Altmetrics
Downloads
109
Views
52
Comments
0
This version is not peer-reviewed
Submitted:
29 November 2023
Posted:
29 November 2023
You are already at the latest version
Algorithm 1: Hierarchical_keyframes_selection (Vi) |
Input: Frames (Fn) of Video Vi |
Output: K-centroids, keyframes (SKVi), Kfdb = keyframes database |
for i=1 to n frames of Vi |
extract DCNN features |
if( min dist(Fi , Fi+1)) |
C=Merge(Fi , Fi+1) |
for end |
If C= single cluster //single hierarchy |
Split C into K number of hierarchies // to obtain K-clusters |
Kfdb=Find K-centroids // frame nearest to centroid |
If end |
return(Kfdb) |
Algorithm 2: KMeans_keyframes_selection (Vi) |
Input: Frames (Fn) of Video Vi , K - number of clusters and µ1, µ2, µ3, …, µK are the means of each initial clusters |
Output: K-centroids, keyframes (SKVi), Kfdb = keyframes database |
for i=1 to n frames of Vi |
extract DCNN features |
select µ1, µ2, µ3, …, µK are the means of each initial clusters |
find Si number of nearest frames to µi |
Recalculate µi |
Until there is no change in µi |
Return µ1, µ2, µ3, …, µK |
for end |
for i=1 to K //K number of clusters |
Ki=find frame near to µi |
Kfdb=Ki // keyframes |
If end |
return(Kfdb) |
Algorithm 3: GMM_keyframes_selection (Vi) |
Input: Frames (Fn) of Video Vi , K - number of clusters |
Output: K-centroids, keyframes (SKVi), Kfdb = keyframes database |
for i=1 to n frames of Vi |
extract DCNN features |
estimate maximum likelihood expectation using GMM distribution |
group the similar frames to from K number of clusters |
for end |
for i=1 to K //K number of clusters |
Ki=find frame near to centroid of each cluster |
Kfdb=Ki // keyframes |
If end |
return(Kfdb) |
Table 3 (a). SGGP dataset – Precision, Recall, F-Measure of top 5 to 25 retrieval results | ||||||||||||||||
Precision | Recall | F-Measure | ||||||||||||||
Train-Test in % | Top 5 | Top 10 | Top 15 | Top 20 | Top 25 | Top 5 | Top 10 | Top 15 | Top 20 | Top 25 | Top 5 | Top 10 | Top 15 | Top 20 | Top 25 | |
30–70 | 72.87 | 66.42 | 61.2 | 56.23 | 51.6 | 13.25 | 23.86 | 32.56 | 39.35 | 44.64 | 21.96 | 34.06 | 41.06 | 44.65 | 46.13 | |
40–60 | 75.58 | 69.14 | 64.73 | 60.75 | 57.11 | 10.61 | 19.14 | 26.55 | 32.81 | 38.18 | 18.28 | 29.17 | 36.44 | 41.12 | 44.11 | |
50–50 | 77.39 | 71.75 | 67.5 | 64.07 | 60.69 | 8.82 | 16.22 | 22.63 | 28.32 | 33.18 | 15.6 | 25.8 | 32.85 | 37.94 | 41.36 | |
60–40 | 80.73 | 75.27 | 71.39 | 67.78 | 64.89 | 7.55 | 14.04 | 19.9 | 25 | 29.67 | 13.64 | 23.17 | 30.28 | 35.4 | 39.37 | |
70–30 | 82.73 | 77.59 | 73.65 | 70.2 | 67.26 | 6.68 | 12.47 | 17.68 | 22.36 | 26.61 | 12.22 | 21.06 | 27.78 | 32.9 | 36.88 | |
80–20 | 84.91 | 80.7 | 76.38 | 73.06 | 69.94 | 5.99 | 11.32 | 15.98 | 20.3 | 24.18 | 11.07 | 19.51 | 25.81 | 30.89 | 34.82 | |
