repression of Intestinal Stem Cell Function and Tumorigenesis through Direct Phosphorylation of β-Catenin and Yap by PKCζ. Cell reports 2015, 10, (5), 740-754. [CrossRef]
  32. Fumagalli, A.; Oost, K. C.; Kester, L.; Morgner, J.; Bornes, L.; Bruens, L.; Spaargaren, L.; Azkanaz, M.; Schelfhorst, T.; Beerling, E.; Heinz, M. C.; Postrach, D.; Seinstra, D.; Sieuwerts, A. M.; Martens, J. W. M.; van der Elst, S.; van Baalen, M.; Bhowmick, D.; Vrisekoop, N.; Ellenbroek, S. I. J.; Suijkerbuijk, S. J. E.; Snippert, H. J.; van Rheenen, J., Plasticity of Lgr5-Negative Cancer Cells Drives Metastasis in Colorectal Cancer. Cell stem cell 2020, 26, (4), 569-578.e7. [CrossRef]
  33. Morral, C.; Stanisavljevic, J.; Hernando-Momblona, X.; Mereu, E.; Álvarez-Varela, A.; Cortina, C.; Stork, D.; Slebe, F.; Turon, G.; Whissell, G.; Sevillano, M.; Merlos-Suárez, A.; Casanova-Martí, À.; Moutinho, C.; Lowe, S. W.; Dow, L. E.; Villanueva, A.; Sancho, E.; Heyn, H.; Batlle, E., Zonation of Ribosomal DNA Transcription Defines a Stem Cell Hierarchy in Colorectal Cancer. Cell stem cell 2020, 26, (6), 845-861.e12. [CrossRef]
  34. Han, T.; Goswami, S.; Hu, Y.; Tang, F.; Zafra, M. P.; Murphy, C.; Cao, Z.; Poirier, J. T.; Khurana, E.; Elemento, O.; Hechtman, J. F.; Ganesh, K.; Yaeger, R.; Dow, L. E., Lineage Reversion Drives WNT Independence in Intestinal Cancer. Cancer discovery 2020, 10, (10), 1590-1609.
  35. Vasquez, E. G.; Nasreddin, N.; Valbuena, G. N.; Mulholland, E. J.; Belnoue-Davis, H. L.; Eggington, H. R.; Schenck, R. O.; Wouters, V. M.; Wirapati, P.; Gilroy, K.; Lannagan, T. R. M.; Flanagan, D. J.; Najumudeen, A. K.; Omwenga, S.; McCorry, A. M. B.; Easton, A.; Koelzer, V. H.; East, J. E.; Morton, D.; Trusolino, L.; Maughan, T.; Campbell, A. D.; Loughrey, M. B.; Dunne, P. D.; Tsantoulis, P.; Huels, D. J.; Tejpar, S.; Sansom, O. J.; Leedham, S. J., Dynamic and adaptive cancer stem cell population admixture in colorectal neoplasia. Cell stem cell 2022, 29, (8), 1213-1228.e8.
  36. Makena, M. R.; Ranjan, A.; Thirumala, V.; Reddy, A. P., Cancer stem cells: Road to therapeutic resistance and strategies to overcome resistance. Biochimica et biophysica acta. Molecular basis of disease 2020, 1866, (4), 165339. [CrossRef]
  37. Sato, T.; Vries, R. G.; Snippert, H. J.; van de Wetering, M.; Barker, N.; Stange, D. E.; van Es, J. H.; Abo, A.; Kujala, P.; Peters, P. J.; Clevers, H., Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 2009, 459, (7244), 262-5.
  38. Ricci-Vitiani, L.; Lombardi, D. G.; Pilozzi, E.; Biffoni, M.; Todaro, M.; Peschle, C.; De Maria, R., Identification and expansion of human colon-cancer-initiating cells. Nature 2007, 445, (7123), 111-5.
  39. Li, G.; Liu, C.; Yuan, J.; Xiao, X.; Tang, N.; Hao, J.; Wang, H.; Bian, X.; Deng, Y.; Ding, Y., CD133(+) single cell-derived progenies of colorectal cancer cell line SW480 with different invasive and metastatic potential. Clinical & experimental metastasis 2010, 27, (7), 517-27. [CrossRef]
  40. Greve, B.; Kelsch, R.; Spaniol, K.; Eich, H. T.; Götte, M., Flow cytometry in cancer stem cell analysis and separation. Cytometry. Part A : the journal of the International Society for Analytical Cytology 2012, 81, (4), 284-93.
  41. Pang, R.; Law, W. L.; Chu, A. C.; Poon, J. T.; Lam, C. S.; Chow, A. K.; Ng, L.; Cheung, L. W.; Lan, X. R.; Lan, H. Y.; Tan, V. P.; Yau, T. C.; Poon, R. T.; Wong, B. C., A subpopulation of CD26+ cancer stem cells with metastatic capacity in human colorectal cancer. Cell stem cell 2010, 6, (6), 603-15. [CrossRef]
  42. Choi, D.; Lee, H. W.; Hur, K. Y.; Kim, J. J.; Park, G. S.; Jang, S. H.; Song, Y. S.; Jang, K. S.; Paik, S. S., Cancer stem cell markers CD133 and CD24 correlate with invasiveness and differentiation in colorectal adenocarcinoma. World journal of gastroenterology 2009, 15, (18), 2258-64. [CrossRef]
  43. Fujimoto, K.; Beauchamp, R. D.; Whitehead, R. H., Identification and isolation of candidate human colonic clonogenic cells based on cell surface integrin expression. Gastroenterology 2002, 123, (6), 1941-8. [CrossRef]
  44. Dalerba, P.; Dylla, S. J.; Park, I. K.; Liu, R.; Wang, X.; Cho, R. W.; Hoey, T.; Gurney, A.; Huang, E. H.; Simeone, D. M.; Shelton, A. A.; Parmiani, G.; Castelli, C.; Clarke, M. F., Phenotypic characterization of human colorectal cancer stem cells. Proceedings of the National Academy of Sciences of the United States of America 2007, 104, (24), 10158-63.
