Submitted:
11 March 2024
Posted:
14 March 2024
Read the latest preprint version here
Abstract
Keywords:
Introduction
Stability Boundary

Spontaneous Synchronisation

Dynamic Processes at Disturbed Operating Points in the Coordinate System
. The subscripts u and ω denote the coefficients of the meta-generators at and , respectively. is the starting fault duration at which self-organised behaviour occurs at the disturbed operating point. To make it easier to show the details, in the picture uses the angle system. and are the initial values when . and denote the acceleration and velocity of the operating point about , respectively.
, where .
.Conclusions
Methods
Power-Grid Datasets
Definition and Diagram of Symbols

Data Sources and Experimental Procedures
Derivation of the Boundary Equation
Fitting of Operating Points to Trajectories
Operating Point Behaviour on the Boundary
plane. The result of the fit is
, and the adjusted R-squared value is 1.
plane. The result of the fit is
and the adjusted R-squared value is 0.99905.
plane. The result of the fit is
and the adjusted R-squared value is 0.9993.
plane. The result of the fit is
and the adjusted R-squared value is 1.
plane. The result of the fit is
and the adjusted R-squared value is 0.99981.Supplementary Materials
Data Availability
Conflicts of Interest
References
- Koronovskii, A.A.; Moskalenko, O.I.; Hramov, A.E. Synchronization in Complex Networks. Tech. Phys. Lett. 2012, 38, 924. [Google Scholar] [CrossRef]
- Dörfler, F.; Chertkov, M.; Bullo, F. Synchronization in Complex Oscillator Networks and Smart Grids. Proc. Natl. Acad. Sci. U. S. A. 2013, 110, 2005. [Google Scholar] [CrossRef] [PubMed]
- Linyuan, L.L.; Zhou, T. Link Prediction in Complex Networks: A Survey. Phys. A Stat. Mech. Its Appl. 2011, 390, 1150. [Google Scholar]
- Xu, Y.; Zhou, W.; Fang, J. Topology Identification of the Modified Complex Dynamical Network with Non-Delayed and Delayed Coupling. Nonlinear Dyn. 2012, 68, 195. [Google Scholar] [CrossRef]
- Molnar, F.; Nishikawa, T.; Motter, A.E. Asymmetry Underlies Stability in Power Grids. Nat. Commun. 2021, 12, 1. [Google Scholar] [CrossRef] [PubMed]
- Martínez, I.; Messina, A.R.; Vittal, V. Normal Form Analysis of Complex System Models: A Structure-Preserving Approach. IEEE Trans. Power Syst. 2007, 22, 1908. [Google Scholar] [CrossRef]
- Zhu, L.; Hill, D.J. Synchronization of Kuramoto Oscillators: A Regional Stability Framework. IEEE Trans. Automat. Contr. 2020, 65, 5070. [Google Scholar] [CrossRef]
- Casals, M.R.; Bologna, S.; Bompard, E.F.; D’, G.; Agostino, N.A.; Ellens, W.; Pagani, G.A.; Scala, A.; Verma, T. Knowing Power Grids and Understanding Complexity Science. Int. J. Crit. Infrastructures 2015, 11, 4. [Google Scholar] [CrossRef]
- Gurrala, G.; Dimitrovski, A.; Pannala, S.; Simunovic, S.; Starke, M. Parareal in Time for Fast Power System Dynamic Simulations. IEEE Trans. Power Syst. 2016, 31, 1820. [Google Scholar] [CrossRef]
- Gurrala, G.; Dinesha, D.L.; Dimitrovski, A.; Sreekanth, P.; Simunovic, S.; Starke, M. Large Multi-Machine Power System Simulations Using Multi-Stage Adomian Decomposition. IEEE Trans. Power Syst. 2017, 32, 3594. [Google Scholar] [CrossRef]
- Wang, B.; Fang, B.; Wang, Y.; Liu, H.; Liu, Y. Power System Transient Stability Assessment Based on Big Data and the Core Vector Machine. IEEE Trans. Smart Grid 2016, 7, 2561. [Google Scholar] [CrossRef]
- Yu, Y.; Liu, Y.; Qin, C.; Yang, T. Theory and Method of Power System Integrated Security Region Irrelevant to Operation States: An Introduction. Engineering 2020, 6, 754. [Google Scholar] [CrossRef]
- Yang, P.; Liu, F.; Wei, W.; Wang, Z. Approaching the Transient Stability Boundary of a Power System: Theory and Applications. IEEE Trans. Autom. Sci. Eng. 2022, 1. [Google Scholar] [CrossRef]
- Al-Ammar, E.A.; El-Kady, M.A. Application of Operating Security Regions in Power Systems. IEEE PES Transm. Distrib. Conf. Expo. Smart Solut. a Chang. World ( 2010.
