Submitted:
12 October 2023
Posted:
17 October 2023
Read the latest preprint version here
Abstract
Keywords:
1. Introduction
2. Integration and excitation of plasmonic structures
2.1. Propagative surface plasmon
2.2. Localized surface plasmon
Coupling efficiency:
Strong coupling:
3. Surface plasmons in photonic integrated circuits
3.1. LSPR for molecules biosensing
- -
- the excitation electromagnetic energy can be fully transferred in the LSP, like in the case of a 5 MNP chain [43], leading to an improved sensitivity,
- -
- parallel or series sensing areas can be implemented on the chip, with the same optical source: the global analysis capacity is considerably enhanced.
3.2. Plasmonic nano-tweezers and nano-manipulators
Basis on optical tweezers
- -
- If the trapped object doesn’t modify the local electromagnetic field, the optical density map is calculated first, and then the trap characteristics are deduced from Fg et Fs calculation for different object positions.
- -
- if the presence of the object induces a non-negligible perturbation, the optical field must be calculated, and the Maxwell stress tensor must be fully integrated for all the possible positions of the object.
Plasmonic tweezers
3.3. Plasmonic antennas
3.4. Integrated magnetoplasmonics
4. Conclusions
Author Contributions
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lelit, M.; Słowikowski, M.; Filipiak, M.; Juchniewicz, M.; Stonio, B.; Michalak, B.; Pavłov, K.; Myśliwiec, M.; Wiśniewski, P.; Kaźmierczak, A.; et al. Passive Photonic Integrated Circuits Elements Fabricated on a Silicon Nitride Platform. Materials 2022, 15, 1398. [Google Scholar] [CrossRef]
- Albiero, R.; Pentangelo, C.; Gardina, M.; Atzeni, S.; Ceccarelli, F.; Osellame, R. Toward Higher Integration Density in Femtosecond-Laser-Written Programmable Photonic Circuits. Micromachines 2022, 13, 1145. [Google Scholar] [CrossRef]
- Korthorst, T.; Bogaerts, W.; Boning, D.; Heins, M.; Bergman, B. Photonic Integrated Circuit Design Methods and Tools. In Integrated Photonics for Data Communication Applications; Glick, M., Liao, L., Schmidtke, K.B.T.-I.P. for D.C.A., Eds.; Elsevier, 2023; pp. 335–367 ISBN 978-0-323-91224-2.
- Maier, S. Plasmonics: Fundamentals and Applications; Springer, 2007; ISBN 0387331506.
- Raether, H. Surface Plasmons on Smooth and Rough Surfaces and on Gratings; Springer-Verlag: Berlin, 1998. [Google Scholar]
- Cheng, C.-W.; Gwo, S. Fundamentals of Plasmonic Materials. In Plasmonic Materials and Metastructures; Gwo, S., Alù, A., Li, X., Shih, C.-K.B.T.-P.M. and M., Eds.; Elsevier, 2024; pp. 3–33 ISBN 978-0-323-85379-8.
- Sun, P.; Xu, P.; Zhu, K.; Zhou, Z. Silicon-Based Optoelectronics Enhanced by Hybrid Plasmon Polaritons: Bridging Dielectric Photonics and Nanoplasmonics. Photonics 2021, 8, 482. [Google Scholar] [CrossRef]
- Palik, E.D.; Ghosh, G. Handbook of Optical Constants of Solids II; Academic Press: Orlando, 1998; ISBN 0125444206. [Google Scholar]
- Bohren, C.F.; Huffman, D.R. Absorption and Scattering of Light by Small Particles; Wiley: New York, 1998. [Google Scholar]
- Berini, P.; De Leon, I. Surface plasmon–polariton amplifiers and lasers. Nat. Photon- 2012, 6, 16–24. [Google Scholar] [CrossRef]
- Delacour, C.; Blaize, S.; Grosse, P.; Fedeli, J.M.; Bruyant, A.; Salas-Montiel, R.; Lerondel, G.; Chelnokov, A. Efficient Directional Coupling between Silicon and Copper Plasmonic Nanoslot Waveguides: toward Metal−Oxide−Silicon Nanophotonics. Nano Lett. 2010, 10, 2922–2926. [Google Scholar] [CrossRef]
