Submitted:
14 December 2023
Posted:
15 December 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Nucleobase-Bearing Amino Acid Systems and Self-Assembly
3. Nucleic Acid-Based Gels
3.1. G-Quartet-Based Gels
3.2. RNA-Based Gels
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Djabourov, M., Gelation—A review. Polymer International 1991, 25, (3), 135-143. [CrossRef]
- Rogovina, L. Z.; Vasil’ev, V. G.; Braudo, E., Definition of the concept of polymer gel. Polymer Science Series C 2008, 50, (1), 85-92. [CrossRef]
- Yamauchi, A., Gels: introduction. In Gels handbook, Elsevier: 2001; pp 4-12.
- Draper, E. R.; Adams, D. J., Low-molecular-weight gels: the state of the art. Chem 2017, 3, (3), 390-410. [CrossRef]
- Banerjee, S.; Bhattacharya, S., Food gels: gelling process and new applications. Critical reviews in food science and nutrition 2012, 52, (4), 334-346. [CrossRef]
- Siddiqui, S. A.; Alvi, T.; Biswas, A.; Shityakov, S.; Gusinskaia, T.; Lavrentev, F.; Dutta, K.; Khan, M. K. I.; Stephen, J.; Radhakrishnan, M., Food gels: principles, interaction mechanisms and its microstructure. Critical Reviews in Food Science and Nutrition 2022, 1-22. [CrossRef]
- Nazir, A.; Asghar, A.; Maan, A. A., Food gels: Gelling process and new applications. In Advances in food rheology and its applications, Elsevier: 2017; pp 335-353.
- Nayak, A. K.; Das, B., Introduction to polymeric gels. In Polymeric gels, Elsevier: 2018; pp 3-27.
- Vashist, A.; Vashist, A.; Gupta, Y.; Ahmad, S., Recent advances in hydrogel based drug delivery systems for the human body. Journal of Materials Chemistry B 2014, 2, (2), 147-166. [CrossRef]
- Chamkouri, H.; Chamkouri, M., A review of hydrogels, their properties and applications in medicine. Am. J. Biomed. Sci. Res 2021, 11, (6), 485-493. [CrossRef]
- Hwang, H. S.; Lee, C.-S., Recent progress in hyaluronic-acid-based hydrogels for bone tissue engineering. Gels 2023, 9, (7), 588. [CrossRef]
- Kopeček, J., Hydrogel biomaterials: a smart future? Biomaterials 2007, 28, (34), 5185-5192. [CrossRef]
- Shakeel, S.; Karim, S.; Ali, A., Peptide nucleic acid (PNA)—a review. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology 2006, 81, (6), 892-899. [CrossRef]
- Rodrigues, T.; Curti, F.; Leroux, Y. R.; Barras, A.; Pagneux, Q.; Happy, H.; Kleber, C.; Boukherroub, R.; Hasler, R.; Volpi, S., Discovery of a Peptide Nucleic Acid (PNA) aptamer for cardiac troponin I: Substituting DNA with neutral PNA maintains picomolar affinity and improves performances for electronic sensing with graphene field-effect transistors (gFET). Nano Today 2023, 50, 101840. [CrossRef]
- Pradeep, S. P.; Malik, S.; Slack, F. J.; Bahal, R., Unlocking the potential of chemically modified peptide nucleic acids for RNA-based therapeutics. RNA 2023, 29, (4), 434-445. [CrossRef]
- Chu, T.-W.; Feng, J.; Yang, J.; Kopeček, J., Hybrid polymeric hydrogels via peptide nucleic acid (PNA)/DNA complexation. Journal of Controlled Release 2015, 220, 608-616. [CrossRef]
- Park, S. J.; Park, S. M.; Kim, W.-k.; Lee, J., Hydrogel-based thermosensor using peptide nucleic acid and PEGylated graphene oxide. Analytica Chimica Acta 2023, 1239, 340708. [CrossRef]
- Langford, G. J.; Raeburn, J.; Ferrier, D. C.; Hands, P. J.; Shaver, M. P., Morpholino oligonucleotide cross-linked hydrogels as portable optical oligonucleotide biosensors. ACS sensors 2018, 4, (1), 185-191. [CrossRef]