- Kundur, P.; et al. Definition and Classification of Power System Stability. IEEE Trans. Power Syst. 2004, 19, 1387. [Google Scholar]
- B. B. Student Member and G. A. Senior Member. Senior Member, On the Nature of Unstable Equilibrium Points in Power Systems. IEEE Trans. Power Syst. 1993, 8, 738. [Google Scholar] [CrossRef]
- Chiang, H.D.; Wu, F.F.; Varaiya, P.P. A BCU Method for Direct Analysis of Power System Transient Stability. IEEE Trans. Power Syst. 1994, 9, 1194. [Google Scholar] [CrossRef]
- Shubhanga, K.N.; Kulkarni, A.M. Application of Structure Preserving Energy Margin Sensitivity to Determime the Effectiveness of Shunt and Serles FACTS Devices. IEEE Power Eng. Rev. 2002, 22, 57. [Google Scholar] [CrossRef]
- Bhui, P.; Senroy, N. Real-Time Prediction and Control of Transient Stability Using Transient Energy Function. IEEE Trans. Power Syst. 2017, 32, 923. [Google Scholar] [CrossRef]
- Al Marhoon, H.H.; Leevongwat, I.; Rastgoufard, P. A Fast Search Algorithm for Critical Clearing Time for Power Systems Transient Stability Analysis, 2014 Clemson Univ. Power Syst. Conf. PSC 2014 (2014).
- Rimorov, D.; Wang, X.; Kamwa, I.; Joos, G. An Approach to Constructing Analytical Energy Function for Synchronous Generator Models with Subtransient Dynamics. IEEE Trans. Power Syst. 2018, 33, 5958. [Google Scholar] [CrossRef]
- Motter, A.E.; Myers, S.A.; Anghel, M.; Nishikawa, T. Spontaneous Synchrony in Power-Grid Networks. Nat. Phys. 2013, 9, 191. [Google Scholar] [CrossRef]
- Kuramoto, Y.; Battogtokh, D. Coexistence of Coherence and Incoherence in Nonlocally Coupled Phase Oscillators. Physics (College. Park. Md). 2002, 4, 380. [Google Scholar]
- Martens, E.A.; Thutupalli, S.; Fourrière, A.; Hallatschek, O. Chimera States in Mechanical Oscillator Networks. Proc. Natl. Acad. Sci. U. S. A. 2013, 110, 10563. [Google Scholar] [CrossRef]
- Panaggio, M.J.; Abrams, D.M. Chimera States: Coexistence of Coherence and Incoherence in Networks of Coupled Oscillators. Nonlinearity 2015, 28, R67. [Google Scholar] [CrossRef]
- Ding, L.; Gonzalez-Longatt, F.M.; Wall, P.; Terzija, V. Two-Step Spectral Clustering Controlled Islanding Algorithm. IEEE Trans. Power Syst. 2013, 28, 75. [Google Scholar] [CrossRef]
- Ajala, O.; Dominguez-Garcia, A.; Sauer, P.; Liberzon, D. A Second-Order Synchronous Machine Model for Multi-Swing Stability Analysis, 51st North Am. Power Symp. NAPS 2019 ( 2019.
