Altmetrics
Downloads
74
Views
16
Comments
0
A peer-reviewed article of this preprint also exists.
This version is not peer-reviewed
Submitted:
06 November 2023
Posted:
07 November 2023
You are already at the latest version
Nomenclature | |
aqt,ast | Cross-over recombination of a new chromosome |
A | Feature matrix of the input sample |
A′ | Feature matrix of the input sample after normalization |
b | Random number |
B | Weight matrix between all training samples hidden layer and output layer neurons |
c | Random number |
cp,w | Specific heat capacity of chilled water (kJ/(kg·℃)) |
C | Penalty factor |
d | Current number of iterations |
D | Maximum number of evolutions |
eall | Global error in BPNN |
ek | Computational error for a single training sample |
Ek | Desired output value of BPNN |
Et | Entropy value of the tth meteorological parameter |
F | Individual fitness value |
Fl | The fitness value of individual |
F(S) | Transfer function of hidden layer neurons |
g(x) | SVR model output value |
G(S) | Transfer function of neurons in the output layer |
Hj | Output value of the hidden layer neuron |
Io | Outdoor solar radiation intensity (W/m2) |
k | Coverage factor |
K(xi,xr) | Kernel function |
l | Number of neurons in the hidden layer |
Lε(g(x),y) | ε linearly insensitive loss function |
m | Total number of training samples |
n | Number of populations |
Oi | Vector of output value of the output layer of the neural network |
Ok | Output value of neurons in the output layer |
p | Number of neurons in the input layer |
Ph,t | Probability of occurrence of input variable |
Pl | Probability that individual is selected |
Qc | Heat pump system cooling load (kW) |
r | Random number |
rh | Comprehensive similarity coefficient |
RHi | Indoor relative humidity |
RHo | Outdoor relative humidity |
Sj | Input signals of hidden layer neurons |
Sk | Input signals of output layer neurons |
T | Matrix of output values of neurons in the output layer of all training samples |
Ti | Indoor temperature (℃) |
To | Outdoor temperature (℃) |
Tre | Return water temperature of heat pump system (℃) |
Tsu | Supply water temperature of heat pump system (℃) |
U | Function of a series of measured parameters |
v | Coefficient of linear regression |
V | Weight vector |
Vo | Outdoor wind speed (m/s) |
Wt | Weight values of input variables |
xh | Feature vector of the input sample |
xh,p | Eigenvalue of input variable |
x'h,t | Eigenvalues of input variable after dimensionless processing |
xt | Input variable |
Xl | Test parameters |
Xmax | Upper bound of gene Xqt |
Xmin | Lower bound of gene Xqt |
X'qt | Mutated genes |
Z | Matrix of output values of neurons in the hidden layer of all training samples |
Z+ | Moore-Penrose generalized inverse of hidden layer output matrix Z of ELM |
Abbreviations | |
APE | Absolute Percentage Error |
BP | Back Propagation |
BPNN | Back Propagation Neural Network |
ELM | Extreme Learning Machine |
GABPNN | Genetic Algorithm-Back Propagation Neural Network |
MLR | Multi-layer perceptron |
Primary minimum difference | |
Secondary minimum difference | |
Maximum value of predicted and historical moments at the tth input variable eigenvalue | |
Primary maximum difference | |
Secondary maximum difference | |
OECD | Organization for Economic Co-operation and Development |
SVM | Support Vector Machine |
Greek symbols | |
αi | Lagrange multiplier |
αi* | Lagrange multiplier |
αj | Threshold of hidden layer neurons |