- Agrawal, N. K.; Allen, P.; Song, Y. H.; Wachs, R. A.; Du, Y.; Ellington, A. D.; Schmidt, C. E., Oligonucleotide-functionalized hydrogels for sustained release of small molecule (aptamer) therapeutics. Acta Biomaterialia 2020, 102, 315-325. [CrossRef]
- Liu, J., Oligonucleotide-functionalized hydrogels as stimuli responsive materials and biosensors. Soft Matter 2011, 7, (15), 6757-6767. [CrossRef]
- Bhattacharyya, T.; Saha, P.; Dash, J., Guanosine-derived supramolecular hydrogels: recent developments and future opportunities. ACS omega 2018, 3, (2), 2230-2241. [CrossRef]
- Ye, X.; Li, X.; Shen, Y.; Chang, G.; Yang, J.; Gu, Z., Self-healing pH-sensitive cytosine-and guanosine-modified hyaluronic acid hydrogels via hydrogen bonding. Polymer 2017, 108, 348-360. [CrossRef]
- Merino-Gómez, M.; Godoy-Gallardo, M.; Wendner, M.; Mateos-Timoneda, M. A.; Gil, F. J.; Perez, R. A., Optimization of guanosine-based hydrogels with boric acid derivatives for enhanced long-term stability and cell survival. Frontiers in Bioengineering and Biotechnology 2023, 11, 1147943. [CrossRef]
- Godoy-Gallardo, M.; Merino-Gómez, M.; Mateos-Timoneda, M. A.; Eckhard, U.; Gil, F. J.; Perez, R. A., Advanced Binary Guanosine and Guanosine 5'-Monophosphate Cell-Laden Hydrogels for Soft Tissue Reconstruction by 3D Bioprinting. ACS Applied Materials & Interfaces 2023. [CrossRef]
- Tripathi, M.; Sharma, R.; Hussain, A.; Kumar, I.; Sharma, A. K.; Sarkar, A., Hydrogels and their combination with lipids and nucleotides. In Sustainable Hydrogels, Elsevier: 2023; pp 471-487.
- Peters, G. M.; Davis, J. T., Supramolecular gels made from nucleobase, nucleoside and nucleotide analogs. Chemical Society Reviews 2016, 45, (11), 3188-3206. [CrossRef]
- Godeau, G.; Brun, C.; Arnion, H.; Staedel, C.; Barthélémy, P., Glycosyl-nucleoside fluorinated amphiphiles as components of nanostructured hydrogels. Tetrahedron Letters 2010, 51, (7), 1012-1015. [CrossRef]
- Godoy-Gallardo, M.; Merino-Gómez, M.; Matiz, L. C.; Mateos-Timoneda, M. A.; Gil, F. J.; Perez, R. A., Nucleoside-based supramolecular hydrogels: From synthesis and structural properties to biomedical and tissue engineering applications. ACS Biomaterials Science & Engineering 2022, 9, (1), 40-61. [CrossRef]
- Ignatowska, J.; Mironiuk-Puchalska, E.; Grześkowiak, P.; Wińska, P.; Wielechowska, M.; Bretner, M.; Karatsai, O.; Rędowicz, M. J.; Koszytkowska-Stawińska, M., New insight into nucleo α-amino acids–Synthesis and SAR studies on cytotoxic activity of β-pyrimidine alanines. Bioorganic Chemistry 2020, 100, 103864. [CrossRef]
- More, J. C.; Troop, H. M.; Dolman, N. P.; Jane, D. E., Structural requirements for novel willardiine derivatives acting as AMPA and kainate receptor antagonists. British journal of pharmacology 2003, 138, (6), 1093-1100. [CrossRef]
- Mik, V.; Mičková, Z.; Doležal, K.; Frébort, I.; Pospisil, T., Activity of (+)-Discadenine as a plant cytokinin. Journal of Natural Products 2017, 80, (7), 2136-2140. [CrossRef]
- Xu, Q.; Song, B.; Liu, F.; Song, Y.; Chen, P.; Liu, S.; Krishnan, H. B., Identification and characterization of β-Lathyrin, an abundant glycoprotein of grass pea (Lathyrus sativus L.), as a potential allergen. Journal of agricultural and food chemistry 2018, 66, (32), 8496-8503. [CrossRef]
