Preprint
Article

On R-fuzzy Soft δ-Open Sets and Applications via Fuzzy Soft Topologies

Altmetrics

Downloads

318

Views

334

Comments

0

Submitted:

17 December 2023

Posted:

18 December 2023

Read the latest preprint version here

Alerts
Abstract
In this work, we introduce the concepts of r-fuzzy soft δ-open (resp. semi-open and α-open) sets on fuzzy soft topological space, the relations of these sets with each other are established. Next, we introduce the concepts of fuzzy soft δ-continuous (resp. β-continuous, semi-continuous, pre-continuous and α-continuous) functions, and some properties of these functions along with their mutual relationships are investigated. Also, a decomposition of fuzzy soft semi-continuity and a decomposition of fuzzy soft α-continuity are given. Finally, as a weaker form of fuzzy soft continuity by Aygunoglu et al. (2014), the concepts of fuzzy soft almost (resp. weakly) continuous functions are introduced, and some properties are specified. Moreover, we explore the notion of continuity in a very general setting namely fuzzy soft (L, M, N, O)-continuous functions, and a historical justification are obtained.
Keywords: 
Subject: Computer Science and Mathematics  -   Geometry and Topology

1. Introduction

In [1], the author initiated a novel concept of soft set theory, which is a completely new approach for modeling uncertainty and vagueness. He showed many applications of this theory in solving several practical problems in engineering, economics, medical science, social science, etc. Maji et al. [2] introduced the concept of fuzzy soft sets which combines soft sets [1] and fuzzy sets [3]. After that, many authors have contributed to soft set (fuzzy soft set) theory in the different fields such as topology, algebra and etc., see [4–14].
The concept of fuzzy soft topology is introduced and some of its properties such as fuzzy soft continuity, interior fuzzy soft set, closure fuzzy soft set and fuzzy soft subspace topology are obtained in [15,16] based on fuzzy topologies in Šostaks sense [17]. The concept of r-fuzzy soft regularly open sets was introduced by Çetkin and Aygün [16] based on the paper Aygünoǧlu et al. [15]. Also, the concepts of r-fuzzy soft β -open (resp. pre-open) sets was also considered by Taha [18].
The organization of this paper is as follows:
(i) In Section 2, we define new types of fuzzy soft sets on fuzzy soft topological space based on the paper Aygünoǧlu et al. [15]. Also, the relations of these sets with each other are established with the help of some examples.
(ii) In Section 3, we introduce the concepts of fuzzy soft δ -continuous (resp. β -continuous, semi-continuous, pre-continuous and α -continuous) functions, and the relations of these functions with each other are investigated. Moreover, a decomposition of fuzzy soft semi-continuity and a decomposition of fuzzy soft α -continuity are given.
(iii) In Section 4, as a weaker form of fuzzy soft continuity [15], the concepts of fuzzy soft almost (resp. weakly) continuous functions are introduced, and some properties are obtained. Also, we show that fuzzy soft continuity ⇒ fuzzy soft almost continuity ⇒ fuzzy soft weakly continuity, but the converse need not be true in general. In the end, we explore the notion of continuity in a very general setting namely fuzzy soft ( L , M , N , O ) -continuous functions, and a historical justification are given.