βk | Threshold of output layer neurons |
δj | Calculate the partial derivative of the error function to the connection weight between the input layer and the hidden layer neurons. |
δk | Calculate the partial derivative of the error to the connection weight between the hidden layer and the output layer neurons. |
ε | The error requirement of linear regression function |
εX,l | Uncertainty of the measured parameter |
∆εU | Relative uncertainty of the calculated parameter |
∆εX,l | Relative uncertainty of the measured parameter |
xi | Slack variable |
xi* | Slack variable |
ρ | Resolution factor |
ρw | Density of chilled water (kg/m3) |
σ | Adjustment factor |
η | Learning efficiency of neural network |
μ | Additional momentum factor |
ψkj | Connection weights of neurons between the hidden and output layers |
ψj | Weight vector between neurons in the hidden and output layers |
ωj | Weight vector between neurons in the hidden and input layers |
ωjt | Connection weights of neurons between the input and hidden layers |
Subscripts | |
h | Time series |
j | Number of the hidden layer |
k | Number of the input layer |
q | Number of chromosomes |
Instrument name. | Model | Test range | Precision |
---|---|---|---|
heat meter | Engelmann SENSOSTAR 2BU | Temperature: 1~150℃/Flow rate: 0~120m³/h | ±0.35℃/±2% |
HOBO data self-logger | U10-003 | Temperature: -20~70℃ / Relative humidity: 25~95% | ±0.4℃/±3.5% |
Temperature and HumiditySensor (small weather station) | S-THB-M002 | Temperature: -40~75℃/Relative Humidity:0~100% | ±0.21℃/±2.5% |
Solar Radiation Sensor(small meteorological station) | S-LIB-M003 | 0~1280W/m2 | ±10W/m2 |
Wind Speed Sensor(small meteorological station) | S-WSB-M003 | 0~76m/s | ±4% |
Parameter name | Unit | Relative uncertainty (%) |
---|---|---|
Return water temperature of free cooling mode | ℃ | ±1.06 |
Supply water temperature of free cooling mode | ℃ | ±1.25 |
Cooling capacity of free cooling model | kW | ±9.77 |
Flow of free cooling model | m3/h | ±1.77 |
Indoor temperature | ℃ | ±0.90 |
Relative humidity of indoor air | % | ±3.26 |
outdoor temperature | ℃ | ±0.40 |
Relative humidity of outdoor | % | ±2.65 |
Intensity of solar radiation | W/m2 | ±1.49 |
Outdoor wind speed | m/s | ±2.31 |
Water supply temperature of heat pump unit A | ℃ | ±2.43 |
Return water temperature of heat pump unit A | ℃ | ±1.67 |
Cooling capacity of heat pump unit A | kW | ±7.56 |
Cooling energy efficiency of heat pump unit A | - | ±7.53 |
Water supply temperature of heat pump unit B | ℃ | ±1.88 |
Return water temperature of heat pump unit B | ℃ | ±1.44 |
Cooling capacity of heat pump unit B | kW | ±8.69 |
Number of populations | 50 |
---|---|
Maximum number of generations | 400 |
The number of binary digits of the variable | 20 |
Generation gap | 0.95 |
Probability of crossover | 0.7 |
Probability of mutation | 0.01 |
Maximum training times | 1000 |
---|---|
Momentum factor | 0.9 |
Learning rate | 0.1 |
Training goal | 0.005 |
Indicators | Building cooling load and its influencing factors | |||||||
---|---|---|---|---|---|---|---|---|
Q | To | RHo | Io | Vo | Ti | RHi | Q(t-1) | |
Average value |
72.766 | 29.013 | 39.697 | 476.889 | 1.060 | 26.675 | 43.249 | 73.980 |
Standard deviation |
15.523 | 4.123 | 18.196 | 238.526 | 0.871 | 0.755 | 12.712 | 16.471 |
Test statistic |
0.147 | 0.041 | 0.156 | 0.061 | 0.124 | 0.051 | 0.098 | 0.146 |
Asymptotic significance |
0.000 | 0.089 | 0.000 | 0.001 | 0.000 | 0.011 | 0.000 | 0.000 |