Table 3 (b). SonyCybershot dataset – Precision, Recall, F-Measure of top 5 to 25 retrieval results | ||||||||||||||||
Precision | Recall | F-Measure | ||||||||||||||
Train-Test in % | Top 5 | Top 10 | Top 15 | Top 20 | Top 25 | Top 5 | Top 10 | Top 15 | Top 20 | Top 25 | Top 5 | Top 10 | Top 15 | Top 20 | Top 25 | |
30–70 | 75.74 | 70.15 | 64.86 | 59.39 | 54.56 | 14.65 | 26.88 | 36.69 | 43.98 | 49.81 | 24.01 | 37.66 | 45.28 | 48.81 | 50.33 | |
40–60 | 80.34 | 74.75 | 69.96 | 65.75 | 61.5 | 11.67 | 21.49 | 29.93 | 37.05 | 42.65 | 20 | 32.48 | 40.59 | 45.8 | 48.66 | |
50–50 | 82.53 | 77.34 | 73.19 | 69.3 | 65.8 | 9.67 | 17.95 | 25.29 | 31.68 | 37.27 | 17.03 | 28.42 | 36.47 | 42.07 | 45.98 | |
60–40 | 84.44 | 79.72 | 75.91 | 72.4 | 69.12 | 8.25 | 15.45 | 21.84 | 27.57 | 32.66 | 14.81 | 25.29 | 32.98 | 38.7 | 42.9 | |
70–30 | 85.1 | 81.09 | 77.57 | 74.33 | 71.49 | 7.09 | 13.38 | 19.08 | 24.21 | 28.93 | 12.92 | 22.5 | 29.84 | 35.46 | 39.89 | |
80–20 | 87.15 | 83.04 | 79.76 | 76.99 | 73.81 | 6.38 | 12.08 | 17.28 | 22.11 | 26.31 | 11.75 | 20.69 | 27.7 | 33.38 | 37.59 | |
Table 3 (c). Canon dataset – Precision, Recall, F-Measure of top 5 to 25 retrieval results | ||||||||||||||||
Precision | Recall | F-Measure | ||||||||||||||
Train-Test in % | Top 5 | Top 10 | Top 15 | Top 20 | Top 25 | Top 5 | Top 10 | Top 15 | Top 20 | Top 25 | Top 5 | Top 10 | Top 15 | Top 20 | Top 25 | |
30–70 | 82.4 | 76.83 | 71.26 | 65.71 | 60.52 | 14.86 | 27.35 | 37.43 | 45.37 | 51.59 | 24.6 | 39.04 | 47.33 | 51.7 | 53.63 | |
40–60 | 84.74 | 80.22 | 75.89 | 71.56 | 67.1 | 11.63 | 21.73 | 30.46 | 37.82 | 43.78 | 20.06 | 33.2 | 41.99 | 47.67 | 50.99 | |
50–50 | 85.73 | 81.73 | 77.68 | 74 | 70.44 | 9.53 | 17.99 | 25.43 | 31.92 | 37.62 | 16.87 | 28.69 | 37.06 | 42.99 | 47.17 | |
60–40 | 87.89 | 83.74 | 80.34 | 76.83 | 73.54 | 8.2 | 15.53 | 22.16 | 27.99 | 33.13 | 14.77 | 25.55 | 33.66 | 39.61 | 43.99 | |
70–30 | 91.26 | 87.32 | 84.11 | 81.04 | 77.6 | 7.26 | 13.85 | 19.9 | 25.43 | 30.19 | 13.27 | 23.38 | 31.27 | 37.44 | 41.93 | |
80–20 | 92.71 | 89.61 | 86.82 | 84.29 | 81.47 | 6.43 | 12.38 | 17.88 | 23.06 | 27.65 | 11.89 | 21.32 | 28.89 | 35.12 | 39.91 |
Table 4 (a). SGGP dataset – Precision, Recall, F-Measure of top 5 to 25 retrieval results | |||||||||||||||
Precision | Recall | F-Measure | |||||||||||||
Train-Test in % | Top 5 | Top 10 | Top 15 | Top 20 | Top 25 | Top 5 | Top 10 | Top 15 | Top 20 | Top 25 | Top 5 | Top 10 | Top 15 | Top 20 | Top 25 |
30–70 | 74.07 | 67.15 | 61.77 | 57.13 | 52.77 | 13.52 | 24.17 | 32.98 | 40.1 | 45.83 | 22.4 | 34.5 | 41.57 | 45.48 | 47.31 |
40–60 | 75.77 | 70.11 | 65.3 | 61.23 | 57.66 | 10.63 | 19.45 | 26.9 | 33.27 | 38.78 | 18.32 | 29.64 | 36.89 | 41.63 | 44.72 |
50–50 | 77.11 | 72.28 | 68.14 | 64.44 | 61.18 | 8.77 | 16.37 | 23 | 28.75 | 33.76 | 15.51 | 26.04 | 33.35 | 38.42 | 41.97 |