  45. Munz, M.; Baeuerle, P. A.; Gires, O., The emerging role of EpCAM in cancer and stem cell signaling. Cancer research 2009, 69, (14), 5627-9. [CrossRef]
  46. Huang, E. H.; Hynes, M. J.; Zhang, T.; Ginestier, C.; Dontu, G.; Appelman, H.; Fields, J. Z.; Wicha, M. S.; Boman, B. M., Aldehyde dehydrogenase 1 is a marker for normal and malignant human colonic stem cells (SC) and tracks SC overpopulation during colon tumorigenesis. Cancer research 2009, 69, (8), 3382-9. [CrossRef]
  47. Chen, Y. C.; Hsu, H. S.; Chen, Y. W.; Tsai, T. H.; How, C. K.; Wang, C. Y.; Hung, S. C.; Chang, Y. L.; Tsai, M. L.; Lee, Y. Y.; Ku, H. H.; Chiou, S. H., Oct-4 expression maintained cancer stem-like properties in lung cancer-derived CD133-positive cells. PLoS One 2008, 3, (7), e2637. [CrossRef]
  48. Tang, Q.; Chen, J.; Di, Z.; Yuan, W.; Zhou, Z.; Liu, Z.; Han, S.; Liu, Y.; Ying, G.; Shu, X.; Di, M., TM4SF1 promotes EMT and cancer stemness via the Wnt/β-catenin/SOX2 pathway in colorectal cancer. Journal of experimental & clinical cancer research : CR 2020, 39, (1), 232. [CrossRef]
  49. Yao, C.; Su, L.; Shan, J.; Zhu, C.; Liu, L.; Liu, C.; Xu, Y.; Yang, Z.; Bian, X.; Shao, J.; Li, J.; Lai, M.; Shen, J.; Qian, C., IGF/STAT3/NANOG/Slug Signaling Axis Simultaneously Controls Epithelial-Mesenchymal Transition and Stemness Maintenance in Colorectal Cancer. Stem cells (Dayton, Ohio) 2016, 34, (4), 820-31. [CrossRef]
  50. Wu, A.; Oh, S.; Wiesner, S. M.; Ericson, K.; Chen, L.; Hall, W. A.; Champoux, P. E.; Low, W. C.; Ohlfest, J. R., Persistence of CD133+ cells in human and mouse glioma cell lines: detailed characterization of GL261 glioma cells with cancer stem cell-like properties. Stem cells and development 2008, 17, (1), 173-84. [CrossRef]
  51. Elkashty, O. A.; Abu Elghanam, G.; Su, X.; Liu, Y.; Chauvin, P. J.; Tran, S. D., Cancer stem cells enrichment with surface markers CD271 and CD44 in human head and neck squamous cell carcinomas. Carcinogenesis 2020, 41, (4), 458-466. [CrossRef]
  52. Liu, L.; Borlak, J., Advances in Liver Cancer Stem Cell Isolation and their Characterization. Stem cell reviews and reports 2021, 17, (4), 1215-1238. [CrossRef]
  53. Kharchenko, P. V., The triumphs and limitations of computational methods for scRNA-seq. Nature methods 2021, 18, (7), 723-732.
  54. Frank, M. H.; Wilson, B. J.; Gold, J. S.; Frank, N. Y., Clinical Implications of Colorectal Cancer Stem Cells in the Age of Single-Cell Omics and Targeted Therapies. Gastroenterology 2021, 160, (6), 1947-1960. [CrossRef]
  55. Zheng, H.; Liu, H.; Li, H.; Dou, W.; Wang, J.; Zhang, J.; Liu, T.; Wu, Y.; Liu, Y.; Wang, X., Characterization of stem cell landscape and identification of stemness-relevant prognostic gene signature to aid immunotherapy in colorectal cancer. Stem cell research & therapy 2022, 13, (1), 244. [CrossRef]
  56. Chen, S. F.; Chang, Y. C.; Nieh, S.; Liu, C. L.; Yang, C. Y.; Lin, Y. S., Nonadhesive culture system as a model of rapid sphere formation with cancer stem cell properties. PLoS One 2012, 7, (2), e31864. [CrossRef]
  57. Zhang, J.; Zhang, Y.; Cheng, L.; Li, C.; Dai, L.; Zhang, H.; Yan, F.; Shi, H.; Dong, G.; Ning, Z.; Xu, W.; Si, C.; Deng, H.; Xiong, H., Enrichment and characterization of cancer stem-like cells in ultra-low concentration of serum and non-adhesive culture system. American journal of translational research 2018, 10, (5), 1552-1561.
  58. Chaicharoenaudomrung, N.; Kunhorm, P.; Noisa, P., Three-dimensional cell culture systems as an in vitro platform for cancer and stem cell modeling. World journal of stem cells 2019, 11, (12), 1065-1083. [CrossRef]
  59. Hoarau-Véchot, J.; Rafii, A.; Touboul, C.; Pasquier, J., Halfway between 2D and Animal Models: Are 3D Cultures the Ideal Tool to Study Cancer-Microenvironment Interactions? International journal of molecular sciences 2018, 19, (1).
  60. Guo, X.; Chen, Y.; Ji, W.; Chen, X.; Li, C.; Ge, R., Enrichment of cancer stem cells by agarose multi-well dishes and 3D spheroid culture. Cell and tissue research 2019, 375, (2), 397-408. [CrossRef]
  61. Gjorevski, N.; Sachs, N.; Manfrin, A.; Giger, S.; Bragina, M. E.; Ordóñez-Morán, P.; Clevers, H.; Lutolf, M. P., Designer matrices for intestinal stem cell and organoid culture. Nature 2016, 539, (7630), 560-564.
  62. Clevers, H., Modeling Development and Disease with Organoids. Cell 2016, 165, (7), 1586-1597. [CrossRef]
  63. Huang, L.; Holtzinger, A.; Jagan, I.; BeGora, M.; Lohse, I.; Ngai, N.; Nostro, C.; Wang, R.; Muthuswamy, L. B.; Crawford, H. C.; Arrowsmith, C.; Kalloger, S. E.; Renouf, D. J.; Connor, A. A.; Cleary, S.; Schaeffer, D. F.; Roehrl, M.; Tsao, M. S.; Gallinger, S.; Keller, G.; Muthuswamy, S. K., Ductal pancreatic cancer modeling and drug screening using human pluripotent stem cell- and patient-derived tumor organoids. Nature medicine 2015, 21, (11), 1364-71.
  64. Montesinos, P.; Recher, C.; Vives, S.; Zarzycka, E.; Wang, J.; Bertani, G.; Heuser, M.; Calado, R. T.; Schuh, A. C.; Yeh, S. P.; Daigle, S. R.; Hui, J.; Pandya, S. S.; Gianolio, D. A.; de Botton, S.; Döhner, H., Ivosidenib and Azacitidine in IDH1-Mutated Acute Myeloid Leukemia. The New England journal of medicine 2022, 386, (16), 1519-1531.