(iv) Finally, we close this paper with some conclusions and make a plan for suggest some future works in Section 5.
Throughout this article, nonempty sets will be denoted by U, V etc., E is the set of all parameters for U and A E , the family of all fuzzy sets on U is denoted by I U (where I = ( 0 , 1 ] , I = [ 0 , 1 ] ), and for t I ,   t ̲ ( u ) = t , for all u U . The following definitions will be used in the next sections:
Definition 1.1.
[ 2 , 4 , 15 ] A fuzzy soft set f A on U is a function from E to I U such that f A ( e ) is a fuzzy set on U, for each e A and f A ( e ) = 0 ̲ , if e A . The family of all fuzzy soft sets on U is denoted by ( U , E ) ˜ .
Definition 1.2.
[ 19 ] A fuzzy soft point e u t on U is a fuzzy soft set defined as follows:
e u t ( k ) = u t , i f k = e , 0 ̲ , i f k E { e } ,
where u t is a fuzzy point on U. e u t is said to belong to a fuzzy soft set f A , denoted by e u t ˜ f A , if t f A ( e ) ( u ) . The family of all fuzzy soft points on U is denoted by P t ( U ) ˜ .
Definition 1.3.
[ 15 ] A function τ : E [ 0 , 1 ] ( U , E ) ˜ is called a fuzzy soft topology on U if it satisfies the following conditions for every e E ,
(i) τ e ( Φ ) = τ e ( E ˜ ) = 1 ,
(ii) τ e ( f A g B ) τ e ( f A ) τ e ( g B ) , for every f A , g B ( U , E ) ˜ ,
(iii) τ e ( i Δ ( f A ) i ) i Δ τ e ( ( f A ) i ) , for every ( f A ) i ( U , E ) ˜ , i Δ .
Then, ( U , τ E ) is called a fuzzy soft topological space (briefly, FSTS) in Šostaks sense [17].
Definition 1.4.
[ 15 ] Let ( U , τ E ) and ( V , τ F * ) be a FSTSs. A fuzzy soft function φ ψ : ( U , E ) ˜ ( V , F ) ˜ is said to be fuzzy soft continuous if τ e ( φ ψ 1 ( g B ) ) τ k * ( g B ) for every g B ( V , F ) ˜ , e E and ( k = ψ ( e ) ) F .
Definition 1.5.
[ 16 , 18 ] Let ( U , τ E ) be a FSTS. A fuzzy soft set f A ( U , E ) ˜ is said to be r-fuzzy soft regularly open (resp. pre-open and β -open) if f A = I τ ( e , C τ ( e , f A , r ) , r ) (resp. f A I τ ( e , C τ ( e , f A , r ) , r ) and f A C τ ( e , I τ ( e , C τ ( e , f A , r ) , r ) , r ) ) for every e E and r I 0 .
Lemma 1.1.
[ 18 ] Every r-fuzzy soft regularly open set [16] is r-fuzzy soft pre-open [18].
The converse of Lemma 1.1 is not true, in general, as shown by Example 1.1.
Example 1.1.
[ 18 ] Let U = { u 1 , u 2 } , E = { e , k } and define g E , f E ( U , E ) ˜ as follows: g E = { ( e , { u 1 0 . 3 , u 2 0 . 4 } ) , ( k , { u 1 0 . 3 , u 2 0 . 4 } ) } , f E = { ( e , { u 1 0 . 6 , u 2 0 . 2 } ) , ( k , { u 1 0 . 6 , u 2 0 . 2 } ) } . Define fuzzy soft topology τ E : E [ 0 , 1 ] ( U , E ) ˜ as follows:
τ e ( m E ) = 1 , if m E { Φ , E ˜ } , 1 4 , if m E = g E , 1 3 , if m E = f E , 1 3 , if m E = g E f E , 1 4 , if m E = g E f E , 0 , otherwise ,
τ k ( m E ) = 1 , if m E { Φ , E ˜ } , 1 4 , if m E = g E , 1 2 , if m E = f E , 1 2 , if m E = g E f E , 1 4 , if m E = g E f E , 0 , otherwise .
Then, f E is 1 4 -fuzzy soft pre-open set, but it is not 1 4 -fuzzy soft regularly open set.
In a fuzzy soft topological space ( U , τ E ) [16], the interior of f A and the closure of f A will be denoted by I τ ( e , f A , r ) , r ) and C τ ( e , f A , r ) , r ) , respectively. The basic definitions and results which we need next sections are found in [15,16].