60–40 | 80.13 | 75.63 | 72.16 | 68.78 | 65.53 | 7.51 | 14.13 | 20.17 | 25.53 | 30.17 | 13.57 | 23.32 | 30.69 | 36.1 | 39.96 |
70–30 | 82.13 | 77.51 | 74.28 | 71.19 | 68.4 | 6.63 | 12.48 | 17.89 | 22.77 | 27.22 | 12.13 | 21.08 | 28.11 | 33.49 | 37.68 |
80–20 | 85.14 | 80.51 | 77.09 | 73.94 | 71.19 | 5.98 | 11.27 | 16.15 | 20.58 | 24.68 | 11.07 | 19.44 | 26.1 | 31.33 | 35.55 |
Table 4 (b). SonyCybershot dataset – Precision, Recall, F-Measure of top 5 to 25 retrieval results | |||||||||||||||
Precision | Recall | F-Measure | |||||||||||||
Train-Test in % | Top 5 | Top 10 | Top 15 | Top 20 | Top 25 | Top 5 | Top 10 | Top 15 | Top 20 | Top 25 | Top 5 | Top 10 | Top 15 | Top 20 | Top 25 |
30–70 | 78.35 | 72.7 | 66.98 | 61.47 | 56.37 | 15.31 | 28.13 | 38.22 | 45.97 | 51.92 | 25.06 | 39.34 | 47.07 | 50.84 | 52.27 |
40–60 | 81.95 | 77.28 | 72.63 | 67.9 | 63.64 | 12.05 | 22.49 | 31.37 | 38.59 | 44.54 | 20.62 | 33.9 | 42.44 | 47.58 | 50.65 |
50–50 | 84.27 | 79.4 | 75.78 | 71.9 | 68.18 | 10 | 18.68 | 26.49 | 33.2 | 38.96 | 17.58 | 29.5 | 38.1 | 43.97 | 47.94 |
60–40 | 85.79 | 81.51 | 78.34 | 75.01 | 71.95 | 8.431 | 15.93 | 22.81 | 28.92 | 34.37 | 15.13 | 26.05 | 34.35 | 40.46 | 45.01 |
70–30 | 87.34 | 83.25 | 80 | 77.57 | 74.51 | 7.34 | 13.9 | 19.94 | 25.61 | 30.51 | 13.38 | 23.34 | 31.11 | 37.38 | 41.95 |
80–20 | 88.69 | 85.22 | 82.12 | 79.53 | 76.98 | 6.58 | 12.53 | 18.04 | 23.2 | 27.9 | 12.12 | 21.43 | 28.85 | 34.9 | 39.69 |
Table 4 (c). Canon dataset – Precision, Recall, F-Measure of top 5 to 25 retrieval results | |||||||||||||||
Precision | Recall | F-Measure | |||||||||||||
Train-Test in % | Top 5 | Top 10 | Top 15 | Top 20 | Top 25 | Top 5 | Top 10 | Top 15 | Top 20 | Top 25 | Top 5 | Top 10 | Top 15 | Top 20 | Top 25 |
30–70 | 83.54 | 78.43 | 73.81 | 68.76 | 63.45 | 24.93 | 39.93 | 49.14 | 54.26 | 56.36 | 24.93 | 39.93 | 49.14 | 54.26 | 56.36 |
40–60 | 86.4 | 82.11 | 78.04 | 74.29 | 70.18 | 11.85 | 22.25 | 31.37 | 39.31 | 45.89 | 20.44 | 34.02 | 43.27 | 49.58 | 53.46 |
50–50 | 87.73 | 83.69 | 80.01 | 76.48 | 73.16 | 9.763 | 18.43 | 26.19 | 33.08 | 39.14 | 17.27 | 29.42 | 38.21 | 44.55 | 49.1 |
60–40 | 89.6 | 85.75 | 82.62 | 79.23 | 76.28 | 8.343 | 15.84 | 22.73 | 28.86 | 34.44 | 15.03 | 26.1 | 34.6 | 40.88 | 45.73 |
70–30 | 92.22 | 89.31 | 86.17 | 83.32 | 80.44 | 7.32 | 14.08 | 20.28 | 26.05 | 31.24 | 13.4 | 23.81 | 31.92 | 38.43 | 43.44 |
80–20 | 93.29 | 91.07 | 88.86 | 86.37 | 83.99 | 6.46 | 12.48 | 18.2 | 23.48 | 28.45 | 11.95 | 21.52 | 29.45 | 35.83 | 41.12 |
Table 5 (a). SGGP dataset – Precision, Recall, F-Measure of top 5 to 25 retrieval results: Without DR – with Indexing | |||||||||||||||
Precision | Recall | F-Measure | |||||||||||||
Train-Test in % | Top 5 | Top 10 | Top 15 | Top 20 | Top 25 | Top 5 | Top 10 | Top 15 | Top 20 | Top 25 | Top 5 | Top 10 | Top 15 | Top 20 | Top 25 |