- Roviello, G. N.; Gaetano, S. D.; Capasso, D.; Cesarani, A.; Bucci, E. M.; Pedone, C., Synthesis, spectroscopic studies and biological activity of a novel nucleopeptide with Moloney murine leukemia virus reverse transcriptase inhibitory activity. Amino Acids 2010, 38, 1489-1496. [CrossRef]
- Roviello, G. N.; Musumeci, D.; De Cristofaro, A.; Capasso, D.; Di Gaetano, S.; Bucci, E. M.; Pedone, C., Alternate dab-aeg PNAs: synthesis, nucleic acid binding studies and biological activity. Molecular bioSystems 2009, 6, (1), 199-205. [CrossRef]
- Roviello, G.; Musumeci, D.; Castiglione, M.; Bucci, E.; Pedone, C.; Benedetti, E., Solid phase synthesis and RNA-binding studies of a serum-resistant nucleo-ε-peptide. Journal of Peptide Science: An Official Publication of the European Peptide Society 2009, 15, (3), 155-160. [CrossRef]
- Roviello, G. N.; Moccia, M.; Sapio, R.; Valente, M.; Bucci, E.; Castiglione, M.; Pedone, C.; Perretta, G.; Benedetti, E.; Musumeci, D., Synthesis, characterization and hybridization studies of new nucleo-γ-peptides based on diaminobutyric acid. Journal of Peptide Science: An Official Publication of the European Peptide Society 2006, 12, (12), 829-835. [CrossRef]
- Roviello, V.; Musumeci, D.; Mokhir, A.; Roviello, G. N., Evidence of protein binding by a nucleopeptide based on a thyminedecorated L-diaminopropanoic acid through CD and in silico studies. Current Medicinal Chemistry 2021, 28, (24), 5004-5015. [CrossRef]
- Hoschtettler, P.; Pickaert, G.; Carvalho, A.; Averlant-Petit, M.-C.; Stefan, L., Highly Synergistic Properties of Multicomponent Hydrogels Thanks to Cooperative Nucleopeptide Assemblies. Chemistry of Materials 2023. [CrossRef]
- Musumeci, D.; Ullah, S.; Ikram, A.; Roviello, G. N., Novel insights on nucleopeptide binding: A spectroscopic and In Silico investigation on the interaction of a thymine-bearing tetrapeptide with a homoadenine DNA. Journal of Molecular Liquids 2022, 347, 117975. [CrossRef]
- Boback, K.; Bacchi, K.; O’Neill, S.; Brown, S.; Dorsainvil, J.; Smith-Carpenter, J. E., Impact of C-terminal chemistry on self-assembled morphology of guanosine containing nucleopeptides. Molecules 2020, 25, (23), 5493. [CrossRef]
- Datta, A., Synthetic Studies on Antifungal Peptidyl Nucleoside Antibiotics. Chemical Synthesis of Nucleoside Analogues 2013, 819-846. [CrossRef]
- Swinehart, W.; Deutsch, C.; Sarachan, K. L.; Luthra, A.; Bacusmo, J. M.; de Crécy-Lagard, V.; Swairjo, M. A.; Agris, P. F.; Iwata-Reuyl, D., Specificity in the biosynthesis of the universal tRNA nucleoside N6-threonylcarbamoyl adenosine (t6A)—TsaD is the gatekeeper. RNA 2020, 26, (9), 1094-1103. [CrossRef]
- Roviello, G. N.; Benedetti, E.; Pedone, C.; Bucci, E. M., Nucleobase-containing peptides: an overview of their characteristic features and applications. Amino Acids 2010, 39, 45-57. [CrossRef]
- Snip, E.; Koumoto, K.; Shinkai, S., Gel formation properties of a uracil-appended cholesterol gelator and cooperative effects of the complementary nucleobases. Tetrahedron 2002, 58, (43), 8863-8873. [CrossRef]
- Marchesan, S.; Vargiu, A. V.; Styan, K. E., The Phe-Phe motif for peptide self-assembly in nanomedicine. Molecules 2015, 20, (11), 19775-19788. [CrossRef]
- Dinesh, B.; Squillaci, M. A.; Ménard-Moyon, C.; Samorì, P.; Bianco, A., Self-assembly of diphenylalanine backbone homologues and their combination with functionalized carbon nanotubes. Nanoscale 2015, 7, (38), 15873-15879. [CrossRef]
- Roviello, G. N., Novel insights into nucleoamino acids: Biomolecular recognition and aggregation studies of a thymine-conjugated l-phenyl alanine. Amino Acids 2018, 50, 933-941. [CrossRef]
- Scognamiglio, P. L.; Riccardi, C.; Palumbo, R.; Gale, T. F.; Musumeci, D.; Roviello, G. N., Self-assembly of thyminyl l-tryptophanamide (TrpT) building blocks for the potential development of drug delivery nanosystems. Journal of Nanostructure in Chemistry 2023, 1-19. [CrossRef]
- Guida, S.; Arginelli, F.; Farnetani, F.; Ciardo, S.; Bertoni, L.; Manfredini, M.; Zerbinati, N.; Longo, C.; Pellacani, G., Clinical applications of in vivo and ex vivo confocal microscopy. Applied Sciences 2021, 11, (5), 1979. [CrossRef]
- Li, X.; Kuang, Y.; Lin, H.-C.; Gao, Y.; Shi, J.; Xu, B., Supramolecular nanofibers and hydrogels of nucleopeptides. Angewandte Chemie (International ed. in English) 2011, 50, (40), 9365. [CrossRef]
- Yuan, D.; Du, X.; Shi, J.; Zhou, N.; Zhou, J.; Xu, B., Mixing biomimetic heterodimers of nucleopeptides to generate biocompatible and biostable supramolecular hydrogels. Angewandte Chemie 2015, 127, (19), 5797-5800. [CrossRef]
- Ewert, E.; Pospieszna-Markiewicz, I.; Szymańska, M.; Kurkiewicz, A.; Belter, A.; Kubicki, M.; Patroniak, V.; Fik-Jaskółka, M. A.; Roviello, G. N., New N4-Donor Ligands as Supramolecular Guests for DNA and RNA: Synthesis, Structural Characterization, In Silico, Spectrophotometric and Antimicrobial Studies. Molecules 2023, 28, (1), 400. [CrossRef]
- Baek, K.; Noblett, A. D.; Ren, P.; Suggs, L. J., Self-assembled nucleo-tripeptide hydrogels provide local and sustained doxorubicin release. Biomaterials Science 2020, 8, (11), 3130-3137. [CrossRef]
- Giraud, T.; Bouguet-Bonnet, S.; Marchal, P.; Pickaert, G.; Averlant-Petit, M.-C.; Stefan, L., Improving and fine-tuning the properties of peptide-based hydrogels via incorporation of peptide nucleic acids. Nanoscale 2020, 12, (38), 19905-19917. [CrossRef]
- Palumbo, R.; Simonyan, H.; Roviello, G. N., Advances in Amino Acid-Based Chemistry. MDPI: 2023; Vol. 16, p 1490. [CrossRef]
- Du, X.; Zhou, J.; Li, X.; Xu, B., Self-assembly of nucleopeptides to interact with DNAs. Interface Focus 2017, 7, (6), 20160116. [CrossRef]
- Roviello, G. N.; Musumeci, D.; Bucci, E. M.; Pedone, C., Evidences for supramolecular organization of nucleopeptides: synthesis, spectroscopic and biological studies of a novel dithymine L-serine tetrapeptide. Molecular BioSystems 2011, 7, (4), 1073-1080. [CrossRef]
- Roviello, G. N.; Ricci, A.; Bucci, E. M.; Pedone, C., Synthesis, biological evaluation and supramolecular assembly of novel analogues of peptidyl nucleosides. Molecular BioSystems 2011, 7, (5), 1773-1778. [CrossRef]
- Giraud, T.; Hoschtettler, P.; Pickaert, G.; Averlant-Petit, M.-C.; Stefan, L., Emerging low-molecular weight nucleopeptide-based hydrogels: state of the art, applications, challenges and perspectives. Nanoscale 2022, 14, (13), 4908-4921. [CrossRef]
- Ghosh, S.; Ghosh, T.; Bhowmik, S.; Patidar, M. K.; Das, A. K., Nucleopeptide-coupled injectable bioconjugated guanosine-quadruplex hydrogel with inherent antibacterial activity. ACS Applied Bio Materials 2023, 6, (2), 640-651. [CrossRef]
- Noblett, A. D.; Baek, K.; Suggs, L. J., Controlling Nucleopeptide Hydrogel Self-Assembly and Formation for Cell-Culture Scaffold Applications. ACS Biomaterials Science & Engineering 2021, 7, (6), 2605-2614. [CrossRef]
- Baek, K.; Noblett, A. D.; Ren, P.; Suggs, L. J., Design and characterization of nucleopeptides for hydrogel self-assembly. ACS Applied Bio Materials 2019, 2, (7), 2812-2821. [CrossRef]
- Zhang, Z.; Han, J.; Pei, Y.; Fan, R.; Du, J., Chaperone copolymer-assisted aptamer-patterned DNA hydrogels for triggering spatiotemporal release of protein. ACS Applied Bio Materials 2018, 1, (4), 1206-1214. [CrossRef]
- Morán, M. C.; Infante, M. R.; Miguel, M. G. a.; Lindman, B.; Pons, R., Novel biocompatible DNA gel particles. Langmuir 2010, 26, (13), 10606-10613. [CrossRef]
- Shi, J.; Shi, Z.; Dong, Y.; Wu, F.; Liu, D., Responsive DNA-based supramolecular hydrogels. ACS Applied Bio Materials 2020, 3, (5), 2827-2837. [CrossRef]
- Bush, J.; Hu, C.-H.; Veneziano, R., Mechanical properties of DNA hydrogels: Towards highly programmable biomaterials. Applied Sciences 2021, 11, (4), 1885. [CrossRef]
- Gao, C.; Zhang, Z.; Zhang, X.; Chen, J.; Chen, Y.; Zhao, C.; Zhao, L.; Feng, L., A molecular crowding thermo-switchable chiral G-quartet hydrogel with circularly polarized luminescence property. Soft Matter 2022, 18, (16), 3125-3129. [CrossRef]
- Yu, Y.; Nakamura, D.; DeBoyace, K.; Neisius, A. W.; McGown, L. B., Tunable thermoassociation of binary guanosine gels. The Journal of Physical Chemistry B 2008, 112, (4), 1130-1134. [CrossRef]
- Davis, J. T.; Spada, G. P., Supramolecular architectures generated by self-assembly of guanosine derivatives. Chemical Society Reviews 2007, 36, (2), 296-313. [CrossRef]
- Longhi, G.; Castiglioni, E.; Koshoubu, J.; Mazzeo, G.; Abbate, S., Circularly polarized luminescence: a review of experimental and theoretical aspects. Chirality 2016, 28, (10), 696-707. [CrossRef]
- Imai, Y., Generation of Circularly Polarized Luminescence by Symmetry Breaking. Symmetry 2020, 12, (11), 1786. [CrossRef]
- Yang, G.; Zhang, S.; Hu, J.; Fujiki, M.; Zou, G., The chirality induction and modulation of polymers by circularly polarized light. Symmetry 2019, 11, (4), 474. [CrossRef]
- Zou, C.; Qu, D.; Jiang, H.; Lu, D.; Ma, X.; Zhao, Z.; Xu, Y., Bacterial cellulose: a versatile chiral host for circularly polarized luminescence. Molecules 2019, 24, (6), 1008. [CrossRef]
- Le Bideau, J.; Viau, L.; Vioux, A., Ionogels, ionic liquid based hybrid materials. Chemical Society Reviews 2011, 40, (2), 907-925. [CrossRef]
- Qi, P.; Li, X.; Huang, Z.; Liu, Y.; Song, A.; Hao, J., G-quadruplex-based ionogels with controllable chirality for circularly polarized luminescence. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2021, 629, 127411. [CrossRef]
- Li, Y.; Chi, J.; Xu, P.; Dong, X.; Le, A.-T.; Shi, K.; Liu, Y.; Xiao, J., Supramolecular G-quadruplex hydrogels: Bridging fabrication to biomedical application. Journal of Materials Science & Technology 2023. [CrossRef]
- Fang, J.; Zheng, L.; Liu, Y.; Peng, Y.; Yang, Q.; Huang, Y.; Zhang, J.; Luo, L.; Shen, D.; Tan, Y., Smart G-quadruplex hydrogels: From preparations to comprehensive applications. International Journal of Biological Macromolecules 2023, 125614. [CrossRef]
- Roxo, C.; Kotkowiak, W.; Pasternak, A., G-quadruplex-forming aptamers—characteristics, applications, and perspectives. Molecules 2019, 24, (20), 3781. [CrossRef]