- Winfree, A.T. Biological Rhythms and the Behavior of Populations of Coupled Oscillators. J. Theor. Biol. 1967, 16, 15. [Google Scholar] [CrossRef] [PubMed]
- Chen, G. Searching for Best Network Topologies with Optimal Synchronizability: A Brief Review. IEEE/CAA J. Autom. Sin. 2022, 9, 573. [Google Scholar] [CrossRef]
- Karatekin, C.Z.; Uçak, C. Sensitivity Analysis Based on Transmission Line Susceptances for Congestion Management. Electr. Power Syst. Res. 2008, 78, 1485. [Google Scholar] [CrossRef]
- Mei, S.; Ni, Y.; Wang, G.; Wu, S. A Study of Self-Organized Criticality of Power System under Cascading Failures Based on AC-OPF with Voltage Stability Margin. IEEE Trans. Power Syst. 2008, 23, 1719. [Google Scholar]
- Dobson, I.; Carreras, B.; Lynch, V.; Newman, D. An Initial Model for Complex Dynamics in Electric Power System Blackouts. Proc. Hawaii Int. Conf. Syst. Sci. 2001, 51. [Google Scholar]
- Nishikawa, T.; Motter, A.E. Symmetric States Requiring System Asymmetry. Phys. Rev. Lett. 2016, 117. [Google Scholar] [CrossRef]
- Dörfler, F.; Bullo, F. Synchronization in Complex Networks of Phase Oscillators: A Survey. Automatica 2014, 50, 1539. [Google Scholar] [CrossRef]
- Zou, Y.; Pereira, T.; Small, M.; Liu, Z.; Kurths, J. Basin of Attraction Determines Hysteresis in Explosive Synchronization. Phys. Rev. Lett. 2014, 112, 114102. [Google Scholar] [CrossRef]
- Chialvo, D.R. Emergent Complex Neural Dynamics. Nat. Phys. 2010, 6, 744. [Google Scholar] [CrossRef]
- Fan, H.; Wang, Y.; Wang, X. Eigenvector-Based Analysis of Cluster Synchronization in General Complex Networks of Coupled Chaotic Oscillators. Front. Phys. 2023, 18. [Google Scholar] [CrossRef]
- Li, X.; Wei, W.; Zheng, Z. Promoting Synchrony of Power Grids by Restructuring Network Topologies. Chaos An Interdiscip. J. Nonlinear Sci. 2023, 33, 63149. [Google Scholar] [CrossRef]
- Zhang, Y.; Motter, A.E. Symmetry-Independent Stability Analysis of Synchronization Patterns. SIAM Rev. 2020, 62, 817. [Google Scholar] [CrossRef]
- Amirthalingam, K.M.; Ramachandran, R.P. Improvement of Transient Stability of Power System Using Solid State Circuit Breaker. Am. J. Appl. Sci. 2013, 10, 563. [Google Scholar] [CrossRef]
- Liu, X.; Shahidehpour, M.; Cao, Y.; Li, Z.; Tian, W. Risk Assessment in Extreme Events Considering the Reliability of Protection Systems. IEEE Trans. Smart Grid 2015, 6, 1073. [Google Scholar] [CrossRef]
- Huang, R.; Chen, Y.; Yin, T.; Huang, Q.; Tan, J.; Yu, W.; Li, X.; Li, A.; Du, Y. Learning and Fast Adaptation for Grid Emergency Control via Deep Meta Reinforcement Learning. IEEE Trans. Power Syst. 2022, 37, 4168. [Google Scholar] [CrossRef]
- Guo, M.; Xu, D.; Liu, L. Design of Cooperative Output Regulators for Heterogeneous Uncertain Nonlinear Multiagent Systems. IEEE Trans. Cybern. 2022, 52, 5174. [Google Scholar] [CrossRef] [PubMed]
- Roberts, L.G.W.; Champneys, A.R.; Bell, K.R.W.; Di Bernardo, M. Analytical Approximations of Critical Clearing Time for Parametric Analysis of Power System Transient Stability. IEEE J. Emerg. Sel. Top. Circuits Syst. 2015, 5, 465. [Google Scholar] [CrossRef]
- Owusu-Mireku, R.; Chiang, H.D.; Hin, M. A Dynamic Theory-Based Method for Computing Unstable Equilibrium Points of Power Systems. IEEE Trans. Power Syst. 2020, 35, 1946. [Google Scholar] [CrossRef]
- Sajadi, A.; Kenyon, R.W.; Hodge, B.M. Synchronization in Electric Power Networks with Inherent Heterogeneity up to 100% Inverter-Based Renewable Generation. Nat. Commun. 2022, 13, 1. [Google Scholar] [CrossRef]
- Sun, M.; Feng, Y.; Wall, P.; Azizi, S.; Yu, J.; Terzija, V. On-Line Power System Inertia Calculation Using Wide Area Measurements. Int. J. Electr. Power Energy Syst. 2019, 109, 325. [Google Scholar] [CrossRef]
- Zhang, Y.; Bank, J.; Muljadi, E.; Wan, Y.H.; Corbus, D. Angle Instability Detection in Power Systems with High-Wind Penetration Using Synchrophasor Measurements. IEEE J. Emerg. Sel. Top. Power Electron. 2013, 1, 306. [Google Scholar] [CrossRef]
- Anderson, P.M.; Fouad, A.A. Power System Control and Stability (John Wiley & Sons, 2008).
- Pai, A. Energy Function Analysis for Power System Stability (Springer Science & Business Media, 1989).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