- Magno, G.; Grande, M.; Petruzzelli, V.; D’orazio, A. High-efficient ultra-short vertical long-range plasmonic couplers. J. Nanophotonics 2012, 6, 061609–061609. [Google Scholar] [CrossRef]
- Magno, G.; Grande, M.; Petruzzelli, V.; D’orazio, A. Numerical analysis of the coupling mechanism in long-range plasmonic couplers at 155 μm. Opt. Lett. 2013, 38, 46–48. [Google Scholar] [CrossRef]
- Tetienne, J.-P.; Bousseksou, A.; Costantini, D.; De Wilde, Y.; Colombelli, R. Design of an integrated coupler for the electrical generation of surface plasmon polaritons. Opt. Express 2011, 19, 18155–18163. [Google Scholar] [CrossRef] [PubMed]
- Kelly, K.L.; Coronado, E.; Zhao, L.L.; Schatz, G.C. The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment. ChemInform 2003, 34, 668–677. [Google Scholar] [CrossRef]
- Koenderink, A.F.; Polman, A. Complex response and polariton-like dispersion splitting in periodic metal nanoparticle chains. Phys. Rev. B 2006, 74, 033402. [Google Scholar] [CrossRef]
- Moritake, Y.; Ono, M.; Notomi, M. Far-field optical imaging of topological edge states in zigzag plasmonic chains. Nanophotonics 2022, 11, 2183–2189. [Google Scholar] [CrossRef]
- Buendía. ; Sánchez-Gil, J.A.; Giannini, V. Exploiting Oriented Field Projectors to Open Topological Gaps in Plasmonic Nanoparticle Arrays. ACS Photon- 2023, 10, 464–474. [Google Scholar] [CrossRef]
- Yan, Q.; Cao, E.; Sun, Q.; Ao, Y.; Hu, X.; Shi, X.; Gong, Q.; Misawa, H. Near-Field Imaging and Time-Domain Dynamics of Photonic Topological Edge States in Plasmonic Nanochains. Nano Lett. 2021, 21, 9270–9278. [Google Scholar] [CrossRef]
- He, Z.; Bobylev, D.A.; Smirnova, D.A.; Zhirihin, D.V.; Gorlach, M.A.; Tuz, V.R. Reconfigurable Topological States in Arrays of Bianisotropic Particles. ACS Photon- 2022, 9, 2322–2326. [Google Scholar] [CrossRef]
- Sinev, I.S.; Mukhin, I.S.; Slobozhanyuk, A.P.; Poddubny, A.N.; Miroshnichenko, A.E.; Samusev, A.K.; Kivshar, Y.S. Mapping plasmonic topological states at the nanoscale. Nanoscale 2015, 7, 11904–11908. [Google Scholar] [CrossRef]
- Gong, M.; Hu, P.; Song, Q.; Xiang, H.; Han, D. Bound states in the continuum from a symmetric mode with a dominant toroidal dipole resonance. Phys. Rev. A 2022, 105, 033504. [Google Scholar] [CrossRef]
- Song, Q.; Yi, Z.; Xiang, H.; Han, D. Dynamics and asymmetric behavior of loss-induced bound states in the continuum in momentum space. Phys. Rev. B 2023, 107, 165142. [Google Scholar] [CrossRef]
- Jin, Y.; Wu, K.; Sheng, B.; Ma, W.; Chen, Z.; Li, X. Plasmonic Bound States in the Continuum to Tailor Exciton Emission of MoTe2. Nanomaterials 2023, 13, 1987. [Google Scholar] [CrossRef] [PubMed]
- Magno, G.; Leroy, B.; Barat, D.; Pradere, L.; Dagens, B. Numerical demonstration of surface lattice resonance excitation in integrated localized surface plasmon waveguides. Opt. Express 2022, 30, 5835–5847. [Google Scholar] [CrossRef] [PubMed]
- Utyushev, A.D.; Zakomirnyi, V.I.; Rasskazov, I.L. Collective lattice resonances: Plasmonics and beyond. Rev. Phys. 2021, 6, 100051. [Google Scholar] [CrossRef]
- Kravets, V.G.; Schedin, F.; Grigorenko, A.N. Extremely Narrow Plasmon Resonances Based on Diffraction Coupling of Localized Plasmons in Arrays of Metallic Nanoparticles. Phys. Rev. Lett. 2008, 101, 087403. [Google Scholar] [CrossRef]