  65. Herpers, B.; Eppink, B.; James, M. I.; Cortina, C.; Cañellas-Socias, A.; Boj, S. F.; Hernando-Momblona, X.; Glodzik, D.; Roovers, R. C.; van de Wetering, M.; Bartelink-Clements, C.; Zondag-van der Zande, V.; Mateos, J. G.; Yan, K.; Salinaro, L.; Basmeleh, A.; Fatrai, S.; Maussang, D.; Lammerts van Bueren, J. J.; Chicote, I.; Serna, G.; Cabellos, L.; Ramírez, L.; Nuciforo, P.; Salazar, R.; Santos, C.; Villanueva, A.; Stephan-Otto Attolini, C.; Sancho, E.; Palmer, H. G.; Tabernero, J.; Stratton, M. R.; de Kruif, J.; Logtenberg, T.; Clevers, H.; Price, L. S.; Vries, R. G. J.; Batlle, E.; Throsby, M., Functional patient-derived organoid screenings identify MCLA-158 as a therapeutic EGFR × LGR5 bispecific antibody with efficacy in epithelial tumors. Nature cancer 2022, 3, (4), 418-436. [CrossRef]
  66. Frampton, J. E., Catumaxomab: in malignant ascites. Drugs 2012, 72, (10), 1399-410.
  67. Bezan, A.; Hohla, F.; Meissnitzer, T.; Greil, R., Systemic effect of catumaxomab in a patient with metastasized colorectal cancer: a case report. BMC cancer 2013, 13, 618. [CrossRef]
  68. Ströhlein, M. A.; Lordick, F.; Rüttinger, D.; Grützner, K. U.; Schemanski, O. C.; Jäger, M.; Lindhofer, H.; Hennig, M.; Jauch, K. W.; Peschel, C.; Heiss, M. M., Immunotherapy of peritoneal carcinomatosis with the antibody catumaxomab in colon, gastric, or pancreatic cancer: an open-label, multicenter, phase I/II trial. Onkologie 2011, 34, (3), 101-8. [CrossRef]
  69. Bellone, S.; Black, J.; English, D. P.; Schwab, C. L.; Lopez, S.; Cocco, E.; Bonazzoli, E.; Predolini, F.; Ferrari, F.; Ratner, E.; Silasi, D. A.; Azodi, M.; Schwartz, P. E.; Santin, A. D., Solitomab, an EpCAM/CD3 bispecific antibody construct (BiTE), is highly active against primary uterine serous papillary carcinoma cell lines in vitro. American journal of obstetrics and gynecology 2016, 214, (1), 99.e1-8. [CrossRef]
  70. Herrmann, I.; Baeuerle, P. A.; Friedrich, M.; Murr, A.; Filusch, S.; Rüttinger, D.; Majdoub, M. W.; Sharma, S.; Kufer, P.; Raum, T.; Münz, M., Highly efficient elimination of colorectal tumor-initiating cells by an EpCAM/CD3-bispecific antibody engaging human T cells. PLoS One 2010, 5, (10), e13474. [CrossRef]
  71. Wang, Y.; Chen, M.; Wu, Z.; Tong, C.; Dai, H.; Guo, Y.; Liu, Y.; Huang, J.; Lv, H.; Luo, C.; Feng, K. C.; Yang, Q. M.; Li, X. L.; Han, W., CD133-directed CAR T cells for advanced metastasis malignancies: A phase I trial. Oncoimmunology 2018, 7, (7), e1440169. [CrossRef]
  72. Silva Galbiatti-Dias, A. L.; Fernandes, G. M. M.; Castanhole-Nunes, M. M. U.; Hidalgo, L. F.; Nascimento Filho, C. H. V.; Kawasaki-Oyama, R. S.; Ferreira, L. A. M.; Biselli-Chicote, P. M.; Pavarino É, C.; Goloni-Bertollo, E. M., Relationship between CD44(high)/CD133(high)/CD117(high) cancer stem cells phenotype and Cetuximab and Paclitaxel treatment response in head and neck cancer cell lines. American journal of cancer research 2018, 8, (8), 1633-1641.
  73. Sato-Dahlman, M.; Miura, Y.; Huang, J. L.; Hajeri, P.; Jacobsen, K.; Davydova, J.; Yamamoto, M., CD133-targeted oncolytic adenovirus demonstrates anti-tumor effect in colorectal cancer. Oncotarget 2017, 8, (44), 76044-76056. [CrossRef]
  74. Masuda, M.; Uno, Y.; Ohbayashi, N.; Ohata, H.; Mimata, A.; Kukimoto-Niino, M.; Moriyama, H.; Kashimoto, S.; Inoue, T.; Goto, N.; Okamoto, K.; Shirouzu, M.; Sawa, M.; Yamada, T., TNIK inhibition abrogates colorectal cancer stemness. Nature communications 2016, 7, 12586. [CrossRef]
  75. Chen, Y.; Wang, X. Q.; Zhang, Q.; Zhu, J. Y.; Li, Y.; Xie, C. F.; Li, X. T.; Wu, J. S.; Geng, S. S.; Zhong, C. Y.; Han, H. Y., (-)-Epigallocatechin-3-Gallate Inhibits Colorectal Cancer Stem Cells by Suppressing Wnt/β-Catenin Pathway. Nutrients 2017, 9, (6). [CrossRef]
  76. Toden, S.; Tran, H. M.; Tovar-Camargo, O. A.; Okugawa, Y.; Goel, A., Epigallocatechin-3-gallate targets cancer stem-like cells and enhances 5-fluorouracil chemosensitivity in colorectal cancer. Oncotarget 2016, 7, (13), 16158-71. [CrossRef]
  77. Wu, X.; Luo, F.; Li, J.; Zhong, X.; Liu, K., Tankyrase 1 inhibitior XAV939 increases chemosensitivity in colon cancer cell lines via inhibition of the Wnt signaling pathway. International journal of oncology 2016, 48, (4), 1333-40. [CrossRef]
  78. Chen, Y.; Wang, M. H.; Zhu, J. Y.; Xie, C. F.; Li, X. T.; Wu, J. S.; Geng, S. S.; Han, H. Y.; Zhong, C. Y., TAp63α targeting of Lgr5 mediates colorectal cancer stem cell properties and sulforaphane inhibition. Oncogenesis 2020, 9, (10), 89. [CrossRef]
  79. Chen, Y.; Li, Y.; Wang, X. Q.; Meng, Y.; Zhang, Q.; Zhu, J. Y.; Chen, J. Q.; Cao, W. S.; Wang, X. Q.; Xie, C. F.; Li, X. T.; Geng, S. S.; Wu, J. S.; Zhong, C. Y.; Han, H. Y., Phenethyl isothiocyanate inhibits colorectal cancer stem cells by suppressing Wnt/β-catenin pathway. Phytotherapy research : PTR 2018, 32, (12), 2447-2455. [CrossRef]
  80. Wang, Z.; Zhou, L.; Xiong, Y.; Yu, S.; Li, H.; Fan, J.; Li, F.; Su, Z.; Song, J.; Sun, Q.; Liu, S. S.; Xia, Y.; Zhao, L.; Li, S.; Guo, F.; Huang, P.; Carson, D. A.; Lu, D., Salinomycin exerts anti-colorectal cancer activity by targeting the β-catenin/T-cell factor complex. British journal of pharmacology 2019, 176, (17), 3390-3406.