2. On r-Fuzzy Soft δ -Open Sets

In this section, we are going to give the concepts of r-fuzzy soft δ -open (resp. semi-open and α -open) sets on fuzzy soft topological space ( U , τ E ) . Some properties of these sets along with their mutual relationships are investigated with the help of some examples.
Definition 2.1.
Let ( U , τ E ) be a FSTS. A fuzzy soft set f A ( U , E ) ˜ is said to be r-fuzzy soft δ -open (resp. semi-open and α -open) if I τ ( e , C τ ( e , f A , r ) , r ) C τ ( e , I τ ( e , f A , r ) , r ) (resp. f A C τ ( e , I τ ( e , f A , r ) , r ) and f A I τ ( e , C τ ( e , I τ ( e , f A , r ) , r ) , r ) ) for every e E and r I 0 .
Remark 2.1.
The concept of r-fuzzy soft δ -open set and r-fuzzy soft β -open set [18] are independent concepts, as shown by Example 2.1 and 2.2.
Example 2.1.
Let U = { u 1 , u 2 } , E = { e , k } and define h E , g E , f E ( U , E ) ˜ as follows: h E = { ( e , { u 1 0 . 4 , u 2 0 . 5 } ) , ( k , { u 1 0 . 4 , u 2 0 . 5 } ) } , g E = { ( e , { u 1 0 . 2 , u 2 0 . 3 } ) , ( k , { u 1 0 . 2 , u 2 0 . 3 } ) } , f E = { ( e , { u 1 0 . 8 , u 2 0 . 7 } ) , ( k , { u 1 0 . 8 , u 2 0 . 7 } ) } . Define fuzzy soft topology τ E : E [ 0 , 1 ] ( U , E ) ˜ as follows:
τ e ( m E ) = 1 , if m E { Φ , E ˜ } , 1 3 , if m E = g E , 2 3 , if m E = f E , 0 , otherwise ,
τ k ( m E ) = 1 , if m E { Φ , E ˜ } , 1 3 , if m E = g E , 1 2 , if m E = f E , 0 , otherwise .
Then, h E is 1 3 -fuzzy soft β -open set, but it is neither 1 3 -fuzzy soft δ -open nor 1 3 -fuzzy soft semi-open.
Example 2.2.
Let U = { u 1 , u 2 , u 3 } , E = { e , k } and define h E , g E , f E ( U , E ) ˜ as follows: h E = { ( e , { u 1 0 , u 2 1 , u 3 1 } ) , ( k , { u 1 0 , u 2 1 , u 3 1 } ) } , g E = { ( e , { u 1 0 , u 2 0 , u 3 1 } ) , ( k , { u 1 0 , u 2 0 , u 3 1 } ) } , f E = { ( e , { u 1 0 , u 2 1 , u 3 0 } ) , ( k , { u 1 0 , u 2 1 , u 3 0 } ) } . Define fuzzy soft topology τ E : E [ 0 , 1 ] ( U , E ) ˜ as follows:
τ e ( m E ) = 1 , if m E { Φ , E ˜ } , 1 4 , if m E = g E , 1 2 , if m E = f E , 1 3 , if m E = h E , 0 , otherwise ,
τ k ( m E ) = 1 , if m E { Φ , E ˜ } , 1 3 , if m E = g E , 1 2 , if m E = f E , 1 3 , if m E = h E , 0 , otherwise .
Then, h E c is 1 4 -fuzzy soft δ -open set, but it is neither 1 4 -fuzzy soft β -open nor 1 4 -fuzzy soft semi-open.