30–70 | 67.71 | 60.82 | 55.66 | 50.85 | 46.58 | 12.16 | 21.64 | 29.37 | 35.36 | 40.18 | 20.2 | 30.98 | 37.16 | 40.25 | 41.59 |
40–60 | 69.74 | 63.4 | 58.63 | 54.8 | 51.3 | 9.66 | 17.31 | 23.75 | 29.29 | 33.97 | 16.67 | 26.46 | 32.73 | 36.85 | 39.41 |
50–50 | 71.54 | 66.18 | 61.7 | 57.88 | 54.68 | 8.06 | 14.77 | 20.43 | 25.3 | 29.58 | 14.26 | 23.55 | 29.76 | 34.02 | 37.02 |
60–40 | 75.2 | 69.8 | 65.57 | 61.84 | 58.5 | 6.99 | 12.91 | 18.03 | 22.48 | 26.39 | 12.62 | 21.33 | 27.52 | 31.96 | 35.17 |
70–30 | 77.26 | 71.98 | 68.11 | 64.51 | 61.31 | 6.19 | 11.46 | 16.16 | 20.23 | 23.88 | 11.33 | 19.38 | 25.45 | 29.88 | 33.25 |
80–20 | 79.56 | 74.77 | 70.7 | 66.98 | 63.81 | 5.56 | 10.38 | 14.61 | 18.33 | 21.68 | 10.29 | 17.9 | 23.65 | 27.99 | 31.38 |
Table 5 (b). SonyCybershot dataset – Precision, Recall, F-Measure of top 5 to 25 retrieval results: Without DR – with Indexing | |||||||||||||||
Precision | Recall | F-Measure | |||||||||||||
Train-Test in % | Top 5 | Top 10 | Top 15 | Top 20 | Top 25 | Top 5 | Top 10 | Top 15 | Top 20 | Top 25 | Top 5 | Top 10 | Top 15 | Top 20 | Top 25 |
30–70 | 72.91 | 66.96 | 61.49 | 55.55 | 50.86 | 14.13 | 25.74 | 34.86 | 41.3 | 46.67 | 23.15 | 36.03 | 42.97 | 45.73 | 47 |
40–60 | 77.11 | 71.67 | 66.64 | 62 | 57.65 | 11.22 | 20.65 | 28.51 | 34.93 | 40.05 | 19.23 | 31.18 | 38.65 | 43.17 | 45.62 |
50–50 | 78.76 | 73.45 | 69.28 | 65.1 | 61.42 | 9.23 | 17.08 | 23.96 | 29.79 | 34.8 | 16.27 | 27.03 | 34.55 | 39.55 | 42.91 |
60–40 | 81.72 | 76.27 | 72.04 | 68.3 | 64.71 | 7.96 | 14.72 | 20.7 | 25.94 | 30.55 | 14.31 | 24.12 | 31.27 | 36.44 | 40.14 |
70–30 | 82.29 | 77.71 | 74.09 | 70.49 | 67.35 | 6.84 | 12.79 | 18.18 | 22.88 | 27.12 | 12.47 | 21.52 | 28.45 | 33.54 | 37.45 |
80–20 | 84.43 | 79.41 | 76.03 | 72.79 | 69.53 | 6.15 | 11.5 | 16.41 | 20.82 | 24.68 | 11.33 | 19.69 | 26.33 | 31.47 | 35.3 |
Table 5 (c). Canon dataset – Precision, Recall, F-Measure of top 5 to 25 retrieval results: Without DR – with Indexing | |||||||||||||||
Precision | Recall | F-Measure | |||||||||||||
Train-Test in % | Top 5 | Top 10 | Top 15 | Top 20 | Top 25 | Top 5 | Top 10 | Top 15 | Top 20 | Top 25 | Top 5 | Top 10 | Top 15 | Top 20 | Top 25 |
30–70 | 79.26 | 73.15 | 67.4 | 61.65 | 56.53 | 14.23 | 25.9 | 35.31 | 42.49 | 48.18 | 23.58 | 37.03 | 44.7 | 48.45 | 50.07 |
40–60 | 82.01 | 76.68 | 72.04 | 67.46 | 63.13 | 11.19 | 20.71 | 28.78 | 35.49 | 41.04 | 19.31 | 31.67 | 39.73 | 44.82 | 47.87 |
50–50 | 83.18 | 78.18 | 73.96 | 69.92 | 66.27 | 9.21 | 17.14 | 24.11 | 30.07 | 35.24 | 16.3 | 27.37 | 35.18 | 40.55 | 44.28 |
60–40 | 85.66 | 80.42 | 76.71 | 73.06 | 69.49 | 7.96 | 14.82 | 21 | 26.47 | 31.16 | 14.36 | 24.42 | 31.97 | 37.53 | 41.44 |