  81. Wang, L.; Chang, J.; Varghese, D.; Dellinger, M.; Kumar, S.; Best, A. M.; Ruiz, J.; Bruick, R.; Peña-Llopis, S.; Xu, J.; Babinski, D. J.; Frantz, D. E.; Brekken, R. A.; Quinn, A. M.; Simeonov, A.; Easmon, J.; Martinez, E. D., A small molecule modulates Jumonji histone demethylase activity and selectively inhibits cancer growth. Nature communications 2013, 4, 2035. [CrossRef]
  82. Hsu, H. C.; Liu, Y. S.; Tseng, K. C.; Yang, T. S.; Yeh, C. Y.; You, J. F.; Hung, H. Y.; Chen, S. J.; Chen, H. C., CBB1003, a lysine-specific demethylase 1 inhibitor, suppresses colorectal cancer cells growth through down-regulation of leucine-rich repeat-containing G-protein-coupled receptor 5 expression. Journal of cancer research and clinical oncology 2015, 141, (1), 11-21. [CrossRef]
  83. Yang, W.; Li, Y.; Ai, Y.; Obianom, O. N.; Guo, D.; Yang, H.; Sakamuru, S.; Xia, M.; Shu, Y.; Xue, F., Pyrazole-4-Carboxamide (YW2065): A Therapeutic Candidate for Colorectal Cancer via Dual Activities of Wnt/β-Catenin Signaling Inhibition and AMP-Activated Protein Kinase (AMPK) Activation. Journal of medicinal chemistry 2019, 62, (24), 11151-11164. [CrossRef]
  84. Fang, L.; Zhu, Q.; Neuenschwander, M.; Specker, E.; Wulf-Goldenberg, A.; Weis, W. I.; von Kries, J. P.; Birchmeier, W., A Small-Molecule Antagonist of the β-Catenin/TCF4 Interaction Blocks the Self-Renewal of Cancer Stem Cells and Suppresses Tumorigenesis. Cancer research 2016, 76, (4), 891-901.
  85. Shin, J. H.; Jeong, J.; Choi, J.; Lim, J.; Dinesh, R. K.; Braverman, J.; Hong, J. Y.; Maher, S. E.; Amezcua Vesely, M. C.; Kim, W.; Koo, J. H.; Tang, W.; Wu, D.; Blackburn, H. N.; Xicola, R. M.; Llor, X.; Yilmaz, O.; Choi, J. M.; Bothwell, A. L. M., Dickkopf-2 regulates the stem cell marker LGR5 in colorectal cancer via HNF4α1. iScience 2021, 24, (5), 102411. [CrossRef]
  86. Roy, S.; Zhao, Y.; Yuan, Y. C.; Goel, A., Metformin and ICG-001 Act Synergistically to Abrogate Cancer Stem Cells-Mediated Chemoresistance in Colorectal Cancer by Promoting Apoptosis and Autophagy. Cancers 2022, 14, (5). [CrossRef]
  87. Bamodu, O. A.; Yang, C. K.; Cheng, W. H.; Tzeng, D. T. W.; Kuo, K. T.; Huang, C. C.; Deng, L.; Hsiao, M.; Lee, W. H.; Yeh, C. T., 4-Acetyl-Antroquinonol B Suppresses SOD2-Enhanced Cancer Stem Cell-Like Phenotypes and Chemoresistance of Colorectal Cancer Cells by Inducing hsa-miR-324 re-Expression. Cancers 2018, 10, (8).
  88. Chang, T. C.; Yeh, C. T.; Adebayo, B. O.; Lin, Y. C.; Deng, L.; Rao, Y. K.; Huang, C. C.; Lee, W. H.; Wu, A. T.; Hsiao, M.; Wu, C. H.; Wang, L. S.; Tzeng, Y. M., 4-Acetylantroquinonol B inhibits colorectal cancer tumorigenesis and suppresses cancer stem-like phenotype. Toxicology and applied pharmacology 2015, 288, (2), 258-68. [CrossRef]
  89. Zhang, Q.; Li, X. T.; Chen, Y.; Chen, J. Q.; Zhu, J. Y.; Meng, Y.; Wang, X. Q.; Li, Y.; Geng, S. S.; Xie, C. F.; Wu, J. S.; Zhong, C. Y.; Han, H. Y., Wnt/β-catenin signaling mediates the suppressive effects of diallyl trisulfide on colorectal cancer stem cells. Cancer chemotherapy and pharmacology 2018, 81, (6), 969-977.
  90. Kumar, B.; Ahmad, R.; Sharma, S.; Gowrikumar, S.; Primeaux, M.; Rana, S.; Natarajan, A.; Oupicky, D.; Hopkins, C. R.; Dhawan, P.; Singh, A. B., PIK3C3 Inhibition Promotes Sensitivity to Colon Cancer Therapy by Inhibiting Cancer Stem Cells. Cancers 2021, 13, (9). [CrossRef]
  91. Kim, H.; Yu, Y.; Choi, S.; Lee, H.; Yu, J.; Lee, J. H.; Kim, W. Y., Evodiamine Eliminates Colon Cancer Stem Cells via Suppressing Notch and Wnt Signaling. Molecules (Basel, Switzerland) 2019, 24, (24). [CrossRef]
  92. Husain, K.; Coppola, D.; Yang, C. S.; Malafa, M. P., Farnesyl dimethyl chromanol targets colon cancer stem cells and prevents colorectal cancer metastasis. Scientific reports 2021, 11, (1), 2185. [CrossRef]
  93. Chen, Y.; Rao, X.; Huang, K.; Jiang, X.; Wang, H.; Teng, L., FH535 Inhibits Proliferation and Motility of Colon Cancer Cells by Targeting Wnt/β-catenin Signaling Pathway. Journal of Cancer 2017, 8, (16), 3142-3153. [CrossRef]
  94. Lin, D.; Shen, Y.; Liang, T., Oncolytic virotherapy: basic principles, recent advances and future directions. Signal transduction and targeted therapy 2023, 8, (1), 156.
  95. Zhao, F.; Zhang, R.; Wang, J.; Wu, D.; Pan, M.; Li, M.; Guo, M.; Dou, J., Effective tumor immunity to melanoma mediated by B16F10 cancer stem cell vaccine. International immunopharmacology 2017, 52, 238-244. [CrossRef]
  96. Hubbard, J. M.; Tőke, E. R.; Moretto, R.; Graham, R. P.; Youssoufian, H.; Lőrincz, O.; Molnár, L.; Csiszovszki, Z.; Mitchell, J. L.; Wessling, J.; Tóth, J.; Cremolini, C., Safety and Activity of PolyPEPI1018 Combined with Maintenance Therapy in Metastatic Colorectal Cancer: an Open-Label, Multicenter, Phase Ib Study. Clinical cancer research : an official journal of the American Association for Cancer Research 2022, 28, (13), 2818-2829.
  97. Katoh, M., Canonical and non-canonical WNT signaling in cancer stem cells and their niches: Cellular heterogeneity, omics reprogramming, targeted therapy and tumor plasticity (Review). International journal of oncology 2017, 51, (5), 1357-1369. [CrossRef]
  98. Silva, V. R.; Santos, L. S.; Dias, R. B.; Quadros, C. A.; Bezerra, D. P., Emerging agents that target signaling pathways to eradicate colorectal cancer stem cells. Cancer communications (London, England) 2021, 41, (12), 1275-1313. [CrossRef]
  99. Sun, X.; Song, J.; Li, E.; Geng, H.; Li, Y.; Yu, D.; Zhong, C., (-)-Epigallocatechin-3-gallate inhibits bladder cancer stem cells via suppression of sonic hedgehog pathway. Oncology reports 2019, 42, (1), 425-435.