- Pikalov, A.M.; Dorofeenko, A.V.; Lozovik, Y.E. Dispersion relations for plasmons in complex-shaped nanoparticle chains. Phys. Rev. B 2018, 98, 085134. [Google Scholar] [CrossRef]
- Chamanzar, M.; Xia, Z.; Yegnanarayanan, S.; Adibi, A. Hybrid integrated plasmonic-photonic waveguides for on-chip localized surface plasmon resonance (LSPR) sensing and spectroscopy. Opt. Express 2013, 21, 32086–32098. [Google Scholar] [CrossRef]
- Février, M.; Gogol, P.; Aassime, A.; Mégy, R.; Delacour, C.; Chelnokov, A.; Apuzzo, A.; Blaize, S.; Lourtioz, J.-M.; Dagens, B. Giant Coupling Effect between Metal Nanoparticle Chain and Optical Waveguide. Nano Lett. 2012, 12, 1032–1037. [Google Scholar] [CrossRef]
- Novotny, L. Strong coupling, energy splitting, and level crossings: A classical perspective. Am. J. Phys. 2010, 78, 1199–1202. [Google Scholar] [CrossRef]
- Magno, G.; Fevrier, M.; Gogol, P.; Aassime, A.; Bondi, A.; Mégy, R.; Dagens, B. Strong coupling and vortexes assisted slow light in plasmonic chain-SOI waveguide systems. Sci. Rep. 2017, 7, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Dagens, B.; Février, M.; Gogol, P.; Blaize, S.; Apuzzo, A.; Magno, G.; Mégy, R.; Lerondel, G. Direct Observation of Optical Field Phase Carving in the Vicinity of Plasmonic Metasurfaces. Nano Lett. 2016, 16, 4014–4018. [Google Scholar] [CrossRef]
- Li, Z.; Kim, M.-H.; Wang, C.; Han, Z.; Shrestha, S.; Overvig, A.C.; Lu, M.; Stein, A.; Agarwal, A.M.; Lončar, M.; et al. Controlling propagation and coupling of waveguide modes using phase-gradient metasurfaces. Nat. Nanotechnol. 2017, 12, 675–683. [Google Scholar] [CrossRef] [PubMed]
- Divya, J.; Selvendran, S.; Raja, A.S.; Sivasubramanian, A. Surface plasmon based plasmonic sensors: A review on their past, present and future. Biosens. Bioelectron. X 2022, 11, 100175. [Google Scholar] [CrossRef]
- Shrivastav, A.M.; Cvelbar, U.; Abdulhalim, I. A comprehensive review on plasmonic-based biosensors used in viral diagnostics. Commun. Biol. 2021, 4, 70. [Google Scholar] [CrossRef] [PubMed]
- Hamza, M.E.; Othman, M.A.; Swillam, M.A. Plasmonic Biosensors: Review. Biology 2022, 11, 621. [Google Scholar] [CrossRef]
- Duan, Q.; Liu, Y.; Chang, S.; Chen, H.; Chen, J.-H. Surface Plasmonic Sensors: Sensing Mechanism and Recent Applications. Sensors 2021, 21, 5262. [Google Scholar] [CrossRef] [PubMed]
- Steglich, P.; Schasfoort, R.B.M. Surface Plasmon Resonance Imaging (SPRi) and Photonic Integrated Circuits (PIC) for COVID-19 Severity Monitoring. COVID 2022, 2, 389–397. [Google Scholar] [CrossRef]
- Anker, J.N.; Hall, W.P.; Lyandres, O.; Shah, N.C.; Zhao, J.; van Duyne, R.P. Biosensing with plasmonic nanosensors. Nat. Mater. 2008, 7, 442–453. [Google Scholar] [CrossRef] [PubMed]
- Kabashin, A.V.; Evans, P.; Pastkovsky, S.; Hendren, W.; Wurtz, G.A.; Atkinson, R.; Pollard, R.; Podolskiy, V.A.; Zayats, A.V. Plasmonic nanorod metamaterials for biosensing. Nat. Mater. 2009, 8, 867–871. [Google Scholar] [CrossRef] [PubMed]
- Kretschmann, E.; Raether, H. Radiative Decay of Nonradiative Surface Plasmons Excited by Light. Zeitschrift Für Naturforsch. Sect. A A J. Phys. Sci. 1968, 23, 2135. [Google Scholar] [CrossRef]
- Février, M.; Gogol, P.; Barbillon, G.; Aassime, A.; Mégy, R.; Bartenlian, B.; Lourtioz, J.-M.; Dagens, B. Integration of short gold nanoparticles chain on SOI waveguide toward compact integrated bio-sensors. Opt. Express 2012, 20, 17402–17409. [Google Scholar] [CrossRef]