Remark 2.2.
The complement of r-fuzzy soft δ -open (resp. semi-open, α -open and β -open) set is said to be r-fuzzy soft δ -closed (resp. semi-closed, α -closed and β -closed).
Proposition 2.1.
Let ( U , τ E ) be a FSTS, f A ( U , E ) ˜ , e E and r I 0 . The following statements are equivalent,
(i) f A is r-fuzzy soft semi-open.
(ii) f A is r-fuzzy soft δ -open and r-fuzzy soft β -open.
Proof.
(i) ⇒ (ii) Let f A be r-fuzzy soft semi-open, then f A C τ ( e , I τ ( e , f A , r ) , r ) C τ ( e , I τ ( C τ ( e , f A , r ) , r ) , r ) . This shows that f A is r-fuzzy soft β -open. Moreover, I τ ( e , C τ ( e , f A , r ) , r ) C τ ( e , f A , r ) C τ ( e , C τ ( e , I τ ( e , f A , r ) , r ) , r ) = C τ ( e , I τ ( e , f A , r ) , r ) . Therefore, f A is r-fuzzy soft δ -open.
(ii) ⇒ (i) Let f A be r-fuzzy soft δ -open and r-fuzzy soft β -open, I τ ( e , C τ ( e , f A , r ) , r ) C τ ( e , I τ ( e , f A , r ) , r ) and f A C τ ( e , I τ ( e , C τ ( e , f A , r ) , r ) , r ) . Thus, f A C τ ( e , I τ ( e , C τ ( e , f A , r ) , r ) , r ) C τ ( e , C τ ( e , I τ ( e , f A , r ) , r ) , r ) = C τ ( e , I τ ( e , f A , r ) , r ) . This shows that f A is r-fuzzy soft semi-open.
Proposition 2.2.
Let ( U , τ E ) be a FSTS, f A ( U , E ) ˜ , e E and r I 0 . The following statements are equivalent,
(i) f A is r-fuzzy soft α -open.
(ii) f A is r-fuzzy soft δ -open and r-fuzzy soft pre-open.
Proof. (i) ⇒ (ii) From Proposition 2.1 the proof is straightforward.
(ii) ⇒ (i) Let f A be r-fuzzy soft pre-open and r-fuzzy soft δ -open. Then, f A I τ ( e , C τ ( e , f A , r ) , r ) I τ ( e , C τ ( e , I τ ( e , f A , r ) , r ) , r ) . This shows that f A is r-fuzzy soft α -open.
Then, we have the following implications:
α o p e n
p r e o p e n s e m i o p e n δ o p e n
β o p e n
Moreover, the converses of the above relationships are not true, in general, as shown by Example 2.1, 2.2, 2.3, 2.4 and 2.5.
Example 2.3.
Let U = { u 1 , u 2 } , E = { e , k } and define g E , f E , h E ( U , E ) ˜ as follows: g E = { ( e , { u 1 0 . 3 , u 2 0 . 4 } ) , ( k , { u 1 0 . 3 , u 2 0 . 4 } ) } , f E = { ( e , { u 1 0 . 6 , u 2 0 . 2 } ) , ( k , { u 1 0 . 6 , u 2 0 . 2 } ) } , h E = { ( e , { u 1 0 . 7 , u 2 0 . 5 } ) , ( k , { u 1 0 . 7 , u 2 0 . 5 } ) } . Define fuzzy soft topology τ E : E [ 0 , 1 ] ( U , E ) ˜ as follows:
τ e ( m E ) = 1 , if m E { Φ , E ˜ } , 1 2 , if m E = g E , 2 3 , if m E = f E , 2 3 , if m E = g E f E , 1 2 , if m E = g E f E , 0 , otherwise ,
τ k ( m E ) = 1 , if m E { Φ , E ˜ } , 1 3 , if m E = g E , 1 2 , if m E = f E , 1 2 , if m E = g E f E , 1 3 , if m E = g E f E , 0 , otherwise .
Then, h E is 1 3 -fuzzy soft semi-open set, but it is neither 1 3 -fuzzy soft α -open nor 1 3 -fuzzy soft pre-open.
Example 2.4.
Let U = { u 1 , u 2 , u 3 } , E = { e , k } and define g E , f E ( U , E ) ˜ as follows: g E = { ( e , { u 1 0 . 2 , u 2 0 . 3 , u 3 0 . 2 } ) , ( k , { u 1 0 . 2 , u 2 0 . 3 , u 3 0 . 2 } ) } , f E = { ( e , { u 1 0 . 3 , u 2 0 . 4 , u 3 0 . 8 } ) , ( k , { u 1 0 . 3 , u 2 0 . 4 , u 3 0 . 8 } ) } . Define fuzzy soft topology τ E : E [ 0 , 1 ] ( U , E ) ˜ as follows:
τ e ( m E ) = 1 , if m E { Φ , E ˜ } , 1 2 , if m E = g E , 0 , otherwise ,
τ k ( m E ) = 1 , if m E { Φ , E ˜ } , 1 3 , if m E = g E , 0 , otherwise .
Then, f E is 1 3 -fuzzy soft β -open set, but it is not 1 3 -fuzzy soft pre-open.
Example 2.5.
Let U = { u 1 , u 2 } , E = { e , k } and define g E , f E ( U , E ) ˜ as follows: g E = { ( e , { u 1 0 . 4 , u 2 0 . 5 } ) , ( k , { u 1 0 . 4 , u 2 0 . 5 } ) } , f E = { ( e , { u 1 0 . 3 , u 2 0 . 4 } ) , ( k , { u 1 0 . 3 , u 2 0 . 4 } ) } . Define fuzzy soft topology τ E : E [ 0 , 1 ] ( U , E ) ˜ as follows:
τ e ( m E ) = 1 , if m E { Φ , E ˜ } , 1 4 , if m E = g E , 0 , otherwise ,
τ k ( m E ) = 1 , if m E { Φ , E ˜ } , 1 2 , if m E = g E , 0 , otherwise .
Then, f E is 1 4 -fuzzy soft pre-open set, but it is neither 1 4 -fuzzy soft α -open nor 1 4 -fuzzy soft semi-open.
Theorem 2.1.
Let ( U , τ E ) be a FSTS, f A , g B ( U , E ) ˜ , e E and r I 0 . If f A is r-fuzzy soft δ -open set such that f A g B C τ ( e , f A , r ) , then g B is also r-fuzzy soft δ -open.
Proof. 
Suppose that f A is r-fuzzy soft δ -open and f A g B C τ ( e , f A , r ) . Then, I τ ( e , C τ ( e , f A , r ) , r ) C τ ( e , I τ ( e , f A , r ) , r ) C τ ( e , I τ ( e , g B , r ) , r ) . Since g B C τ ( e , f A , r ) , I τ ( e , C τ ( e , g B , r ) , r ) I τ ( e , C τ ( e , f A , r ) , r ) C τ ( e , I τ ( e , g B , r ) , r ) . This shows that g B is r-fuzzy soft δ -open.