  100. Jiang, P.; Xu, C.; Zhang, P.; Ren, J.; Mageed, F.; Wu, X.; Chen, L.; Zeb, F.; Feng, Q.; Li, S., Epigallocatechin-3-gallate inhibits self-renewal ability of lung cancer stem-like cells through inhibition of CLOCK. International journal of molecular medicine 2020, 46, (6), 2216-2224.
  101. Wang, D.; Upadhyaya, B.; Liu, Y.; Knudsen, D.; Dey, M., Phenethyl isothiocyanate upregulates death receptors 4 and 5 and inhibits proliferation in human cancer stem-like cells. BMC cancer 2014, 14, 591. [CrossRef]
  102. Dong, T. T.; Zhou, H. M.; Wang, L. L.; Feng, B.; Lv, B.; Zheng, M. H., Salinomycin selectively targets 'CD133+' cell subpopulations and decreases malignant traits in colorectal cancer lines. Annals of surgical oncology 2011, 18, (6), 1797-804. [CrossRef]
  103. Zhang, C.; Tian, Y.; Song, F.; Fu, C.; Han, B.; Wang, Y., Salinomycin inhibits the growth of colorectal carcinoma by targeting tumor stem cells. Oncology reports 2015, 34, (5), 2469-76. [CrossRef]
  104. Takebe, N.; Miele, L.; Harris, P. J.; Jeong, W.; Bando, H.; Kahn, M.; Yang, S. X.; Ivy, S. P., Targeting Notch, Hedgehog, and Wnt pathways in cancer stem cells: clinical update. Nature reviews. Clinical oncology 2015, 12, (8), 445-64. [CrossRef]
  105. Varjosalo, M.; Taipale, J., Hedgehog: functions and mechanisms. Genes & development 2008, 22, (18), 2454-72. [CrossRef]
  106. Cochrane, C. R.; Szczepny, A.; Watkins, D. N.; Cain, J. E., Hedgehog Signaling in the Maintenance of Cancer Stem Cells. Cancers 2015, 7, (3), 1554-85. [CrossRef]
  107. Frampton, J. E.; Basset-Séguin, N., Vismodegib: A Review in Advanced Basal Cell Carcinoma. Drugs 2018, 78, (11), 1145-1156. [CrossRef]
  108. Wu, C.; Hu, S.; Cheng, J.; Wang, G.; Tao, K., Smoothened antagonist GDC-0449 (Vismodegib) inhibits proliferation and triggers apoptosis in colon cancer cell lines. Experimental and therapeutic medicine 2017, 13, (5), 2529-2536. [CrossRef]
  109. Batsaikhan, B. E.; Yoshikawa, K.; Kurita, N.; Iwata, T.; Takasu, C.; Kashihara, H.; Shimada, M., Cyclopamine decreased the expression of Sonic Hedgehog and its downstream genes in colon cancer stem cells. Anticancer research 2014, 34, (11), 6339-44.
  110. Strosberg, J. R.; Yeatman, T.; Weber, J.; Coppola, D.; Schell, M. J.; Han, G.; Almhanna, K.; Kim, R.; Valone, T.; Jump, H.; Sullivan, D., A phase II study of RO4929097 in metastatic colorectal cancer. European journal of cancer (Oxford, England : 1990) 2012, 48, (7), 997-1003. [CrossRef]
  111. Fischer, M.; Yen, W. C.; Kapoun, A. M.; Wang, M.; O'Young, G.; Lewicki, J.; Gurney, A.; Hoey, T., Anti-DLL4 inhibits growth and reduces tumor-initiating cell frequency in colorectal tumors with oncogenic KRAS mutations. Cancer research 2011, 71, (5), 1520-5.
  112. Ponnurangam, S.; Mammen, J. M.; Ramalingam, S.; He, Z.; Zhang, Y.; Umar, S.; Subramaniam, D.; Anant, S., Honokiol in combination with radiation targets notch signaling to inhibit colon cancer stem cells. Molecular cancer therapeutics 2012, 11, (4), 963-72.
  113. Li, Y.; Wang, Z.; Jin, J.; Zhu, S. X.; He, G. Q.; Li, S. H.; Wang, J.; Cai, Y., Quercetin pretreatment enhances the radiosensitivity of colon cancer cells by targeting Notch-1 pathway. Biochemical and biophysical research communications 2020, 523, (4), 947-953. [CrossRef]
  114. Chandra Boinpelly, V.; Verma, R. K.; Srivastav, S.; Srivastava, R. K.; Shankar, S., α-Mangostin-encapsulated PLGA nanoparticles inhibit colorectal cancer growth by inhibiting Notch pathway. Journal of cellular and molecular medicine 2020, 24, (19), 11343-11354.
