Altmetrics
Downloads
75
Views
27
Comments
0
A peer-reviewed article of this preprint also exists.
This version is not peer-reviewed
Submitted:
31 October 2023
Posted:
01 November 2023
You are already at the latest version
Algorithm 1 Training process for CNNs with proposed loss |
Input: Training images , batch size M, number of training iterations T, learning rates of weight parameter , learning rate of class centers , hyper-parameters , , .
Initialization: the CNNs parameters W, the softmax loss parameters , the class centers , the iteration t=0.
End of the algorithm: The CNNs parameters W, the softmax loss parameters
|
An | Co | Di | Fe | Ha | Sa | Su | Ne | All | |
CK+ | 135 | 54 | 177 | 75 | 207 | 84 | 249 | - | 981 |
Oulu | 240 | - | 240 | 240 | 240 | 240 | 240 | - | 1440 |
MMI | 99 | - | 96 | 84 | 126 | 96 | 123 | - | 624 |
FER2013 | 4953 | - | 547 | 5121 | 8989 | 6077 | 4002 | 6198 | 35887 |
Method | AlexNet | InceptionNet | ResNet | DenseNet | MobileNetV3 | ResNeSt |
Softmax | 87.38 | 87.18 | 90.65 | 83.68 | 91.60 | 85.58 |
Center | 88.08 | 87.88 | 92.46 | 83.38 | 87.78 | 85.98 |
Range | 90.59 | 88.08 | 91.79 | 85.28 | 91.50 | 88.68 |
Marginal | 89.18 | 86.68 | 87.78 | 84.18 | 89.68 | 86.38 |
Proposed | 90.79 | 89.18 | 94.89 | 85.98 | 91.90 | 89.28 |
An | Co | Di | Fe | Ha | Sa | Su | |
An | 86.2% | 1.4% | 6.5% | 0% | 0% | 5.1% | 0.8% |
Co | 3.6% | 93.4% | 0% | 1.5% | 0% | 1.5% | 0% |
Di | 1.7% | 0% | 97.7% | 0% | 0.6% | 0% | 0% |
Fe | 0% | 2.6% | 0% | 87.2% | 7.6% | 2.6% | 0% |
Ha | 0% | 0% | 0% | 0.5% | 99.5% | 0% | 0% |
Sa | 7.5% | 1.1% | 1.1% | 0% | 0% | 90.3% | 0% |
Su | 0.8% | 0% | 0% | 0.4% | 0% | 0.4% | 98.4% |
Method | AlexNet | InceptionNet | ResNet | DenseNet | MobileNetV3 | ResNeSt |
Softmax | 70.52 | 65.16 | 72.46 | 68.67 | 73.24 | 70.23 |
Center | 71.95 | 64.09 | 74.96 | 69.09 | 74.89 | 67.23 |
Range | 72.17 | 64.38 | 74.11 | 69.52 | 69.09 | 63.80 |
Marginal | 70.24 | 68.09 | 71.88 | 68.67 | 73.74 | 68.95 |
Proposed | 72.96 | 69.17 | 77.61 | 69.88 | 76.46 | 70.24 |
An | Di | Fe | Ha | Sa | Su | |
An | 66.2% | 13.0% | 6.9% | 0% | 13.9% | 0% |
Di | 12.4% | 70.5% | 7.3% | 2.6% | 6.8% | 0.4% |
Fe | 5.8% | 1.3% | 76.3% | 5.4% | 5.0% | 16.3% |
Ha | 0% | 2.1% | 5.8% | 92.1% | 0% | 0% |
Sa | 12.4% | 3.8% | 5.1% | 1.7% | 76.5% | 0.4% |
Su | 1.4% | 0% | 11.9% | 2.7% | 0% | 84.0% |
Method | AlexNet | InceptionNet | ResNet | DenseNet | MobileNetV3 | ResNeSt |
Softmax | 57.76 | 53.92 | 61.59 | 60.52 | 61.44 | 54.07 |
Center | 58.98 | 58.52 | 61.92 | 59.29 | 64.36 | 57.29 |
Range | 62.67 | 61.75 | 61.13 | 54.68 | 64.20 | 55.76 |
Marginal | 59.44 | 55.14 | 57.62 | 57.61 | 64.66 | 53.00 |
Proposed | 63.13 | 63.74 | 65.89 | 61.13 | 67.43 | 58.83 |