3. Continuity via r-Fuzzy Soft δ -Open Sets

In this section, we introduce the concepts of fuzzy soft δ -continuous (resp. β -continuous, semi-continuous, pre-continuous and α -continuous) functions on fuzzy soft topological space in Šostaks sense. Also, we study several relationships related to fuzzy soft δ -continuity with the help of some illustrative problems. In addition, a decomposition of fuzzy soft semi-continuity and a decomposition of fuzzy soft α -continuity are obtained.
Definition 3.1.
Let ( U , τ E ) and ( V , τ F * ) be a FSTSs. A fuzzy soft function φ ψ : ( U , E ) ˜ ( V , F ) ˜ is said to be fuzzy soft δ -continuous (resp. β -continuous, semi-continuous, pre-continuous and α -continuous) if φ ψ 1 ( g B ) is r-fuzzy soft δ -open (resp. β -open, semi-open, pre-open and α -open) set for every g B ( V , F ) ˜ with τ k * ( g B ) r , e E , ( k = ψ ( e ) ) F and r I o .
Remark 3.1.
Fuzzy soft δ -continuity and fuzzy soft β -continuity are independent concepts, as shown by Example 3.1 and 3.2.
Example 3.1.
Let U = { u 1 , u 2 } , E = { e 1 , e 2 } and define h E , g E , f E ( U , E ) ˜ as follows: h E = { ( e 1 , { u 1 0 . 4 , u 2 0 . 5 } ) , ( e 2 , { u 1 0 . 4 , u 2 0 . 5 } ) } , g E = { ( e 1 , { u 1 0 . 2 , u 2 0 . 3 } ) , ( e 2 , { u 1 0 . 2 , u 2 0 . 3 } ) } , f E = { ( e 1 , { u 1 0 . 8 , u 2 0 . 7 } ) , ( e 2 , { u 1 0 . 8 , u 2 0 . 7 } ) } . Define fuzzy soft topologies τ E , τ E * : E [ 0 , 1 ] ( U , E ) ˜ as follows: e E ,
τ e ( m E ) = 1 , if m E { Φ , E ˜ } , 1 3 , if m E = g E , 2 3 , if m E = f E , 0 , otherwise ,
τ e * ( m E ) = 1 , if m E { Φ , E ˜ } , 1 3 , if m E = h E , 0 , otherwise .
Then, the identity fuzzy soft function φ ψ : ( U , τ E ) ( U , τ E * ) is fuzzy soft β -continuous, but it is neither fuzzy soft δ -continuous nor fuzzy soft semi-continuous.
Example 3.2.
Let U = { u 1 , u 2 , u 3 } , E = { e 1 , e 2 } and define h E , g E , f E ( U , E ) ˜ as follows: h E = { ( e 1 , { u 1 0 , u 2 1 , u 3 1 } ) , ( e 2 , { u 1 0 , u 2 1 , u 3 1 } ) } , g E = { ( e 1 , { u 1 0 , u 2 0 , u 3 1 } ) , ( e 2 , { u 1 0 , u 2 0 , u 3 1 } ) } , f E = { ( e 1 , { u 1 0 , u 2 1 , u 3 0 } ) , ( e 2 , { u 1 0 , u 2 1 , u 3 0 } ) } . Define fuzzy soft topologies τ E , τ E * : E [ 0 , 1 ] ( U , E ) ˜ as follows: e E ,
τ e ( m E ) = 1 , if m E { Φ , E ˜ } , 1 4 , if m E = g E , 1 2 , if m E = f E , 1 3 , if m E = h E , 0 , otherwise ,
τ e * ( m E ) = 1 , if m E { Φ , E ˜ } , 1 4 , if m E = h E c , 0 , otherwise .
Then, the identity fuzzy soft function φ ψ : ( U , τ E ) ( U , τ E * ) is fuzzy soft δ -continuous, but it is neither fuzzy soft β -continuous nor fuzzy soft semi-continuous.
Now, we have the following decomposition of fuzzy soft semi-continuity and decomposition of fuzzy soft α -continuity, according to Propositions 2.1 and 2.2.
Proposition 3.1.
Let ( U , τ E ) and ( V , τ F * ) be a FSTSs. φ ψ : ( U , E ) ˜ ( V , F ) ˜ is fuzzy soft semi-continuous function iff it is both fuzzy soft δ -continuous and fuzzy soft β -continuous.
Proof. 
The proof is obvious by Proposition 2.1. □
Proposition 3.2.
Let ( U , τ E ) and ( V , τ F * ) be a FSTSs. φ ψ : ( U , E ) ˜ ( V , F ) ˜ is fuzzy soft α -continuous function iff it is both fuzzy soft δ -continuous and fuzzy soft pre-continuous.