  115. Chen, J.; Shao, R.; Li, F.; Monteiro, M.; Liu, J. P.; Xu, Z. P.; Gu, W., PI3K/Akt/mTOR pathway dual inhibitor BEZ235 suppresses the stemness of colon cancer stem cells. Clinical and experimental pharmacology & physiology 2015, 42, (12), 1317-26. [CrossRef]
  116. Peng, Y. C.; Lu, S. D.; Zhong, J. H.; Xie, Z. B.; You, X. M.; Peng, N. F.; Li, L. Q., Combination of 5-fluorouracil and 2-morphilino-8-phenyl-4H-chromen-4-one may inhibit liver cancer stem cell activity. Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine 2016, 37, (8), 10943-58. [CrossRef]
  117. Tanaka, G.; Inoue, K.; Shimizu, T.; Akimoto, K.; Kubota, K., Dual pharmacological inhibition of glutathione and thioredoxin systems synergizes to kill colorectal carcinoma stem cells. Cancer medicine 2016, 5, (9), 2544-57. [CrossRef]
  118. Cai, Z.; Ke, J.; He, X.; Yuan, R.; Chen, Y.; Wu, X.; Wang, L.; Wang, J.; Lan, P.; Wu, X., Significance of mTOR signaling and its inhibitor against cancer stem-like cells in colorectal cancer. Annals of surgical oncology 2014, 21, (1), 179-88. [CrossRef]
  119. Seo, Y.; Kim, J.; Park, S. J.; Park, J. J.; Cheon, J. H.; Kim, W. H.; Kim, T. I., Metformin Suppresses Cancer Stem Cells through AMPK Activation and Inhibition of Protein Prenylation of the Mevalonate Pathway in Colorectal Cancer. Cancers 2020, 12, (9). [CrossRef]
  120. Wang, K.; Huang, W.; Sang, X.; Wu, X.; Shan, Q.; Tang, D.; Xu, X.; Cao, G., Atractylenolide I inhibits colorectal cancer cell proliferation by affecting metabolism and stemness via AKT/mTOR signaling. Phytomedicine : international journal of phytotherapy and phytopharmacology 2020, 68, 153191. [CrossRef]
  121. Francipane, M. G.; Lagasse, E., Selective targeting of human colon cancer stem-like cells by the mTOR inhibitor Torin-1. Oncotarget 2013, 4, (11), 1948-62. [CrossRef]
  122. Mangiapane, L. R.; Nicotra, A.; Turdo, A.; Gaggianesi, M.; Bianca, P.; Di Franco, S.; Sardina, D. S.; Veschi, V.; Signore, M.; Beyes, S.; Fagnocchi, L.; Fiori, M. E.; Bongiorno, M. R.; Lo Iacono, M.; Pillitteri, I.; Ganduscio, G.; Gulotta, G.; Medema, J. P.; Zippo, A.; Todaro, M.; De Maria, R.; Stassi, G., PI3K-driven HER2 expression is a potential therapeutic target in colorectal cancer stem cells. Gut 2022, 71, (1), 119-128. [CrossRef]
  123. Malkomes, P.; Lunger, I.; Luetticke, A.; Oppermann, E.; Haetscher, N.; Serve, H.; Holzer, K.; Bechstein, W. O.; Rieger, M. A., Selective AKT Inhibition by MK-2206 Represses Colorectal Cancer-Initiating Stem Cells. Annals of surgical oncology 2016, 23, (9), 2849-57. [CrossRef]
  124. Lin, L.; Liu, Y.; Li, H.; Li, P. K.; Fuchs, J.; Shibata, H.; Iwabuchi, Y.; Lin, J., Targeting colon cancer stem cells using a new curcumin analogue, GO-Y030. British journal of cancer 2011, 105, (2), 212-20. [CrossRef]
  125. Jonker, D. J.; Nott, L.; Yoshino, T.; Gill, S.; Shapiro, J.; Ohtsu, A.; Zalcberg, J.; Vickers, M. M.; Wei, A. C.; Gao, Y.; Tebbutt, N. C.; Markman, B.; Price, T.; Esaki, T.; Koski, S.; Hitron, M.; Li, W.; Li, Y.; Magoski, N. M.; Li, C. J.; Simes, J.; Tu, D.; O'Callaghan, C. J., Napabucasin versus placebo in refractory advanced colorectal cancer: a randomised phase 3 trial. The lancet. Gastroenterology & hepatology 2018, 3, (4), 263-270. [CrossRef]
  126. Chung, S. Y.; Chen, Y. H.; Lin, P. R.; Chao, T. C.; Su, J. C.; Shiau, C. W.; Su, Y., Two novel SHP-1 agonists, SC-43 and SC-78, are more potent than regorafenib in suppressing the in vitro stemness of human colorectal cancer cells. Cell death discovery 2018, 4, 25. [CrossRef]
  127. Kuramoto, K.; Yamamoto, M.; Suzuki, S.; Togashi, K.; Sanomachi, T.; Kitanaka, C.; Okada, M., Inhibition of the Lipid Droplet-Peroxisome Proliferator-Activated Receptor α Axis Suppresses Cancer Stem Cell Properties. Genes 2021, 12, (1). [CrossRef]
  128. Yang, B.; Bai, H.; Sa, Y.; Zhu, P.; Liu, P., Inhibiting EMT, stemness and cell cycle involved in baicalin-induced growth inhibition and apoptosis in colorectal cancer cells. Journal of Cancer 2020, 11, (8), 2303-2317. [CrossRef]
  129. Toden, S.; Ravindranathan, P.; Gu, J.; Cardenas, J.; Yuchang, M.; Goel, A., Oligomeric proanthocyanidins (OPCs) target cancer stem-like cells and suppress tumor organoid formation in colorectal cancer. Scientific reports 2018, 8, (1), 3335. [CrossRef]
  130. Yuan, X.; Wu, H.; Xu, H.; Xiong, H.; Chu, Q.; Yu, S.; Wu, G. S.; Wu, K., Notch signaling: an emerging therapeutic target for cancer treatment. Cancer letters 2015, 369, (1), 20-7. [CrossRef]
  131. Bray, S. J., Notch signalling in context. Nature reviews. Molecular cell biology 2016, 17, (11), 722-735. [CrossRef]
  132. BeLow, M.; Osipo, C., Notch Signaling in Breast Cancer: A Role in Drug Resistance. Cells 2020, 9, (10). [CrossRef]
  133. Hoey, T.; Yen, W. C.; Axelrod, F.; Basi, J.; Donigian, L.; Dylla, S.; Fitch-Bruhns, M.; Lazetic, S.; Park, I. K.; Sato, A.; Satyal, S.; Wang, X.; Clarke, M. F.; Lewicki, J.; Gurney, A., DLL4 blockade inhibits tumor growth and reduces tumor-initiating cell frequency. Cell stem cell 2009, 5, (2), 168-77. [CrossRef]
  134. Polivka, J., Jr.; Janku, F., Molecular targets for cancer therapy in the PI3K/AKT/mTOR pathway. Pharmacology & therapeutics 2014, 142, (2), 164-75. [CrossRef]
  135. Chen, S.; Fisher, R. C.; Signs, S.; Molina, L. A.; Shenoy, A. K.; Lopez, M. C.; Baker, H. V.; Koomen, J. M.; Chen, Y.; Gittleman, H.; Barnholtz-Sloan, J.; Berg, A.; Appelman, H. D.; Huang, E. H., Inhibition of PI3K/Akt/mTOR signaling in PI3KR2-overexpressing colon cancer stem cells reduces tumor growth due to apoptosis. Oncotarget 2017, 8, (31), 50476-50488. [CrossRef]
  136. Pei, S.; Minhajuddin, M.; Callahan, K. P.; Balys, M.; Ashton, J. M.; Neering, S. J.; Lagadinou, E. D.; Corbett, C.; Ye, H.; Liesveld, J. L.; O'Dwyer, K. M.; Li, Z.; Shi, L.; Greninger, P.; Settleman, J.; Benes, C.; Hagen, F. K.; Munger, J.; Crooks, P. A.; Becker, M. W.; Jordan, C. T., Targeting aberrant glutathione metabolism to eradicate human acute myelogenous leukemia cells. The Journal of biological chemistry 2013, 288, (47), 33542-33558. [CrossRef]
  137. Song, C. W.; Lee, H.; Dings, R. P.; Williams, B.; Powers, J.; Santos, T. D.; Choi, B. H.; Park, H. J., Metformin kills and radiosensitizes cancer cells and preferentially kills cancer stem cells. Scientific reports 2012, 2, 362. [CrossRef]
  138. Saif, M. W.; Rajagopal, S.; Caplain, J.; Goodman, M. D.; Popowich, D.; Orkin, B. A.; Tsichlis, P. N.; Martell, R., The First Study Evaluating the Safety of Pre-Surgery Administration of Metformin in Patients with Colorectal and other Gastrointestinal Cancers and Effect on Cancer Stem Cells. Cancer medicine journal 2021, 4, (Suppl 4), 1-10.
