Submitted:
10 January 2024
Posted:
10 January 2024
Read the latest preprint version here
Abstract
Keywords:
Introduction

Materials and Methods
Data sources and experimental procedures
Derivation of the boundary equation
Fitting of operating points to trajectories
Operating point behaviour on the boundary
Result and discuss

Disturbed trajectory and parameters


Conclusions
Supplementary Materials
Data Availability Statement
Conflicts of Interest
References
- Koronovskii: A. A.: Moskalenko, O. I. & Hramov, A. E. synchronization in complex networks. Tech. Phys. Lett. 38, 924–927 (2012). [CrossRef]
- Dörfler, F., Chertkov, M. & Bullo, F. Synchronization in complex oscillator networks and smart grids. Proc. Natl. Acad. Sci. U. S. A. 110, 2005–2010 (2013). [CrossRef]
- Linyuan, L. L. & Zhou, T. Link prediction in complex networks: A survey. Phys. A Stat. Mech. its Appl. 390, 1150–1170 (2011). [CrossRef]
- Molnar, F., Nishikawa, T. & Motter, A. E. Asymmetry underlies stability in power grids. Nat. Commun. 12, 1–9 (2021). [CrossRef]
- Martínez, I., Messina, A. R. & Vittal, V. Normal form analysis of complex system models: A structure-preserving approach. IEEE Trans. Power Syst. 22, 1908–1915 (2007). [CrossRef]
- Zhu, L. & Hill, D. J. Synchronization of Kuramoto Oscillators: A Regional Stability Framework. IEEE Trans. Automat. Contr. 65, 5070–5082 (2020). [CrossRef]
- Casals, M. R. et al. Knowing power grids and understanding complexity science. Int. J. Crit. Infrastructures 11, 4 (2015). [CrossRef]
- Gurrala, G., Dimitrovski, A., Pannala, S., Simunovic, S. & Starke, M. Parareal in Time for Fast Power System Dynamic Simulations. IEEE Trans. Power Syst. 31, 1820–1830 (2016). [CrossRef]
- Gurrala, G. et al. Large Multi-Machine Power System Simulations Using Multi-Stage Adomian Decomposition. IEEE Trans. Power Syst. 32, 3594–3606 (2017). [CrossRef]
- Wang, B., Fang, B., Wang, Y., Liu, H. & Liu, Y. Power System Transient Stability Assessment Based on Big Data and the Core Vector Machine. IEEE Trans. Smart Grid 7, 2561–2570 (2016). [CrossRef]
- Yu, Y., Liu, Y., Qin, C. & Yang, T. Theory and Method of Power System Integrated Security Region Irrelevant to Operation States: An Introduction. Engineering 6, 754–777 (2020). [CrossRef]
- Yang, P., Liu, F., Wei, W. & Wang, Z. Approaching the Transient Stability Boundary of a Power System: Theory and Applications. IEEE Trans. Autom. Sci. Eng. 1–12 (2022). [CrossRef]
- Al-Ammar, E. A. & El-Kady, M. A. Application of operating security regions in power systems. IEEE PES Transm. Distrib. Conf. Expo. Smart Solut. a Chang. World (2010). [CrossRef]
- Kundur, P. et al. Definition and classification of power system stability. IEEE Trans. Power Syst. 19, 1387–1401 (2004).
- Student Member, B. B. & Senior Member, G. A. On the nature of unstable equilibrium points in power systems. IEEE Trans. Power Syst. 8, 738–745 (1993). [CrossRef]
- Chiang, H. D., Wu, F. F. & Varaiya, P. P. A BCU Method for Direct Analysis of Power System Transient Stability. IEEE Trans. Power Syst. 9, 1194–1208 (1994). [CrossRef]
- Shubhanga, K. N. & Kulkarni, A. M. Application of Structure Preserving Energy Margin Sensitivity to Determime the Effectiveness of Shunt and Serles FACTS Devices. IEEE Power Eng. Rev. 22, 57 (2002). [CrossRef]
- Bhui, P. & Senroy, N. Real-Time Prediction and Control of Transient Stability Using Transient Energy Function. IEEE Trans. Power Syst. 32, 923–934 (2017). [CrossRef]
- Al Marhoon, H. H., Leevongwat, I. & Rastgoufard, P. A fast search algorithm for Critical Clearing Time for power systems transient stability analysis. 2014 Clemson Univ. Power Syst. Conf. PSC 2014 (2014). [CrossRef]
- Rimorov, D., Wang, X., Kamwa, I. & Joos, G. An approach to constructing analytical energy function for synchronous generator models with subtransient dynamics. IEEE Trans. Power Syst. 33, 5958–5967 (2018). [CrossRef]
- Cuadra, L., Salcedo-Sanz, S., Del Ser, J., Jiménez-Fernández, S. & Geem, Z. W. A critical review of robustness in power grids using complex networks concepts. Energies 8, 9211–9265 (2015). [CrossRef]
- Zhou, J. et al. Large-Scale Power System Robust Stability Analysis Based on Value Set Approach. IEEE Trans. Power Syst. 32, 4012–4023 (2017). [CrossRef]