- Ashkin, A.; Dziedzic, J.M.; Bjorkholm, J.E.; Chu, S. Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Angular Momentum 2016, 11, 196–198. [Google Scholar] [CrossRef] [PubMed]
- Falconi, M.C.; Magno, G.; Colosimo, S.; Yam, V.; Dagens, B.; Prudenzano, F. Design of a half-ring plasmonic tweezers for environmental monitoring. Opt. Mater. X 2022, 13, 100141. [Google Scholar] [CrossRef]
- Wong, H.M.K.; Righini, M.; Gates, J.C.; Smith, P.G.R.; Pruneri, V.; Quidant, R. On-a-chip surface plasmon tweezers. Appl. Phys. Lett. 2011, 99, 061107. [Google Scholar] [CrossRef]
- Ecarnot, A.; Magno, G.; Yam, V.; Dagens, B. Ultra-efficient nanoparticle trapping by integrated plasmonic dimers. Opt. Lett. 2018, 43, 455–458. [Google Scholar] [CrossRef] [PubMed]
- Magno, G.; Ecarnot, A.; Pin, C.; Yam, V.; Gogol, P.; Mégy, R.; Cluzel, B.; Dagens, B. Integrated plasmonic nanotweezers for nanoparticle manipulation. Opt. Lett. 2016, 41, 3679–3682. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Ying, Z.; Ho, H.-P.; Huang, Y.; Zou, N.; Zhang, X. Nano-optical conveyor belt with waveguide-coupled excitation. Opt. Lett. 2016, 41, 528–531. [Google Scholar] [CrossRef] [PubMed]
- Pin, C.; Magno, G.; Ecarnot, A.; Picard, E.; Hadji, E.; Yam, V.; de Fornel, F.; Dagens, B.; Cluzel, B. Seven at One Blow: Particle Cluster Stability in a Single Plasmonic Trap on a Silicon Waveguide. ACS Photon- 2020, 7, 1942–1949. [Google Scholar] [CrossRef]
- Calò, G.; Bellanca, G.; Alam, B.; Kaplan, A.E.; Bassi, P.; Petruzzelli, V. Array of plasmonic Vivaldi antennas coupled to silicon waveguides for wireless networks through on-chip optical technology - WiNOT. Opt. Express 2018, 26, 30267–30277. [Google Scholar] [CrossRef]
- Fuschini, F.; Barbiroli, M.; Zoli, M.; Bellanca, G.; Calò, G.; Bassi, P.; Petruzzelli, V. Ray Tracing Modeling of Electromagnetic Propagation for On-Chip Wireless Optical Communications. J. Low Power Electron. Appl. 2018, 8, 39. [Google Scholar] [CrossRef]
- Bellanca, G.; Calò, G.; Kaplan, A.E.; Bassi, P.; Petruzzelli, V. Integrated Vivaldi plasmonic antenna for wireless on-chip optical communications. Opt. Express 2017, 25, 16214–16227. [Google Scholar] [CrossRef]
- Arango, F.B.; Kwadrin, A.; Koenderink, A.F. Plasmonic Antennas Hybridized with Dielectric Waveguides. ACS Nano 2012, 6, 10156–10167. [Google Scholar] [CrossRef]
- Guo, R.; Decker, M.; Setzpfandt, F.; Gai, X.; Choi, D.-Y.; Kiselev, R.; Chipouline, A.; Staude, I.; Pertsch, T.; Neshev, D.N.; et al. High–bit rate ultra-compact light routing with mode-selective on-chip nanoantennas. Sci. Adv. 2023, 3, e1700007. [Google Scholar] [CrossRef]
- Fevrier, M.; Gogol, P.; Aassime, A.; Megy, R.; Bouville, D.; Lourtioz, J.M.; Dagens, B. Localized surface plasmon Bragg grating on SOI waveguide at telecom wavelengths. Appl. Phys. A 2012, 109, 935–942. [Google Scholar] [CrossRef]
- Février, M.; Gogol, P.; Lourtioz, J.-M.; Dagens, B. Metallic nanoparticle chains on dielectric waveguides: coupled and uncoupled situations compared. Opt. Express 2013, 21, 24504–24513. [Google Scholar] [CrossRef]
- Leroy, B.; Magno, G.; Barat, D.; Pradere, L.; Dagens, B. Integrated Nanoantenna Gratings For Planar Holographic Signalisation System. In Proceedings of the Asia Communications and Photonics Conference, ACP; 2018; Vol. 2018-Octob.