  139. Brooks, A. J.; Putoczki, T., JAK-STAT Signalling Pathway in Cancer. Cancers 2020, 12, (7). [CrossRef]
  140. Quintás-Cardama, A.; Verstovsek, S., Molecular pathways: Jak/STAT pathway: mutations, inhibitors, and resistance. Clinical cancer research : an official journal of the American Association for Cancer Research 2013, 19, (8), 1933-40.
  141. Park, S. Y.; Lee, C. J.; Choi, J. H.; Kim, J. H.; Kim, J. W.; Kim, J. Y.; Nam, J. S., The JAK2/STAT3/CCND2 Axis promotes colorectal Cancer stem cell persistence and radioresistance. Journal of experimental & clinical cancer research : CR 2019, 38, (1), 399.
  142. Li, Y.; Rogoff, H. A.; Keates, S.; Gao, Y.; Murikipudi, S.; Mikule, K.; Leggett, D.; Li, W.; Pardee, A. B.; Li, C. J., Suppression of cancer relapse and metastasis by inhibiting cancer stemness. Proceedings of the National Academy of Sciences of the United States of America 2015, 112, (6), 1839-44.
  143. Li, Y.; Han, Q.; Zhao, H.; Guo, Q.; Zhang, J., Napabucasin Reduces Cancer Stem Cell Characteristics in Hepatocellular Carcinoma. Frontiers in pharmacology 2020, 11, 597520. [CrossRef]
  144. Song, L.; Li, Z. Y.; Liu, W. P.; Zhao, M. R., Crosstalk between Wnt/β-catenin and Hedgehog/Gli signaling pathways in colon cancer and implications for therapy. Cancer biology & therapy 2015, 16, (1), 1-7. [CrossRef]
  145. van den Brink, G. R.; Hardwick, J. C., Hedgehog Wnteraction in colorectal cancer. Gut 2006, 55, (7), 912-4.
  146. Ahmed, M.; Jinks, N.; Babaei-Jadidi, R.; Kashfi, H.; Castellanos-Uribe, M.; May, S. T.; Mukherjee, A.; Nateri, A. S., Repurposing Antibacterial AM404 as a Potential Anticancer Drug for Targeting Colorectal Cancer Stem-Like Cells. Cancers 2019, 12, (1). [CrossRef]
  147. Narayan, S.; Ramisetti, S.; Jaiswal, A. S.; Law, B. K.; Singh-Pillay, A.; Singh, P.; Amin, S.; Sharma, A. K., ASR352, A potent anticancer agent: Synthesis, preliminary SAR, and biological activities against colorectal cancer bulk, 5-fluorouracil/oxaliplatin resistant and stem cells. European journal of medicinal chemistry 2019, 161, 456-467. [CrossRef]
  148. Narayan, S.; Jaiswal, A. S.; Sharma, R.; Nawab, A.; Duckworth, L. V.; Law, B. K.; Zajac-Kaye, M.; George, T. J.; Sharma, J.; Sharma, A. K.; Hromas, R. A., NSC30049 inhibits Chk1 pathway in 5-FU-resistant CRC bulk and stem cell populations. Oncotarget 2017, 8, (34), 57246-57264. [CrossRef]
  149. Takeda, M.; Koseki, J.; Takahashi, H.; Miyoshi, N.; Nishida, N.; Nishimura, J.; Hata, T.; Matsuda, C.; Mizushima, T.; Yamamoto, H.; Ishii, H.; Doki, Y.; Mori, M.; Haraguchi, N., Disruption of Endolysosomal RAB5/7 Efficiently Eliminates Colorectal Cancer Stem Cells. Cancer research 2019, 79, (7), 1426-1437.
  150. Zhang, Z. Y.; Zheng, S. H.; Yang, W. G.; Yang, C.; Yuan, W. T., Targeting colon cancer stem cells with novel blood cholesterol drug pitavastatin. European review for medical and pharmacological sciences 2017, 21, (6), 1226-1233.
  151. Huang, T. H.; Wu, S. Y.; Huang, Y. J.; Wei, P. L.; Wu, A. T.; Chao, T. Y., The identification and validation of Trichosstatin A as a potential inhibitor of colon tumorigenesis and colon cancer stem-like cells. American journal of cancer research 2017, 7, (5), 1227-1237.
  152. Bogachek, M. V.; Park, J. M.; De Andrade, J. P.; Lorenzen, A. W.; Kulak, M. V.; White, J. R.; Gu, V. W.; Wu, V. T.; Weigel, R. J., Inhibiting the SUMO Pathway Represses the Cancer Stem Cell Population in Breast and Colorectal Carcinomas. Stem cell reports 2016, 7, (6), 1140-1151. https://doi.org/10.1016/j.stemcr.2016.11.001. [CrossRef]
  153. Manic, G.; Signore, M.; Sistigu, A.; Russo, G.; Corradi, F.; Siteni, S.; Musella, M.; Vitale, S.; De Angelis, M. L.; Pallocca, M.; Amoreo, C. A.; Sperati, F.; Di Franco, S.; Barresi, S.; Policicchio, E.; De Luca, G.; De Nicola, F.; Mottolese, M.; Zeuner, A.; Fanciulli, M.; Stassi, G.; Maugeri-Saccà, M.; Baiocchi, M.; Tartaglia, M.; Vitale, I.; De Maria, R., CHK1-targeted therapy to deplete DNA replication-stressed, p53-deficient, hyperdiploid colorectal cancer stem cells. Gut 2018, 67, (5), 903-917. [CrossRef]
  154. Wu, Z.; Huang, M.; Gong, Y.; Lin, C.; Guo, W., BRAF and EGFR inhibitors synergize to increase cytotoxic effects and decrease stem cell capacities in BRAF(V600E)-mutant colorectal cancer cells. Acta biochimica et biophysica Sinica 2018, 50, (4), 355-361. [CrossRef]
  155. Quarni, W.; Dutta, R.; Green, R.; Katiri, S.; Patel, B.; Mohapatra, S. S.; Mohapatra, S., Mithramycin A Inhibits Colorectal Cancer Growth by Targeting Cancer Stem Cells. Scientific reports 2019, 9, (1), 15202. [CrossRef]
  156. Zhang, S.; Ju, X.; Yang, Q.; Zhu, Y.; Fan, D.; Su, G.; Kong, L.; Li, Y., USP47 maintains the stemness of colorectal cancer cells and is inhibited by parthenolide. Biochemical and biophysical research communications 2021, 562, 21-28. [CrossRef]
  157. Boothello, R. S.; Patel, N. J.; Sharon, C.; Abdelfadiel, E. I.; Morla, S.; Brophy, D. F.; Lippman, H. R.; Desai, U. R.; Patel, B. B., A Unique Nonsaccharide Mimetic of Heparin Hexasaccharide Inhibits Colon Cancer Stem Cells via p38 MAP Kinase Activation. Molecular cancer therapeutics 2019, 18, (1), 51-61.