Indicator | Factors affecting building cooling loads | ||||||
---|---|---|---|---|---|---|---|
To | RHo | Io | Vo | Ti | RHi | Q(t-1) | |
Correlation coefficient | 0.119* | 0.171** | 0.144** | -0.129** | 0.221** | 0.180** | 0.956** |
Significance | 0.014 | 0.000 | 0.003 | 0.008 | 0.000 | 0.000 | 0.000 |
Name | Main Input Variables | Detailed description |
---|---|---|
M1 | HRo; Io; Vo; Ti; RHi; Q(t-1) | BPNN |
M2 | HRo; Io; Vo; Ti; RHi; Q(t-1) | Similar samples screening +BPNN |
M3 | HRo; Io; Vo; Ti; RHi; Q(t-1) | GABPNN |
M4 | HRo; Io; Vo; Ti; RHi; Q(t-1) | Similar samples screening +GABPNN |
M5 | HRo; Io; Vo; Ti; RHi; Q(t-1) | SVR neural network |
M6 | HRo; Io; Vo; Ti; RHi; Q(t-1) | Similar samples screening +SVR neural network |
M7 | HRo; Io; Vo; Ti; RHi; Q(t-1) | ELM neural network |
M8 | HRo; Io; Vo; Ti; RHi; Q(t-1) | Similar samples screening +ELM neural network |
Model | Training error | Prediction error | ||||
---|---|---|---|---|---|---|
MAPE(%) | R2 | RMSE(kW) | MAPE(%) | R2 | RMSE(kW) | |
M1 | 3.7 | 0.892 | 4.092 | 11.5 | 0.535 | 14.611 |
M2 | 3.5 | 0.895 | 3.937 | 8.8 | 0.658 | 12.536 |
M3 | 2.6 | 0.917 | 3.593 | 7.2 | 0.632 | 12.992 |
M4 | 2.9 | 0.915 | 3.531 | 8.3 | 0.528 | 14.717 |
M5 | 2.2 | 0.908 | 3.777 | 5.4 | 0.811 | 9.319 |
M6 | 2.5 | 0.903 | 3.763 | 5.7 | 0.782 | 10.007 |
M7 | 2.8 | 0.903 | 3.889 | 6.4 | 0.742 | 10.881 |
M8 | 3.0 | 0.897 | 3.885 | 5.7 | 0.820 | 9.101 |
Indicators | Building cooling load and its influencing factors | |||||||
---|---|---|---|---|---|---|---|---|
Q | To | RHo | Io | Vo | Ti | RHi | Q(t-1) | |
Average value |
169.105 | 31.644 | 62.727 | 360.958 | 0.690 | 25.078 | 68.716 | 168.599 |
Standard deviatin |
53.664 | 3.354 | 15.966 | 202.608 | 0.543 | 0.380 | 5.948 | 53.055 |
Test statistic |
0.245 | 0.025 | 0.080 | 0.046 | 0.135 | 0.067 | 0.105 | 0.243 |
Asymptotic significance |
0.000 | 0.200 | 0.000 | 0.003 | 0.000 | 0.000 | 0.000 | 0.000 |
Indicator | Factors affecting building cooling loads | ||||||
---|---|---|---|---|---|---|---|
To | RHo | Io | Vo | Ti | RHi | Q(t-1) | |
Correlation coefficient | 0.427* * | -0.008 | 0.189** | 0.137** | 0.185** | 0.250** | 0.966** |
Significance | 0.000 | 0.841 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 |
Name | Main input variables | Detailed description |
---|---|---|
M1 | To; Io; Vo; Ti; RHi; Q(t-1) | BPNN |
M2 | To; Io; Vo; Ti; RHi; Q(t-1) | Similar sample screening +BPNN |
M3 | To; Io; Vo; Ti; RHi; Q(t-1) | GABPNN |
M4 | To; Io; Vo; Ti; RHi; Q(t-1) | Similar sample screening +GABPNN |
M5 | To; Io; Vo; Ti; RHi; Q(t-1) | SVR neural network |
M6 | To; Io; Vo; Ti; RHi; Q(t-1) | Similar sample screening +SVR neural network |
M7 | To; Io; Vo; Ti; RHi; Q(t-1) | ELM neural network |
M8 | To; Io; Vo; Ti; RHi; Q(t-1) | Similar sample screening +ELM neural network |
Model | Training error | Prediction error | ||||
---|---|---|---|---|---|---|
MAPE(%) | R2 | RMSE(kW) | MAPE(%) | R2 | RMSE(kW) | |
M1 | 7.6 | 0.889 | 15.641 | 10.5 | 0.850 | 25.580 |
M2 | 4.8 | 0.911 | 11.819 | 5.7 | 0.893 | 21.588 |
M3 | 2.7 | 0.963 | 9.020 | 2.8 | 0.903 | 20.574 |
M4 | 2.8 | 0.962 | 8.964 | 2.9 | 0.905 | 20.289 |
M5 | 2.2 | 0.967 | 8.508 | 2.6 | 0.905 | 20.370 |
M6 | 2.4 | 0.964 | 8.708 | 2.5 | 0.906 | 20.208 |
M7 | 2.7 | 0.964 | 8.961 | 3.3 | 0.904 | 20.467 |
M8 | 2.6 | 0.948 | 8.647 | 2.7 | 0.906 | 20.247 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 MDPI (Basel, Switzerland) unless otherwise stated