- Ajala, O., Dominguez-Garcia, A., Sauer, P. & Liberzon, D. A Second-Order Synchronous Machine Model for Multi-swing Stability Analysis. 51st North Am. Power Symp. NAPS 2019 (2019). [CrossRef]
- Karatekin, C. Z. & Uçak, C. Sensitivity analysis based on transmission line susceptances for congestion management. Electr. Power Syst. Res. 78, 1485–1493 (2008). [CrossRef]
- Mei, S., Ni, Y., Wang, G. & Wu, S. A study of self-organized criticality of power system under cascading failures based on AC-OPF with voltage stability margin. IEEE Trans. Power Syst. 23, 1719–1726 (2008). [CrossRef]
- Dobson, I., Carreras, B., Lynch, V. & Newman, D. An initial model for complex dynamics in electric power system blackouts. Proc. Hawaii Int. Conf. Syst. Sci. 51 (2001). [CrossRef]
- Ding, L., Gonzalez-Longatt, F. M., Wall, P. & Terzija, V. Two-step spectral clustering controlled islanding algorithm. IEEE Trans. Power Syst. 28, 75–84 (2013). [CrossRef]
- Znidi, F., Davarikia, H. & Rathore, H. Power Systems Transient Stability Indices: Hierarchical Clustering Based Detection of Coherent Groups Of Generators. (2021).
- Kuramoto, Y. & Battogtokh, D. Coexistence of Coherence and Incoherence in Nonlocally Coupled Phase Oscillators. Physics (College. Park. Md). 4, 380–385 (2002).
- Martens, E. A., Thutupalli, S., Fourrière, A. & Hallatschek, O. Chimera states in mechanical oscillator networks. Proc. Natl. Acad. Sci. U. S. A. 110, 10563–10567 (2013). [CrossRef]
- Panaggio, M. J. & Abrams, D. M. Chimera states: Coexistence of coherence and incoherence in networks of coupled oscillators. Nonlinearity 28, R67–R87 (2015). [CrossRef]
- Amirthalingam, K. M. & Ramachandran, R. P. Improvement of transient stability of power system using solid state circuit breaker. Am. J. Appl. Sci. 10, 563–569 (2013). [CrossRef]
- Liu, X., Shahidehpour, M., Cao, Y., Li, Z. & Tian, W. Risk assessment in extreme events considering the reliability of protection systems. IEEE Trans. Smart Grid 6, 1073–1081 (2015). [CrossRef]
- Huang, R. et al. Learning and Fast Adaptation for Grid Emergency Control via Deep Meta Reinforcement Learning. IEEE Trans. Power Syst. 37, 4168–4178 (2022). [CrossRef]
- Guo, M., Xu, D. & Liu, L. Design of Cooperative Output Regulators for Heterogeneous Uncertain Nonlinear Multiagent Systems. IEEE Trans. Cybern. 52, 5174–5183 (2022). [CrossRef]
- Roberts, L. G. W., Champneys, A. R., Bell, K. R. W. & Di Bernardo, M. Analytical Approximations of Critical Clearing Time for Parametric Analysis of Power System Transient Stability. IEEE J. Emerg. Sel. Top. Circuits Syst. 5, 465–476 (2015). [CrossRef]
- Owusu-Mireku, R., Chiang, H. D. & Hin, M. A Dynamic Theory-Based Method for Computing Unstable Equilibrium Points of Power Systems. IEEE Trans. Power Syst. 35, 1946–1955 (2020). [CrossRef]
- Sajadi, A., Kenyon, R. W. & Hodge, B. M. Synchronization in electric power networks with inherent heterogeneity up to 100% inverter-based renewable generation. Nat. Commun. 13, 1–12 (2022). [CrossRef]
- Sun, M. et al. On-line power system inertia calculation using wide area measurements. Int. J. Electr. Power Energy Syst. 109, 325–331 (2019). [CrossRef]
- Zhang, Y., Bank, J., Muljadi, E., Wan, Y. H. & Corbus, D. Angle instability detection in power systems with high-wind penetration using synchrophasor measurements. IEEE J. Emerg. Sel. Top. Power Electron. 1, 306–314 (2013). [CrossRef]
- Motter, A. E., Myers, S. A., Anghel, M. & Nishikawa, T. Spontaneous synchrony in power-grid networks. Nat. Phys. 9, 191–197 (2013). [CrossRef]
- Dörfler, F. & Bullo, F. Synchronization in complex networks of phase oscillators: A survey. Automatica 50, 1539–1564 (2014). [CrossRef]
- Chen, G. Searching for Best Network Topologies with Optimal Synchronizability: A Brief Review. IEEE/CAA J. Autom. Sin. 9, 573–577 (2022). [CrossRef]
- Li, X., Wei, W. & Zheng, Z. Promoting synchrony of power grids by restructuring network topologies. Chaos An Interdiscip. J. Nonlinear Sci. 33, 63149 (2023). [CrossRef]
- Zhang, Y. & Motter, A. E. Symmetry-Independent Stability Analysis of Synchronization Patterns. SIAM Rev. 62, 817–836 (2020). [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