An | Di | Fe | Ha | Sa | Su | |
An | 57.1% | 14.3% | 11.4% | 3.8% | 12.4% | 1.0% |
Di | 13.0% | 72.2% | 2.8% | 4.6% | 4.6% | 2.8% |
Fe | 11.5% | 5.8% | 31.0% | 9.2% | 11.5% | 31.0% |
Ha | 0% | 6.3% | 1.6% | 89.7% | 0% | 2.4% |
Sa | 14.7% | 13.8% | 8.8% | 0% | 59.8% | 2.9% |
Su | 4.1% | 0.8% | 7.3% | 1.6% | 4.9% | 81.3% |
Method | AlexNet | InceptionNet | ResNet | DenseNet | MobileNetV3 | ResNeSt |
Softmax | 59.77 | 55.92 | 59.21 | 59.15 | 56.33 | 60.85 |
Center | 58.48 | 57.42 | 56.70 | 59.82 | 50.43 | 60.93 |
Range | 58.65 | 56.22 | 48.37 | 59.59 | 52.99 | 60.96 |
Marginal | 59.04 | 57.12 | 57.51 | 58.71 | 56.56 | 59.76 |
Proposed | 58.51 | 57.81 | 59.65 | 60.46 | 58.29 | 61.05 |
An | Di | Fe | Ha | Sa | Su | Ne | |
An | 55.7% | 0.4% | 8.6% | 6.6% | 14.6% | 3.2% | 10.9% |
Di | 23.2% | 46.4% | 7.2% | 1.8% | 10.7% | 3.6% | 7.1% |
Fe | 8.9% | 0.2% | 42.5% | 4.2% | 23.4% | 8.3% | 12.5% |
Ha | 3.6% | 0% | 1.5% | 80.7% | 3.6% | 2.8% | 7.8% |
Sa | 13.6% | 0.5% | 11.8% | 6.9% | 48.5% | 2.8% | 15.9% |
Su | 4.3% | 0% | 7.9% | 3.9% | 2.4% | 77.4% | 4.1% |
Ne | 9.9% | 0.2% | 7.1% | 8.7% | 16.8% | 2.3% | 55.0% |
Methods | AlexNet | InceptionNet | DenseNet | |||||||||
CK+ | Oulu-CASIA | MMI | FER2013 | CK+ | Oulu-CASIA | MMI | FER2013 | CK+ | Oulu-CASIA | MMI | FER2013 | |
Softmax | 146 | 142 | 116 | 150 | 499 | 497 | 479 | 1529 | 393 | 504 | 394 | 2036 |
Center | 150 | 143 | 121 | 157 | 502 | 493 | 494 | 1621 | 418 | 494 | 400 | 2050 |
Range | 2871 | 2937 | 2219 | 2619 | 3432 | 3265 | 3219 | 9238 | 2679 | 3231 | 2460 | 12113 |
Marginal | 15424 | 15552 | 12149 | 15222 | 15625 | 15621 | 15513 | 46090 | 12443 | 15717 | 12372 | 62438 |
Proposed | 157 | 156 | 127 | 163 | 520 | 518 | 522 | 1677 | 410 | 503 | 412 | 2177 |
Iterations | 10000 | 10000 | 8000 | 10000 | 10000 | 10000 | 10000 | 30000 | 10000 | 10000 | 8000 | 10000 |
Methods | ResNet | MobileNetV3 | ResNeSt | |||||||||
CK+ | Oulu-CASIA | MMI | FER2013 | CK+ | Oulu-CASIA | MMI | FER2013 | CK+ | Oulu-CASIA | MMI | FER2013 | |
Softmax | 231 | 252 | 254 | 568 | 431 | 1144 | 1066 | 3215 | 2008 | 1619 | 2110 | 4108 |
Center | 235 | 265 | 250 | 600 | 373 | 1055 | 1195 | 2415 | 2466 | 1779 | 2200 | 10969 |
Range | 2361 | 2533 | 2443 | 5774 | 5247 | 6445 | 6176 | 14283 | 7368 | 5936 | 7856 | 64143 |
Marginal | 11648 | 12632 | 11648 | 30686 | 12164 | 34076 | 33580 | 83618 | 37944 | 29172 | 35354 | 197333 |
Proposed | 243 | 271 | 266 | 601 | 456 | 1072 | 1108 | 2943 | 2570 | 1780 | 2273 | 14004 |
Iterations | 7500 | 8000 | 8000 | 20000 | 7500 | 20000 | 20000 | 50000 | 20000 | 15000 | 20000 | 100000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 MDPI (Basel, Switzerland) unless otherwise stated