- Maccaferri, N.; Gabbani, A.; Pineider, F.; Kaihara, T.; Tapani, T.; Vavassori, P. Magnetoplasmonics in confined geometries: Current challenges and future opportunities. Appl. Phys. Lett. 2023, 122, 120502. [Google Scholar] [CrossRef]
- Zvezdin, A.K.; A Kotov, V. Modern Magnetooptics and Magnetooptical Materials; Taylor & Francis Ltd: London, United Kingdom, 1997; ISBN 075030362X. [Google Scholar]
- Shimizu, H.; Nakano, Y. Fabrication and characterization of an InGaAsP/InP active waveguide optical isolator with 14.7 dB/mm TE mode nonreciprocal attenuation. J. Light. Technol. 2006, 24, 38–43. [Google Scholar] [CrossRef]
- Van Parys, W.; Moeyersoon, B.; Van Thourhout, D.; Baets, R.; Vanwolleghem, M.; Dagens, B.; Decobert, J.; Le Gouezigou, O.; Make, D.; Vanheertum, R.; et al. Transverse magnetic mode nonreciprocal propagation in an amplifying AlGaInAs∕InP optical waveguide isolator. Appl. Phys. Lett. 2006, 88, 071115. [Google Scholar] [CrossRef]
- Yokoi, H.; Mizumoto, T.; Shoji, Y. Optical Nonreciprocal Devices with a Silicon Guiding Layer Fabricated by Wafer Bonding. Appl. Opt. 2003, 42, 6605–6612. [Google Scholar] [CrossRef]
- Tien, M.-C.; Mizumoto, T.; Pintus, P.; Kromer, H.; Bowers, J.E. Silicon ring isolators with bonded nonreciprocal magneto-optic garnets. Opt. Express 2011, 19, 11740–11745. [Google Scholar] [CrossRef]
- Firby, C.J.; Elezzabi, A.Y. Magnetoplasmonic isolators utilizing the nonreciprocal phase shift. Opt. Lett. 2016, 41, 563–566. [Google Scholar] [CrossRef]
- Díaz-Valencia, B.F.; Porras-Montenegro, N.; Oliveira, O.N.; Mejía-Salazar, J.R. Nanostructured Hyperbolic Metamaterials for Magnetoplasmonic Sensors. ACS Appl. Nano Mater. 2022, 5, 1740–1744. [Google Scholar] [CrossRef]
- Magno, G.; Yam, V.; Dagens, B. Integrated Magneto-Plasmonics for Non-Reciprocal Optical Devices. In Proceedings of the ECIO, Session M2: Advanced Materials; Eindhoven, Nederlands; 2017. [Google Scholar]
- Abadian, S.; Magno, G.; Yam, V.; Dagens, B. Integrated magneto-plasmonic isolation enhancement based on coupled resonances in subwavelength gold grating. Opt. Commun. 2020, 483, 126633. [Google Scholar] [CrossRef]
- Belotelov, V.I.; Akimov, I.A.; Pohl, M.; Kotov, V.A.; Kasture, S.; Vengurlekar, A.S.; Gopal, A.V.; Yakovlev, D.R.; Zvezdin, A.K.; Bayer, M. Enhanced magneto-optical effects in magnetoplasmonic crystals. Nat. Nanotechnol. 2011, 6, 370–376. [Google Scholar] [CrossRef]
- Yan, W.; Yang, Y.; Liu, S.; Zhang, Y.; Xia, S.; Kang, T.; Yang, W.; Qin, J.; Deng, L.; Bi, L. Waveguide-integrated high-performance magneto-optical isolators and circulators on silicon nitride platforms. Optica 2020, 7, 1555–1562. [Google Scholar] [CrossRef]
















Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