70–30 | 89.5 | 84.59 | 80.45 | 77.08 | 73.69 | 7.08 | 13.34 | 18.93 | 24.05 | 28.54 | 12.97 | 22.55 | 29.79 | 35.48 | 39.71 |
80–20 | 91.14 | 87.36 | 83.8 | 80.6 | 77.5 | 6.29 | 11.98 | 17.16 | 21.84 | 26.1 | 11.63 | 20.66 | 27.77 | 33.36 | 37.78 |
Table 6 (a). SGGP dataset – Precision, Recall, F-Measure of top 5 to 25 retrieval results | ||||||||||||||||||
Precision | Recall | F-Measure | ||||||||||||||||
Train-Test in % | Top 5 | Top 10 | Top 15 | Top 20 | Top 25 | Top 5 | Top 10 | Top 15 | Top 20 | Top 25 | Top 5 | Top 10 | Top 15 | Top 20 | Top 25 | |||
30–70 | 67.72 | 60.86 | 55.71 | 50.89 | 46.62 | 12.2 | 21.7 | 29.41 | 35.41 | 40.23 | 20.2 | 31 | 37.2 | 40.29 | 41.63 | |||
40–60 | 69.74 | 63.44 | 58.67 | 54.82 | 51.34 | 9.66 | 17.3 | 23.77 | 29.31 | 34.01 | 16.67 | 26.5 | 32.76 | 36.88 | 39.44 | |||
50–50 | 71.54 | 66.18 | 61.7 | 57.88 | 54.68 | 8.06 | 14.8 | 20.43 | 25.3 | 29.58 | 14.26 | 23.6 | 29.76 | 34.02 | 37.02 | |||
60–40 | 75.22 | 69.82 | 65.65 | 61.9 | 58.56 | 6.99 | 12.9 | 18.06 | 22.52 | 26.44 | 12.63 | 21.3 | 27.57 | 32.01 | 35.23 | |||
70–30 | 75.22 | 69.82 | 65.65 | 61.9 | 58.56 | 6.19 | 11.5 | 16.17 | 20.24 | 23.89 | 11.33 | 19.4 | 25.46 | 29.89 | 33.27 | |||
80–20 | 79.56 | 74.77 | 70.7 | 67 | 63.82 | 5.56 | 10.4 | 14.61 | 18.34 | 21.69 | 10.29 | 17.9 | 23.65 | 28.00 | 31.38 | |||
Table 6 (b). SonyCybershot dataset – Precision, Recall, F-Measure of top 5 to 25 retrieval results | ||||||||||||||||||
Precision | Recall | F-Measure | ||||||||||||||||
Train-Test in % | Top 5 | Top 10 | Top 15 | Top 20 | Top 25 | Top 5 | Top 10 | Top 15 | Top 20 | Top 25 | Top 5 | Top 10 | Top 15 | Top 20 | Top 25 | |||
30–70 | 72.92 | 66.98 | 61.54 | 55.6 | 50.89 | 14.1 | 25.7 | 34.88 | 41.32 | 46.69 | 23.15 | 36 | 43 | 45.76 | 47.02 | |||
40–60 | 77.14 | 71.72 | 66.69 | 62.04 | 57.7 | 11.2 | 20.7 | 28.52 | 34.95 | 40.07 | 19.23 | 31.2 | 38.67 | 43.19 | 45.66 | |||
50–50 | 78.81 | 73.64 | 69.38 | 65.23 | 61.5 | 9.24 | 17.1 | 23.98 | 29.83 | 34.83 | 16.27 | 27.1 | 34.59 | 39.6 | 42.96 | |||
60–40 | 81.8 | 76.37 | 72.09 | 68.37 | 64.78 | 7.97 | 14.7 | 20.71 | 25.96 | 30.57 | 14.32 | 24.1 | 31.28 | 36.47 | 40.17 | |||
70–30 | 82.26 | 77.73 | 74.12 | 70.53 | 67.4 | 6.84 | 12.8 | 18.19 | 22.89 | 27.13 | 12.46 | 21.5 | 28.46 | 33.55 | 37.47 | |||
80–20 | 84.43 | 79.45 | 76.08 | 72.86 | 69.6 | 6.15 | 11.5 | 16.42 | 20.83 | 24.69 | 11.33 | 19.7 | 26.34 | 31.48 | 35.33 | |||
Table 6 (c). Canon dataset – Precision, Recall, F-Measure of top 5 to 25 retrieval results | ||||||||||||||||||
Precision | Recall | F-Measure | ||||||||||||||||
Train-Test in % | Top 5 | Top 10 | Top 15 | Top 20 | Top 25 | Top 5 | Top 10 | Top 15 | Top 20 | Top 25 | Top 5 | Top 10 | Top 15 | Top 20 | Top 25 | |||
30–70 | 79.47 | 73.23 | 67.44 | 61.71 | 56.59 | 14.3 | 25.9 | 35.32 | 42.52 | 48.22 | 23.63 | 37.1 | 44.72 | 48.49 | 50.12 | |||