  158. Ferguson, L. P.; Diaz, E.; Reya, T., The Role of the Microenvironment and Immune System in Regulating Stem Cell Fate in Cancer. Trends in cancer 2021, 7, (7), 624-634. [CrossRef]
  159. Antonio, N.; Bønnelykke-Behrndtz, M. L.; Ward, L. C.; Collin, J.; Christensen, I. J.; Steiniche, T.; Schmidt, H.; Feng, Y.; Martin, P., The wound inflammatory response exacerbates growth of pre-neoplastic cells and progression to cancer. The EMBO journal 2015, 34, (17), 2219-36. [CrossRef]
  160. Meacham, C. E.; Morrison, S. J., Tumour heterogeneity and cancer cell plasticity. Nature 2013, 501, (7467), 328-37. [CrossRef]
  161. Kobayashi, H.; Gieniec, K. A.; Lannagan, T. R. M.; Wang, T.; Asai, N.; Mizutani, Y.; Iida, T.; Ando, R.; Thomas, E. M.; Sakai, A.; Suzuki, N.; Ichinose, M.; Wright, J. A.; Vrbanac, L.; Ng, J. Q.; Goyne, J.; Radford, G.; Lawrence, M. J.; Sammour, T.; Hayakawa, Y.; Klebe, S.; Shin, A. E.; Asfaha, S.; Bettington, M. L.; Rieder, F.; Arpaia, N.; Danino, T.; Butler, L. M.; Burt, A. D.; Leedham, S. J.; Rustgi, A. K.; Mukherjee, S.; Takahashi, M.; Wang, T. C.; Enomoto, A.; Woods, S. L.; Worthley, D. L., The Origin and Contribution of Cancer-Associated Fibroblasts in Colorectal Carcinogenesis. Gastroenterology 2022, 162, (3), 890-906. [CrossRef]
  162. Kozovska, Z.; Gabrisova, V.; Kucerova, L., Colon cancer: cancer stem cells markers, drug resistance and treatment. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie 2014, 68, (8), 911-6.
  163. Li, M.; Younis, M. H.; Zhang, Y.; Cai, W.; Lan, X., Clinical summary of fibroblast activation protein inhibitor-based radiopharmaceuticals: cancer and beyond. European journal of nuclear medicine and molecular imaging 2022, 49, (8), 2844-2868.
  164. Drost, J.; van Jaarsveld, R. H.; Ponsioen, B.; Zimberlin, C.; van Boxtel, R.; Buijs, A.; Sachs, N.; Overmeer, R. M.; Offerhaus, G. J.; Begthel, H.; Korving, J.; van de Wetering, M.; Schwank, G.; Logtenberg, M.; Cuppen, E.; Snippert, H. J.; Medema, J. P.; Kops, G. J.; Clevers, H., Sequential cancer mutations in cultured human intestinal stem cells. Nature 2015, 521, (7550), 43-7.
Figure 1. CRCSCs promote metastasis, therapy-resistance and recurrence.
Figure 1. CRCSCs promote metastasis, therapy-resistance and recurrence.
Preprints 87793 g001
Figure 2. Marker proteins and regulators in pathways in CRCSCs.
Figure 2. Marker proteins and regulators in pathways in CRCSCs.
Preprints 87793 g002
Table 1. Agents targeting to CRCSC markers and Wnt pathway.
Table 1. Agents targeting to CRCSC markers and Wnt pathway.
Agents Targets of CRCSCs Reference
MCLA-158 EFGR and LGR5 [65]
Catumaxomab EpCAM [67, 68]
Solidomab EpCAM [69, 70]
CD133-directed CAR T cells CD133 [71]
Cetuximab EFGR [72]
CD133-targeted oncolytic
virus
CD133 [73]
NCB0846 Wnt pathway [74]
Epigallocatechin gallate Wnt pathway [75, 76]
XAV939 Wnt pathway [77]
Phenethyl isothiocyanate and sulforaphane Wnt pathway [78, 79]
Salinomycin Wnt pathway [80]
JIB04 Wnt pathway [81]
CBB1003 Wnt pathway [82]
YW2065 Wnt pathway [83]
LF3 Wnt pathway [84]
Dickkopf-2 Wnt pathway [85]
ICG-001 Wnt pathway [86]
4-Acetyl-antroquinonol B Wnt pathway and JAK-STAT pathway [87, 88]
Diallyl trisulfide Wnt pathway [89]
36-077 Wnt pathway [90]
Evodiamine Wnt and Notch pathway [91]
Farnesyl dimethyl chromanol Wnt pathway [92]
FH535 Wnt pathway [93]
Table 2. Agents targeting to signaling pathway.
Table 2. Agents targeting to signaling pathway.
Agents Targets of CRCSCs Reference
Vismodegib SMO of Hedgehog pathway [108]
Cyclopamine SMO of Hedgehog pathway [109]
RO4929097 γ-secretase of Notch pathway [110]
Anti-DLL4 DLL4 of Notch pathway [111]
Honokiol γ-secretase of Notch pathway [112]
Quercetin γ-secretase of Notch pathway [113]
α-Mangostine Notch pathway [114]
BEZ235 PI3K/Akt/mTOR pathway [115]
LY294002 PI3K/Akt/mTOR pathway [116]
Piplartine PI3K/Akt/mTOR pathway [117]
Rapamycin mTOR of PI3K/Akt/mTOR pathway [118]
Metformin mTOR of PI3K/Akt/mTOR pathway [119]
Atractylenolide I PI3K/Akt/mTOR pathway [120]
Taselisib PI3K/Akt/mTOR pathway [121]
Buparlisib Akt of PI3K/Akt/mTOR pathway [122]
Miransertib Akt of PI3K/Akt/mTOR pathway [122]
MK-2206 Akt of PI3K/Akt/mTOR pathway [123]
Torkinib mTOR of PI3K/Akt/mTOR pathway [118]
Curcumin and GO-Y030 STAT3 of JAK/STAT3 signaling pathway [124]
Napabucasin STAT3 of JAK/STAT3 signaling pathway [125]
Table 3. Agents targeting CRCSCs.
Table 3. Agents targeting CRCSCs.
Agents Targets of CRCSCs Reference
AM404 FBXL5 [146]
LY2606368 Checkpoint kinase 1 [153]
ASR352 Checkpoint kinase 1 [147]
NCS30049 Checkpoint kinase 1 [148]
Mefloquine RAB5/7 [149]
Pitavastatin - [150]
Trichostatin A histone deacetylase [151]
Dabrafenib BRAF [154]
Mithramycin A SP1 [155]
Parthenolide USP47 [156]
Gambogic acid ZFP36 [157]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated