Submitted:
11 December 2023
Posted:
15 December 2023
You are already at the latest version
Abstract

Keywords:
1. Introduction
2. Animal models of Alzheimer's disease
3. Molecular factors affecting amyloid plaque formation in transgenic animal models of Alzheimer's disease
3.1. Zinc
3.2.α4β2. Nicotinic acetylcholine receptor
3.3. Amyloid-β with the isomerized Asp7 (isoD7- Aβ)
4. Molecular tools switching on/off the aggregation of endogenous Aβ molecules in a transgenic model of Alzheimer's disease
4.1. Neither zinc nor isoD7-Aβ, but a mixture of them triggers amyloidogenesis
4.2. In transgenic nematodes, nAChR α4-derived peptide HAEE neutralizes the aggregation seeding effect of the zinc and isoD7-Aβ mixture
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Golde, T.E., Alzheimer’s disease – the journey of a healthy brain into organ failure. Molecular Neurodegeneration, 2022. 17(1): p. 18. [CrossRef]
- Querfurth, H.W. and F.M. LaFerla, Alzheimer's disease. N Engl J Med, 2010. 362(4): p. 329-44. [CrossRef]
- Jack, C.R., et al., NIA-AA Research Framework: Toward a biological definition of Alzheimer's disease. Alzheimer's & Dementia, 2018. 14(4): p. 535-562. [CrossRef]
- Jagust, W., et al., “Alzheimer's disease” is neither “Alzheimer's clinical syndrome” nor “dementia”. Alzheimer's & Dementia: The Journal of the Alzheimer's Association, 2019. 15(1): p. 153-157. [CrossRef]
- Serrano-Pozo, A., et al., Neuropathological Alterations in Alzheimer Disease. Cold Spring Harbor Perspectives in Medicine, 2011. 1(1). [CrossRef]
- Small, S.A., et al., A pathophysiological framework of hippocampal dysfunction in ageing and disease. Nature Reviews Neuroscience, 2011. 12(10): p. 585-601. [CrossRef]
- Braak, H., E. Braak, and J. Bohl, Staging of Alzheimer-Related Cortical Destruction. European Neurology, 1993. 33(6): p. 403-408. [CrossRef]
- Wahlund, L.-O., et al., Visual assessment of medial temporal lobe atrophy in demented and healthy control subjects: correlation with volumetry. Psychiatry Research: Neuroimaging, 1999. 90(3): p. 193-199. [CrossRef]
- Hampel, H., et al., The cholinergic system in the pathophysiology and treatment of Alzheimer's disease. Brain, 2018. 141(7): p. 1917-1933. [CrossRef]
- Polis, B. and A.O. Samson, A New Perspective on Alzheimer’s Disease as a Brain Expression of a Complex Metabolic Disorder, in Alzheimer’s Disease [Internet], T. Wisniewski, Editor. 2019, Codon Publications: Brisbane (AU). [CrossRef]
- Rogaev, E.I., et al., Familial Alzheimer's disease in kindreds with missense mutations in a gene on chromosome 1 related to the Alzheimer's disease type 3 gene. Nature, 1995. 376(6543): p. 775-778. [CrossRef]
- Sherrington, R., et al., Cloning of a gene bearing missense mutations in early-onset familial Alzheimer's disease. Nature, 1995. 375(6534): p. 754-760. [CrossRef]
- Long, J.M. and D.M. Holtzman, Alzheimer Disease: An Update on Pathobiology and Treatment Strategies. Cell, 2019. 179(2): p. 312-339. [CrossRef]
- Masters, C.L. and D.J. Selkoe, Biochemistry of Amyloid β-Protein and Amyloid Deposits in Alzheimer Disease. Cold Spring Harbor Perspectives in Medicine, 2012. 2(6): p. a006262. [CrossRef]
- Wang, J., et al., A systemic view of Alzheimer disease — insights from amyloid-β metabolism beyond the brain. Nature Reviews Neurology, 2017. 13(10): p. 612-623. [CrossRef]
- Brothers, H.M., M.L. Gosztyla, and S.R. Robinson, The Physiological Roles of Amyloid-β Peptide Hint at New Ways to Treat Alzheimer's Disease. Frontiers in aging neuroscience, 2018. 10: p. 118-118. [CrossRef]
- Smith, L.M. and S.M. Strittmatter, Binding Sites for Amyloid-β Oligomers and Synaptic Toxicity. Cold Spring Harbor Perspectives in Medicine, 2017. 7(5). [CrossRef]
- Cohen, S.I.A., et al., Proliferation of amyloid-β42 aggregates occurs through a secondary nucleation mechanism. Proceedings of the National Academy of Sciences, 2013. 110(24): p. 9758-9763. [CrossRef]
- Masters, C.L., et al., Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc Natl Acad Sci U S A, 1985. 82(12): p. 4245-9. [CrossRef]
- Mukherjee, S., et al., Quantification of N-terminal amyloid-β isoforms reveals isomers are the most abundant form of the amyloid-β peptide in sporadic Alzheimer's disease. Brain communications, 2021. 3(2): p. fcab028-fcab028. [CrossRef]
- Walker, L.C., Aβ Plaques. Free Neuropathol, 2020. 1(31). [CrossRef]
- Stewart, K.L. and S.E. Radford, Amyloid plaques beyond Aβ: a survey of the diverse modulators of amyloid aggregation. Biophysical Reviews, 2017. 9(4): p. 405-419. [CrossRef]
- Kollmer, M., et al., Cryo-EM structure and polymorphism of Aβ amyloid fibrils purified from Alzheimer's brain tissue. Nat Commun, 2019. 10(1): p. 4760. [CrossRef]
- Takano, K., Amyloid beta conformation in aqueous environment. Curr Alzheimer Res, 2008. 5(6): p. 540-7. [CrossRef]
- Eisenberg, D. and M. Jucker, The Amyloid State of Proteins in Human Diseases. Cell, 2012. 148(6): p. 1188-1203. [CrossRef]
- Jucker, M. and L.C. Walker, Pathogenic protein seeding in Alzheimer disease and other neurodegenerative disorders. Ann Neurol, 2011. 70(4): p. 532-40. [CrossRef]
- Soto, C. and S. Pritzkow, Protein misfolding, aggregation, and conformational strains in neurodegenerative diseases. Nat Neurosci, 2018. 21(10): p. 1332-1340. [CrossRef]
- Friesen, M. and M. Meyer-Luehmann, Aβ Seeding as a Tool to Study Cerebral Amyloidosis and Associated Pathology. Frontiers in Molecular Neuroscience, 2019. 12. [CrossRef]
- Jucker, M. and L.C. Walker, Propagation and spread of pathogenic protein assemblies in neurodegenerative diseases. Nat Neurosci, 2018. 21(10): p. 1341-1349. [CrossRef]
- Kozin, S.A. and A.A. Makarov, The Convergence of Alzheimer’s Disease Pathogenesis Concepts. Molecular Biology, 2019. 53(6): p. 896-903. [CrossRef]
- Selkoe, D.J. and J. Hardy, The amyloid hypothesis of Alzheimer's disease at 25 years. EMBO Molecular Medicine, 2016. 8(6): p. 595-608. [CrossRef]
- Orpiszewski, J., et al., Protein aging hypothesis of Alzheimer disease. Faseb j, 2000. 14(9): p. 1255-63. [CrossRef]
- Wang, L., et al., Current understanding of metal ions in the pathogenesis of Alzheimer’s disease. Translational Neurodegeneration, 2020. 9(1): p. 10. [CrossRef]
- Kinney, J.W., et al., Inflammation as a central mechanism in Alzheimer's disease. Alzheimer's & Dementia: Translational Research & Clinical Interventions, 2018. 4: p. 575-590. [CrossRef]
- Karran, E., M. Mercken, and B. De Strooper, The amyloid cascade hypothesis for Alzheimer's disease: an appraisal for the development of therapeutics. Nat Rev Drug Discov, 2011. 10(9): p. 698-712. [CrossRef]
- Golde, T.E., S.T. DeKosky, and D. Galasko, Alzheimer's disease: The right drug, the right time. Science, 2018. 362(6420): p. 1250-1251. [CrossRef]
- Hillen, H., The Beta Amyloid Dysfunction (BAD) Hypothesis for Alzheimer’s Disease. Frontiers in Neuroscience, 2019. 13. [CrossRef]
- Kurkinen, M., et al., The Amyloid Cascade Hypothesis in Alzheimer's Disease: Should We Change Our Thinking? Biomolecules, 2023. 13(3). [CrossRef]
- Morris, G.P., I.A. Clark, and B. Vissel, Inconsistencies and controversies surrounding the amyloid hypothesis of Alzheimer's disease. Acta Neuropathol Commun, 2014. 2: p. 135. [CrossRef]
- van Dyck, C.H., et al., Lecanemab in Early Alzheimer's Disease. N Engl J Med, 2023. 388(1): p. 9-21. [CrossRef]
- Hardy, J. and C. Mummery, An anti-amyloid therapy works for Alzheimer’s disease: why has it taken so long and what is next? Brain, 2023. 146(4): p. 1240-1242. [CrossRef]
- Ramanan, V.K. and G.S. Day, Anti-amyloid therapies for Alzheimer disease: finally, good news for patients. Molecular Neurodegeneration, 2023. 18(1): p. 42. [CrossRef]
- Zhang, Y., et al., Amyloid β-based therapy for Alzheimer’s disease: challenges, successes and future. Signal Transduction and Targeted Therapy, 2023. 8(1): p. 248. [CrossRef]
- Götz, J., L.G. Bodea, and M. Goedert, Rodent models for Alzheimer disease. Nat Rev Neurosci, 2018. 19(10): p. 583-598. [CrossRef]
- Li, C., A. Briner, and J. Götz, The search for improved animal models of Alzheimer's disease and novel strategies for therapeutic intervention. Future Med Chem, 2019. 11(15): p. 1853-1857. [CrossRef]
- Zhang, Y.-w., et al., APP processing in Alzheimer's disease. Molecular Brain, 2011. 4(1): p. 3. [CrossRef]
- Mroczko, B., et al., Cellular Receptors of Amyloid β Oligomers (AβOs) in Alzheimer’s Disease. International Journal of Molecular Sciences, 2018. 19(7): p. 1884. [CrossRef]
- Chen, Z.-Y. and Y. Zhang, Animal models of Alzheimer’s disease: Applications, evaluation, and perspectives. Zoological Research, 2022. 43(6): p. 1026. [CrossRef]
- Scearce-Levie, K., P.E. Sanchez, and J.W. Lewcock, Leveraging preclinical models for the development of Alzheimer disease therapeutics. Nat Rev Drug Discov, 2020. 19(7): p. 447-462. [CrossRef]
- Toledano, A. and M.I. Álvarez, Lesion-Induced Vertebrate Models of Alzheimer Dementia, in Animal Models of Dementia, P.P. De Deyn and D. Van Dam, Editors. 2011, Humana Press: Totowa, NJ. p. 295-345. [CrossRef]
- Ridley, R.M., et al., Learning impairment following lesion of the basal nucleus of Meynert in the marmoset: Modification by cholinergic drugs. Brain Research, 1986. 376(1): p. 108-116. [CrossRef]
- Fiock, K.L., et al., β-amyloid and tau pathology in the aging feline brain. J Comp Neurol, 2020. 528(1): p. 108-113. [CrossRef]
- Reid, S.J., et al., Alzheimer's disease markers in the aged sheep (Ovis aries). Neurobiol Aging, 2017. 58: p. 112-119. [CrossRef]
- Chavan, R.S., et al., Animal models of Alzheimer’s disease: An originof innovativetreatments and insight to the disease's etiology. Brain Research, 2023. 1814: p. 148449. [CrossRef]
- Johnstone, E.M., et al., Conservation of the sequence of the Alzheimer's disease amyloid peptide in dog, polar bear and five other mammals by cross-species polymerase chain reaction analysis. Molecular Brain Research, 1991. 10(4): p. 299-305. [CrossRef]
- Benedikz, E., E. Kloskowska, and B. Winblad, The rat as an animal model of Alzheimer's disease. J Cell Mol Med, 2009. 13(6): p. 1034-42. [CrossRef]
- Gunn-Moore, D., et al., Alzheimer's disease in humans and other animals: A consequence of postreproductive life span and longevity rather than aging. Alzheimers Dement, 2018. 14(2): p. 195-204. [CrossRef]
- Zeiss, C.J., Utility of spontaneous animal models of Alzheimer's disease in preclinical efficacy studies. Cell Tissue Res, 2020. 380(2): p. 273-286. [CrossRef]
- Sousa, A.M.M., et al., Evolution of the Human Nervous System Function, Structure, and Development. Cell, 2017. 170(2): p. 226-247. [CrossRef]
- Walker, L.C. and M. Jucker, The Exceptional Vulnerability of Humans to Alzheimer's Disease. Trends Mol Med, 2017. 23(6): p. 534-545. [CrossRef]
- Van Dam, D. and P.P. De Deyn, Non human primate models for Alzheimer's disease-related research and drug discovery. Expert Opin Drug Discov, 2017. 12(2): p. 187-200. [CrossRef]
- King, A., The search for better animal models of Alzheimer's disease. Nature, 2018. 559(7715): p. S13-s15. [CrossRef]
- McKean, N.E., R.R. Handley, and R.G. Snell, A Review of the Current Mammalian Models of Alzheimer's Disease and Challenges That Need to Be Overcome. Int J Mol Sci, 2021. 22(23). [CrossRef]
- Istrate, A.N., et al., NMR solution structure of rat Aβ(1-16): toward understanding the mechanism of rats' resistance to Alzheimer's disease. Biophys J, 2012. 102(1): p. 136-43. [CrossRef]
- Myers, A. and P. McGonigle, Overview of Transgenic Mouse Models for Alzheimer's Disease. Curr Protoc Neurosci, 2019. 89(1): p. e81. [CrossRef]
- Lee, S.E., et al., Production of transgenic pig as an Alzheimer's disease model using a multi-cistronic vector system. PLoS One, 2017. 12(6): p. e0177933. [CrossRef]
- Vitek, M.P., et al., Translational animal models for Alzheimer's disease: An Alzheimer's Association Business Consortium Think Tank. Alzheimers Dement (N Y), 2020. 6(1): p. e12114. [CrossRef]
- Drummond, E. and T. Wisniewski, Alzheimer's disease: experimental models and reality. Acta Neuropathol, 2017. 133(2): p. 155-175. [CrossRef]
- Papanikolopoulou, K. and E.M. Skoulakis, Temporally distinct phosphorylations differentiate Tau-dependent learning deficits and premature mortality in Drosophila. Hum Mol Genet, 2015. 24(7): p. 2065-77. [CrossRef]
- Benbow, S.J., et al., Synergistic toxicity between tau and amyloid drives neuronal dysfunction and neurodegeneration in transgenic C. elegans. Hum Mol Genet, 2020. 29(3): p. 495-505. [CrossRef]
- Javed, I., et al., Inhibition of amyloid beta toxicity in zebrafish with a chaperone-gold nanoparticle dual strategy. Nature Communications, 2019. 10(1): p. 3780. [CrossRef]
- Yokoyama, M., et al., Mouse Models of Alzheimer’s Disease. Frontiers in Molecular Neuroscience, 2022. 15. [CrossRef]
- Craddock, T.J., et al., The zinc dyshomeostasis hypothesis of Alzheimer's disease. PLoS One, 2012. 7(3): p. e33552. [CrossRef]
- Lovell, M.A., et al., Copper, iron and zinc in Alzheimer's disease senile plaques. J Neurol Sci, 1998. 158(1): p. 47-52. [CrossRef]
- Bush, A.I., et al., Modulation of A beta adhesiveness and secretase site cleavage by zinc. J Biol Chem, 1994. 269(16): p. 12152-8. [CrossRef]
- Miller, Y., B. Ma, and R. Nussinov, Zinc ions promote Alzheimer Abeta aggregation via population shift of polymorphic states. Proc Natl Acad Sci U S A, 2010. 107(21): p. 9490-5. [CrossRef]
- Miller, L.M., et al., Synchrotron-based infrared and X-ray imaging shows focalized accumulation of Cu and Zn co-localized with beta-amyloid deposits in Alzheimer's disease. J Struct Biol, 2006. 155(1): p. 30-7. [CrossRef]
- Suh, S.W., et al., Histochemically-reactive zinc in amyloid plaques, angiopathy, and degenerating neurons of Alzheimer's diseased brains. Brain Research, 2000. 852(2): p. 274-278. [CrossRef]
- DeBenedictis, C.A., et al., Concentrations of Essential Trace Metals in the Brain of Animal Species-A Comparative Study. Brain Sci, 2020. 10(7). [CrossRef]
- Andreini, C., et al., Counting the zinc-proteins encoded in the human genome. J Proteome Res, 2006. 5(1): p. 196-201. [CrossRef]
- Krall, R.F., T. Tzounopoulos, and E. Aizenman, The Function and Regulation of Zinc in the Brain. Neuroscience, 2021. 457: p. 235-258. [CrossRef]
- Prasad, A.S., Clinical, immunological, anti-inflammatory and antioxidant roles of zinc. Exp Gerontol, 2008. 43(5): p. 370-7. [CrossRef]
- Tapiero, H. and K.D. Tew, Trace elements in human physiology and pathology: zinc and metallothioneins. Biomed Pharmacother, 2003. 57(9): p. 399-411. [CrossRef]
- Lee, J.Y., et al., Contribution by synaptic zinc to the gender-disparate plaque formation in human Swedish mutant APP transgenic mice. Proc Natl Acad Sci U S A, 2002. 99(11): p. 7705-10. [CrossRef]
- Frederickson, C.J., J.Y. Koh, and A.I. Bush, The neurobiology of zinc in health and disease. Nat Rev Neurosci, 2005. 6(6): p. 449-62. [CrossRef]
- Paoletti, P., et al., Zinc at glutamatergic synapses. Neuroscience, 2009. 158(1): p. 126-36. [CrossRef]
- Bush, A.I., et al., Rapid induction of Alzheimer A beta amyloid formation by zinc. Science, 1994. 265(5177): p. 1464-7. [CrossRef]
- Huang, X., et al., Alzheimer's disease, beta-amyloid protein and zinc. J Nutr, 2000. 130(5S Suppl): p. 1488s-92s. [CrossRef]
- Liu, S.T., G. Howlett, and C.J. Barrow, Histidine-13 is a crucial residue in the zinc ion-induced aggregation of the A beta peptide of Alzheimer's disease. Biochemistry, 1999. 38(29): p. 9373-8. [CrossRef]
- Miura, T., et al., Metal binding modes of Alzheimer's amyloid beta-peptide in insoluble aggregates and soluble complexes. Biochemistry, 2000. 39(23): p. 7024-31. [CrossRef]
- Yang, D.S., et al., Examining the zinc binding site of the amyloid-beta peptide. Eur J Biochem, 2000. 267(22): p. 6692-8. [CrossRef]
- Portelius, E., et al., A novel pathway for amyloid precursor protein processing. Neurobiol Aging, 2011. 32(6): p. 1090-8. [CrossRef]
- Kozin, S.A., et al., Zinc binding to Alzheimer's Abeta(1-16) peptide results in stable soluble complex. Biochem Biophys Res Commun, 2001. 285(4): p. 959-964. [CrossRef]
- Zirah, S., et al., Structural changes of region 1-16 of the Alzheimer disease amyloid beta-peptide upon zinc binding and in vitro aging. J Biol Chem, 2006. 281(4): p. 2151-2161. [CrossRef]
- Tsvetkov, P.O., et al., Minimal Zn(2+) binding site of amyloid-β. Biophys J, 2010. 99(10): p. L84-6. [CrossRef]
- Kozin, S.A., et al., Zinc-induced dimerization of the amyloid-β metal-binding domain 1–16 is mediated by residues 11–14. Molecular BioSystems, 2011. 7(4): p. 1053-1055. [CrossRef]
- Kulikova, A.A., et al., Phosphorylation of Ser8 promotes zinc-induced dimerization of the amyloid-β metal-binding domain. Molecular BioSystems, 2014. 10(10): p. 2590-2596. [CrossRef]
- Istrate, A.N., et al., Interplay of histidine residues of the Alzheimer's disease Aβ peptide governs its Zn-induced oligomerization. Sci Rep, 2016. 6: p. 21734. [CrossRef]
- Nisbet, R.M., et al., Structural studies of the tethered N-terminus of the Alzheimer's disease amyloid-β peptide. Proteins: Structure, Function, and Bioinformatics, 2013. 81(10): p. 1748-1758. [CrossRef]
- Adzhubei, A.A., A.A. Anashkina, and A.A. Makarov, Left-handed polyproline-II helix revisited: proteins causing proteopathies. J Biomol Struct Dyn, 2017. 35(12): p. 2701-2713. [CrossRef]
- Adzhubei, A.A., M.J. Sternberg, and A.A. Makarov, Polyproline-II helix in proteins: structure and function. J Mol Biol, 2013. 425(12): p. 2100-32. [CrossRef]
- Barykin, E.P., et al., Tetrapeptide Ac-HAEE-NH(2) Protects α4β2 nAChR from Inhibition by Aβ. Int J Mol Sci, 2020. 21(17). [CrossRef]
- Vilella, A., et al., Evidence for a protective effect of the loss of α4-containing nicotinic acetylcholine receptors on Aβ-related neuropathology in Tg2576 mice. Frontiers in Neuroscience, 2023. 17. [CrossRef]
- Baker, H.F., et al., Induction of beta (A4)-amyloid in primates by injection of Alzheimer's disease brain homogenate. Comparison with transmission of spongiform encephalopathy. Mol Neurobiol, 1994. 8(1): p. 25-39. [CrossRef]
- Ridley, R.M., et al., Very long term studies of the seeding of beta-amyloidosis in primates. J Neural Transm (Vienna), 2006. 113(9): p. 1243-51. [CrossRef]
- Langer, F., et al., Soluble Aβ seeds are potent inducers of cerebral β-amyloid deposition. J Neurosci, 2011. 31(41): p. 14488-95. [CrossRef]
- Morales, R., et al., De novo induction of amyloid-β deposition in vivo. Mol Psychiatry, 2012. 17(12): p. 1347-53. [CrossRef]
- Rosen, R.F., et al., Exogenous seeding of cerebral β-amyloid deposition in βAPP-transgenic rats. Journal of Neurochemistry, 2012. 120(5): p. 660-666. [CrossRef]
- Watts, J.C., et al., Bioluminescence imaging of Abeta deposition in bigenic mouse models of Alzheimer's disease. Proc Natl Acad Sci U S A, 2011. 108(6): p. 2528-33. [CrossRef]
- Eisele, Y.S., et al., Induction of cerebral beta-amyloidosis: intracerebral versus systemic Abeta inoculation. Proc Natl Acad Sci U S A, 2009. 106(31): p. 12926-31. [CrossRef]
- Eisele, Y.S., et al., Peripherally applied Abeta-containing inoculates induce cerebral beta-amyloidosis. Science, 2010. 330(6006): p. 980-2. [CrossRef]
- Liu, K.Y., et al., Key questions for the evaluation of anti-amyloid immunotherapies for Alzheimer’s disease. Brain Communications, 2023. 5(3). [CrossRef]
- Meyer-Luehmann, M., et al., Exogenous induction of cerebral beta-amyloidogenesis is governed by agent and host. Science, 2006. 313(5794): p. 1781-4. [CrossRef]
- Meyer-Luehmann, M., et al., Rapid appearance and local toxicity of amyloid-beta plaques in a mouse model of Alzheimer's disease. Nature, 2008. 451(7179): p. 720-4. [CrossRef]
- Mezias, C. and A. Raj, Analysis of Amyloid-β Pathology Spread in Mouse Models Suggests Spread Is Driven by Spatial Proximity, Not Connectivity. Front Neurol, 2017. 8: p. 653. [CrossRef]
- Novotny, R., et al., Conversion of Synthetic Aβ to In Vivo Active Seeds and Amyloid Plaque Formation in a Hippocampal Slice Culture Model. J Neurosci, 2016. 36(18): p. 5084-93. [CrossRef]
- Jaunmuktane, Z., et al., Evidence for human transmission of amyloid-β pathology and cerebral amyloid angiopathy. Nature, 2015. 525(7568): p. 247-50. [CrossRef]
- Purro, S.A., et al., Transmission of amyloid-β protein pathology from cadaveric pituitary growth hormone. Nature, 2018. 564(7736): p. 415-419. [CrossRef]
- Roher, A.E., et al., Structural alterations in the peptide backbone of beta-amyloid core protein may account for its deposition and stability in Alzheimer's disease. J Biol Chem, 1993. 268(5): p. 3072-83. [CrossRef]
- Moro, M.L., et al., Pyroglutamate and Isoaspartate modified Amyloid-Beta in ageing and Alzheimer's disease. Acta Neuropathol Commun, 2018. 6(1): p. 3. [CrossRef]
- Mitkevich, V.A., et al., Isomerization of Asp7 leads to increased toxic effect of amyloid-β42 on human neuronal cells. Cell Death Dis, 2013. 4(11): p. e939. [CrossRef]
- Yurinskaya, M.M., et al., HSP70 protects human neuroblastoma cells from apoptosis and oxidative stress induced by amyloid peptide isoAsp7-Aβ(1-42). Cell Death Dis, 2015. 6(11): p. e1977. [CrossRef]
- Zatsepina, O.G., et al., Amyloid-β with isomerized Asp7 cytotoxicity is coupled to protein phosphorylation. Scientific Reports, 2018. 8(1): p. 3518. [CrossRef]
- Kolmogorov, V.S., et al., Scanning Ion-Conductance Microscopy for Studying β-Amyloid Aggregate Formation on Living Cell Surfaces. Analytical Chemistry, 2023. 95(43): p. 15943-15949. [CrossRef]
- Xie, X.M. and T.G. Smart, A physiological role for endogenous zinc in rat hippocampal synaptic neurotransmission. Nature, 1991. 349(6309): p. 521-4. [CrossRef]
- Kozin, S.A., et al., Peripherally applied synthetic peptide isoAsp7-Abeta(1-42) triggers cerebral beta-amyloidosis. Neurotox Res, 2013. 24(3): p. 370-6. [CrossRef]
- Kulikova, A.A., et al., Intracerebral Injection of Metal-Binding Domain of Aβ Comprising the Isomerized Asp7 Increases the Amyloid Burden in Transgenic Mice. Neurotox Res, 2016. 29(4): p. 551-7. [CrossRef]
- Gnoth, K., et al., Targeting isoaspartate-modified Aβ rescues behavioral deficits in transgenic mice with Alzheimer’s disease-like pathology. Alzheimer's Research & Therapy, 2020. 12(1): p. 149. [CrossRef]
- Alexander, A.G., V. Marfil, and C. Li, Use of Caenorhabditis elegans as a model to study Alzheimer's disease and other neurodegenerative diseases. Front Genet, 2014. 5: p. 279. [CrossRef]
- Chen, X., et al., Using C. elegans to discover therapeutic compounds for ageing-associated neurodegenerative diseases. Chemistry Central Journal, 2015. 9(1): p. 65. [CrossRef]
- Dostal, V. and C.D. Link, Assaying β-amyloid toxicity using a transgenic C. elegans model. J Vis Exp, 2010(44). [CrossRef]
- Ewald, C.Y. and C. Li, Understanding the molecular basis of Alzheimer's disease using a Caenorhabditis elegans model system. Brain Struct Funct, 2010. 214(2-3): p. 263-83. [CrossRef]
- Earley, B.J., et al., Zinc homeostasis and signaling in the roundworm C. elegans. Biochim Biophys Acta Mol Cell Res, 2021. 1868(1): p. 118882. [CrossRef]
- Kumar, J., et al., Zinc Levels Modulate Lifespan through Multiple Longevity Pathways in Caenorhabditis elegans. PLoS One, 2016. 11(4): p. e0153513. [CrossRef]
- Shimizu, T., et al., Isoaspartate formation and neurodegeneration in Alzheimer's disease. Arch Biochem Biophys, 2000. 381(2): p. 225-34. [CrossRef]
- Mitkevich, V.A., et al., Zn-dependent β-amyloid Aggregation and its Reversal by the Tetrapeptide HAEE. Aging Dis, 2023. 14(2): p. 309-318. [CrossRef]
- Tsvetkov, P.O., et al., Peripherally Applied Synthetic Tetrapeptides HAEE and RADD Slow Down the Development of Cerebral β-Amyloidosis in AβPP/PS1 Transgenic Mice. J Alzheimers Dis, 2015. 46(4): p. 849-53. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