40–60 | 82.01 | 76.68 | 72.03 | 67.46 | 63.12 | 11.2 | 20.7 | 28.77 | 35.49 | 41.04 | 19.3 | 31.7 | 39.73 | 44.82 | 47.87 | |||
50–50 | 83.17 | 78.24 | 74.05 | 70.01 | 66.35 | 9.21 | 17.2 | 24.14 | 30.11 | 35.29 | 16.3 | 27.4 | 35.23 | 40.61 | 44.34 | |||
60–40 | 85.71 | 80.51 | 76.77 | 73.14 | 69.57 | 7.97 | 14.8 | 21.01 | 26.51 | 31.2 | 14.36 | 24.4 | 31.99 | 37.59 | 41.5 | |||
70–30 | 89.5 | 84.58 | 80.46 | 77.14 | 73.75 | 7.08 | 13.3 | 18.93 | 24.07 | 28.57 | 12.97 | 22.5 | 29.79 | 35.51 | 39.74 | |||
80–20 | 91.17 | 87.37 | 83.9 | 80.62 | 77.61 | 6.29 | 12 | 17.18 | 21.85 | 26.14 | 11.63 | 20.7 | 27.8 | 33.36 | 37.84 |
Table 7 (a). SGGP dataset - Top 5% and 10% retrieval results | ||||||||
Train - Test in % | Precision | Recall | F-Measure | Time | ||||
5% | 10% | 5% | 10% | 5% | 10% | 5% | 10% | |
30–70 | 36.75 | 24.14 | 49.94 | 64.12 | 40.83 | 34.01 | 1.1 | 1.08 |
40–60 | 36.5 | 24.25 | 49.81 | 64.05 | 40.57 | 34.08 | 2.16 | 2.16 |
50–50 | 36.6 | 24.32 | 50.29 | 64.72 | 40.76 | 34.23 | 3.5 | 3.81 |
60–40 | 36.97 | 24.44 | 50.53 | 65.14 | 41.11 | 34.44 | 3.6 | 3.91 |
70–30 | 37.15 | 24.47 | 50.78 | 65.24 | 41.29 | 34.48 | 5.76 | 6.07 |
80–20 | 37.44 | 24.67 | 50.95 | 65.59 | 41.55 | 34.74 | 6.32 | 6.75 |
Table 7 (b). Sony Cyber shot dataset - Top 5% and 10% retrieval result | ||||||||
Train - Test in % | Precision | Recall | F-Measure | Time | ||||
5% | 10% | 5% | 10% | 5% | 10% | 5% | 10% | |
30–70 | 44.13 | 27.81 | 59.99 | 74.61 | 49.26 | 39.53 | 1.48 | 1.46 |
40–60 | 44.61 | 28.21 | 60.73 | 74.95 | 49.83 | 39.98 | 1.47 | 1.57 |
50–50 | 44.73 | 28.24 | 60.5 | 75.19 | 49.8 | 40.04 | 5.79 | 6.06 |
60–40 | 44.74 | 28.38 | 60.5 | 75.05 | 49.82 | 40.16 | 6.14 | 6.49 |
70–30 | 44.66 | 28.42 | 60.33 | 75.14 | 49.71 | 40.22 | 8.03 | 10 |
80–20 | 44.43 | 28.3 | 59.63 | 74.54 | 49.28 | 39.99 | 8.04 | 8.66 |
Table 7 (c). Canon dataset - Top 5% and 10% retrieval results | ||||||||
Train - Test in % | Precision | Recall | F-Measure | Time | ||||
5% | 10% | 5% | 10% | 5% | 10% | 5% | 10% | |
30–70 | 46.62 | 29.17 | 63.48 | 76.02 | 51.78 | 40.79 | 2.29 | 4.9 |
40–60 | 46.9 | 29.47 | 63.23 | 76.19 | 51.79 | 41.06 | 4 | 2.01 |
50–50 | 46.33 | 29.28 | 62.49 | 75.65 | 51.09 | 40.73 | 3.61 | 3.74 |
60–40 | 46.62 | 29.23 | 62.62 | 76.19 | 51.29 | 40.75 | 3.21 | 6.81 |
70–30 | 46.71 | 29.48 | 63.14 | 76.36 | 51.51 | 41 | 3.05 | 3.27 |
80–20 | 47.68 | 29.96 | 63.84 | 77.34 | 52.37 | 41.64 | 3.49 | 3.83 |
Table 8 (a). SGGP dataset - Top 5% and 10% retrieval results | ||||||||
Train - Test in % | Precision | Recall | F-Measure | Time | ||||
5% | 10% | 5% | 10% | 5% | 10% | 5% | 10% | |
30–70 | 42.28 | 27.4 | 57.55 | 72.73 | 47.01 | 38.59 | 1.8 | 1.77 |
40–60 | 41.99 | 27.52 | 57.69 | 72.73 | 46.82 | 38.68 | 1.99 | 2.08 |
50–50 | 41.59 | 27.25 | 57.57 | 72.52 | 46.48 | 38.35 | 2.33 | 2.47 |
60–40 | 42.34 | 27.63 | 58.25 | 73.63 | 47.23 | 38.92 | 2.33 | 2.47 |
70–30 | 42.42 | 27.75 | 58.4 | 73.99 | 47.31 | 39.1 | 2.25 | 2.48 |
80–20 | 43.03 | 27.98 | 59.07 | 74.41 | 47.96 | 39.41 | 2.49 | 2.79 |
Table 8 (b). Sonycyber Shot dataset - Top 5% and 10% retrieval results | ||||||||
Train – Test | Precision | Recall | F-Measure | Time | ||||
in % | 5% | 10% | 5% | 10% | 5% | 10% | 5% | 10% |
30–70 | 45.57 | 28.66 | 62.34 | 76.93 | 51.03 | 40.75 | 1.75 | 1.74 |
40–60 | 46.11 | 29.08 | 63.23 | 77.36 | 51.68 | 41.23 | 1.79 | 1.87 |
50–50 | 46.42 | 29.22 | 63.25 | 77.9 | 51.86 | 41.44 | 2.45 | 2.59 |
60–40 | 46.52 | 29.39 | 63.48 | 77.87 | 52 | 41.61 | 3.56 | 3.81 |
70–30 | 46.63 | 29.46 | 63.63 | 78.11 | 52.12 | 41.72 | 3.73 | 3.97 |
80–20 | 46.69 | 29.42 | 63.4 | 77.89 | 52.03 | 41.62 | 3.87 | 4.19 |
Table 8 (c). Canon dataset - Top 5% and 10% retrieval results | ||||||||
Train - Test in % | Precision | Recall | F-Measure | Time | ||||
5% | 10% | 5% | 10% | 5% | 10% | 5% | 10% | |
30–70 | 49.09 | 30.59 | 66.81 | 79.49 | 54.54 | 42.75 | 1.33 | 1.31 |
40–60 | 49.62 | 30.9 | 66.86 | 79.72 | 54.83 | 43.04 | 1.41 | 1.51 |
50–50 | 49.11 | 30.79 | 66.18 | 79.34 | 54.17 | 42.81 | 1.99 | 2.14 |
60–40 | 49.15 | 30.72 | 65.92 | 79.62 | 54.06 | 42.77 | 2.14 | 2.36 |
70–30 | 49.36 | 31.01 | 66.53 | 79.92 | 54.39 | 43.08 | 2.55 | 2.78 |
80–20 | 50.45 | 31.49 | 67.33 | 80.91 | 55.36 | 43.72 | 2.94 | 3.27 |
Table 9 (a). SGGP dataset - Top 5% and 10% retrieval results | ||||||||
Train - Test in % | Precision | Recall | F-Measure | Time | ||||
5% | 10% | 5% | 10% | 5% | 10% | 5% | 10% | |
30–70 | 37 | 24.4 | 50.2 | 64.6 | 41.1 | 34.3 | 11.5 | 11.7 |
40–60 | 36.8 | 24.5 | 50.2 | 64.5 | 40.9 | 34.4 | 12.6 | 13.1 |
50–50 | 36.7 | 24.4 | 50.4 | 64.8 | 40.9 | 34.3 | 18.5 | 19.4 |
60–40 | 37.2 | 24.6 | 50.8 | 65.4 | 41.4 | 34.7 | 23.5 | 25.0 |
70–30 | 37.4 | 24.7 | 51.1 | 65.7 | 41.6 | 34.7 | 24.1 | 26.5 |
80–20 | 37.7 | 24.8 | 51.3 | 66.0 | 41.8 | 35.0 | 25.8 | 29.0 |
Table 9 (b). Sony Cyber shot dataset - Top 5% and 10% retrieval result | ||||||||
-Train - Test in % | Precision | Recall | F-Measure | Time | ||||
5% | 10% | 5% | 10% | 5% | 10% | 5% | 10% | |
30–70 | 41.2 | 26.3 | 56.2 | 70.5 | 46.0 | 37.4 | 11.4 | 11.6 |
40–60 | 41.4 | 26.5 | 56.5 | 70.4 | 46.3 | 37.5 | 11.8 | 12.3 |
50–50 | 41.4 | 26.4 | 56.2 | 70.4 | 46.2 | 37.4 | 17.1 | 18.1 |
60–40 | 41.4 | 26.6 | 56.2 | 70.2 | 46.2 | 37.6 | 23.3 | 24.7 |
70–30 | 41.3 | 26.5 | 55.9 | 70.1 | 46.0 | 37.5 | 23.8 | 25.9 |
80–20 | 41.1 | 26.4 | 55.2 | 69.5 | 45.5 | 37.3 | 24.5 | 27.4 |
Table 9 (c). Canon dataset - Top 5% and 10% retrieval results | ||||||||
Train - Test in % | Precision | Recall | F-Measure | Time | ||||
5% | 10% | 5% | 10% | 5% | 10% | 5% | 10% | |
30–70 | 43.9 | 28 | 59.9 | 73.2 | 48.8 | 39.2 | 11.4 | 11.6 |
40–60 | 44.3 | 28.3 | 59.8 | 73.4 | 48.9 | 39.4 | 13 | 13.6 |
50–50 | 43.7 | 28 | 59.1 | 72.8 | 48.2 | 39 | 18.8 | 19.8 |
60–40 | 43.5 | 27.8 | 58.5 | 72.5 | 47.8 | 38.7 | 23.6 | 25.2 |
70–30 | 43.5 | 27.9 | 59 | 72.7 | 48 | 38.9 | 24 | 26.4 |
80–20 | 44.5 | 28.4 | 59.6 | 73.5 | 48.9 | 39.5 | 26.7 | 30.0 |
Table 10 (a). SGGP dataset - Top 5% and 10% retrieval results | ||||||||
Train - Test in % | Precision | Recall | F-Measure | Time | ||||
5% | 10% | 5% | 10% | 5% | 10% | 5% | 10% | |
30–70 | 32.62 | 21.94 | 44.51 | 58.58 | 36.29 | 30.96 | 38.89 | 38.89 |
40–60 | 32.62 | 22.07 | 44.65 | 58.5 | 36.3 | 31.04 | 69.69 | 69.69 |
50–50 | 32.47 | 21.98 | 44.79 | 58.83 | 36.22 | 30.99 | 108.2 | 108.2 |
60–40 | 33.1 | 22.24 | 45.45 | 59.65 | 36.87 | 31.38 | 157.8 | 157.8 |
70–30 | 33.07 | 22.26 | 45.39 | 59.72 | 36.81 | 31.4 | 209.7 | 209.7 |
80–20 | 33.19 | 22.31 | 45.33 | 59.62 | 36.87 | 31.45 | 275.7 | 275.7 |
Table 10 (b). Sony Cyber shot dataset - Top 5% and 10% retrieval result | ||||||||
Train - Test in % | Precision | Recall | F-Measure | Time | ||||
5% | 10% | 5% | 10% | 5% | 10% | 5% | 10% | |
30–70 | 36.1 | 23.59 | 49.27 | 63.55 | 40.31 | 33.54 | 40.4 | 40.4 |
40–60 | 36.5 | 23.83 | 50.02 | 63.82 | 40.84 | 33.82 | 70.98 | 70.98 |
50–50 | 36.6 | 23.76 | 49.81 | 63.74 | 40.81 | 33.72 | 109.9 | 109.9 |
60–40 | 36.36 | 23.76 | 49.52 | 63.37 | 40.56 | 33.68 | 157.8 | 157.8 |
70–30 | 35.91 | 23.63 | 48.86 | 62.95 | 40.02 | 33.47 | 203.6 | 203.6 |
80–20 | 35.9 | 23.58 | 48.61 | 62.62 | 39.89 | 33.35 | 251.2 | 251.2 |
Table 10 (c). Canon dataset - Top 5% and 10% retrieval results | ||||||||
Train - Test in % | Precision | Recall | F-Measure | Time | ||||
5% | 10% | 5% | 10% | 5% | 10% | 5% | 10% | |
30–70 | 39.78 | 25.82 | 54.15 | 67.38 | 44.12 | 36.1 | 42.11 | 42.11 |
40–60 | 39.97 | 25.93 | 53.8 | 67.13 | 44.06 | 36.13 | 76.94 | 76.94 |
50–50 | 39.62 | 25.71 | 53.34 | 66.6 | 43.61 | 35.78 | 121.1 | 121.1 |
60–40 | 39.48 | 25.45 | 53.04 | 66.52 | 43.39 | 35.49 | 174.9 | 174.9 |
70–30 | 39.45 | 25.59 | 53.43 | 66.75 | 43.5 | 35.67 | 233.9 | 233.9 |
80–20 | 40.35 | 26.02 | 54.09 | 67.54 | 44.28 | 36.2 | 312.3 | 312.3 |
Dataset | Hierarchical | K-Means | GMM | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
2kfs | 3kfs | 4kfs | 5kfs | 2kfs | 3kfs | 4kfs | 5kfs | 2kfs | 3kfs | 4kfs | 5kfs | |
SGGP | 70.32 | 67.49 | 64.65 | 64.24 | 70.52 | 68.55 | 69.59 | 65.35 | 71.76 | 73.17 | 78.58 | 78.76 |
Sonycyber Shot | 61.02 | 59.91 | 58.99 | 57.74 | 57.83 | 58.89 | 60.02 | 59.83 | 68.55 | 71.57 | 63.88 | 79.01 |
Canon | 68.01 | 65.55 | 65.59 | 65.78 | 67.44 | 66.16 | 67.29 | 69.32 | 70.55 | 78.78 | 72.47 | 82.56 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 MDPI (Basel, Switzerland) unless otherwise stated