- Bidzinska, J.; Cimino-Reale, G.; Zaffaroni, N.; Folini, M., G-quadruplex structures in the human genome as novel therapeutic targets. Molecules 2013, 18, (10), 12368-12395. [CrossRef]
- Asamitsu, S.; Obata, S.; Yu, Z.; Bando, T.; Sugiyama, H., Recent progress of targeted G-quadruplex-preferred ligands toward cancer therapy. Molecules 2019, 24, (3), 429. [CrossRef]
- Alessandrini, I.; Recagni, M.; Zaffaroni, N.; Folini, M., On the road to fight cancer: The potential of G-quadruplex ligands as novel therapeutic agents. International journal of molecular sciences 2021, 22, (11), 5947. [CrossRef]
- Santos, T.; Salgado, G. F.; Cabrita, E. J.; Cruz, C., G-quadruplexes and their ligands: Biophysical methods to unravel G-quadruplex/ligand interactions. Pharmaceuticals 2021, 14, (8), 769. [CrossRef]
- Ruggiero, E.; Zanin, I.; Terreri, M.; Richter, S. N., G-quadruplex targeting in the fight against viruses: An update. International Journal of Molecular Sciences 2021, 22, (20), 10984. [CrossRef]
- Marzano, M.; Falanga, A. P.; Marasco, D.; Borbone, N.; D’Errico, S.; Piccialli, G.; Roviello, G. N.; Oliviero, G., Evaluation of an analogue of the marine ε-PLL peptide as a ligand of G-quadruplex DNA structures. Marine drugs 2020, 18, (1), 49. [CrossRef]
- Tanaka, S.; Yukami, S.; Hachiro, Y.; Ohya, Y.; Kuzuya, A., Application of DNA quadruplex hydrogels prepared from polyethylene glycol-oligodeoxynucleotide conjugates to cell culture media. Polymers 2019, 11, (10), 1607. [CrossRef]
- Huang, Z.; Kangovi, G. N.; Wen, W.; Lee, S.; Niu, L., An RNA aptamer capable of forming a hydrogel by self-assembly. Biomacromolecules 2017, 18, (7), 2056-2063. [CrossRef]
- Ahn, S. Y.; Kim, J.; Vellampatti, S.; Oh, S.; Lim, Y. T.; Park, S. H.; Luo, D.; Chung, J.; Um, S. H., Protein-Encoding Free-Standing RNA Hydrogel for Sub-Compartmentalized Translation. Advanced Materials 2022, 34, (18), 2110424. [CrossRef]
- Han, S.; Park, Y.; Kim, H.; Nam, H.; Ko, O.; Lee, J. B., Double controlled release of therapeutic RNA modules through injectable DNA–RNA hybrid hydrogel. ACS Applied Materials & Interfaces 2020, 12, (50), 55554-55563. [CrossRef]
- Brown, J. A., Unraveling the structure and biological functions of RNA triple helices. Wiley Interdisciplinary Reviews: RNA 2020, 11, (6), e1598. [CrossRef]
- Conrad, N. K., The emerging role of triple helices in RNA biology. Wiley Interdisciplinary Reviews: RNA 2014, 5, (1), 15-29. [CrossRef]
- Maldonado, R.; Längst, G., The chromatin–triple helix connection. Biological Chemistry 2023, 404, (11-12), 1037-1049. [CrossRef]
- Conde, J.; Oliva, N.; Atilano, M.; Song, H. S.; Artzi, N., Self-assembled RNA-triple-helix hydrogel scaffold for microRNA modulation in the tumour microenvironment. Nature materials 2016, 15, (3), 353-363. [CrossRef]
- Li, J.; Yuan, D.; Zheng, X.; Zhang, X.; Li, X.; Zhang, S., A triple-combination nanotechnology platform based on multifunctional RNA hydrogel for lung cancer therapy. Science China Chemistry 2020, 63, 546-553. [CrossRef]
- Wang, W.; Liu, X.; Ding, L.; Jin, H. J.; Li, X., Rna hydrogel combined with MnO2 nanoparticles as a nano-vaccine to treat triple negative breast cancer. Frontiers in Chemistry 2021, 9, 797094. [CrossRef]
- Ma, Y.; Duan, X.; Huang, J., DNA Hydrogels as Functional Materials and Their Biomedical Applications. Advanced Functional Materials 2023, 2309070. [CrossRef]



Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).