Proof. 
The proof is obvious by Proposition 2.2. □
Theorem 3.1.
Let ( U , τ E ) and ( V , τ F * ) be a FSTSs, and φ ψ : ( U , E ) ˜ ( V , F ) ˜ be a fuzzy soft function. The following statements are equivalent for every g B ( V , F ) ˜ , e E , ( k = ψ ( e ) ) F and r I :
(i) φ ψ is fuzzy soft β -continuous.
(ii) I τ ( e , C τ ( e , I τ ( e , φ ψ 1 ( g B ) , r ) , r ) , r ) φ ψ 1 ( g B ) , if τ k * ( g B c ) r .
(iii) I τ ( e , C τ ( e , I τ ( e , φ ψ 1 ( g B ) , r ) , r ) , r ) φ ψ 1 ( C τ * ( k , g B , r ) ) .
(iv) φ ψ 1 ( I τ * ( k , g B , r ) ) C τ ( e , I τ ( e , C τ ( e , φ ψ 1 ( g B ) , r ) , r ) , r ) .
Proof. (i) ⇒ (ii) Let g B ( V , F ) ˜ with τ k * ( g B c ) r . Then by Definition 3.1,
( φ ψ 1 ( g B ) ) c = φ ψ 1 ( g B c ) C τ ( e , I τ ( e , C τ ( e , φ ψ 1 ( g B c ) , r ) , r ) , r ) = ( I τ ( e , C τ ( e , I τ ( e , φ ψ 1 ( g B ) , r ) , r ) , r ) ) c . Thus, I τ ( e , C τ ( e , I τ ( e , φ ψ 1 ( g B ) , r ) , r ) , r ) φ ψ 1 ( g B ) .
(ii) ⇒ (iii) Obvious.
(iii) ⇒ (iv) Since ( I τ ( e , C τ ( e , I τ ( e , φ ψ 1 ( g B ) , r ) , r ) , r ) ) c = C τ ( e , I τ ( e , C τ ( e , φ ψ 1 ( g B c ) , r ) , r ) , r ) and ( φ ψ 1 ( C τ * ( k , g B , r ) ) ) c = φ ψ 1 ( I τ * ( k , g B c , r ) ) . Then, φ ψ 1 ( I τ * ( k , g B , r ) ) C τ ( e , I τ ( e , C τ ( e , φ ψ 1 ( g B ) , r ) , r ) , r ) , for each g B ( V , F ) ˜ .
(iv) ⇒ (i) Let g B ( V , F ) ˜ with τ k * ( g B ) r . Then by (iv) and g B = I τ * ( k , g B , r ) , φ ψ 1 ( g B ) C τ ( e , I τ ( e , C τ ( e , φ ψ 1 ( g B ) , r ) , r ) , r ) . Thus, φ ψ is fuzzy soft β -continuous.
The following theorem is similarly proved as in Theorem 3.1. □
Theorem 3.2.
Let ( U , τ E ) and ( V , τ F * ) be a FSTSs, and φ ψ : ( U , E ) ˜ ( V , F ) ˜ be a fuzzy soft function. The following statements are equivalent for every g B ( V , F ) ˜ , e E , ( k = ψ ( e ) ) F and r I :
(i) φ ψ is fuzzy soft δ -continuous.
(ii) I τ ( e , C τ ( e , φ ψ 1 ( g B ) , r ) , r ) C τ ( e , I τ ( e , φ ψ 1 ( g B ) , r ) , r ) , if τ k * ( g B c ) r .
(iii) I τ ( e , C τ ( e , φ ψ 1 ( g B ) , r ) , r ) C τ ( e , I τ ( e , φ ψ 1 ( C τ * ( k , g B , r ) ) , r ) , r )
(iv) I τ ( e , C τ ( e , φ ψ 1 ( I τ * ( k , g B , r ) ) , r ) , r ) C τ ( e , I τ ( e , φ ψ 1 ( g B ) , r ) , r ) .
Then, we have the following implications:
α c o n t i n u i t y
p r e c o n t i n u i t y s e m i c o n t i n u i t y δ c o n t i n u i t y
β c o n t i n u i t y
Moreover, the converses of the above relationships are not true, in general, as shown by Example 3.1, 3.2, 3.3, 3.4 and 3.5.
Example 3.3.
Let U = { u 1 , u 2 } , E = { e 1 , e 2 } and define g E , f E , h E ( U , E ) ˜ as follows: g E = { ( e 1 , { u 1 0 . 3 , u 2 0 . 4 } ) , ( e 2 , { u 1 0 . 3 , u 2 0 . 4 } ) } , f E = { ( e 1 , { u 1 0 . 6 , u 2 0 . 2 } ) , ( e 2 , { u 1 0 . 6 , u 2 0 . 2 } ) } , h E = { ( e 1 , { u 1 0 . 7 , u 2 0 . 5 } ) , ( e 2 , { u 1 0 . 7 , u 2 0 . 5 } ) } . Define fuzzy soft topologies τ E , τ E * : E [ 0 , 1 ] ( U , E ) ˜ as follows: e E ,
τ e ( m E ) = 1 , if m E { Φ , E ˜ } , 1 2 , if m E = g E , 2 3 , if m E = f E , 2 3 , if m E = g E f E , 1 2 , if m E = g E f E , 0 , otherwise ,
τ e * ( m E ) = 1 , if m E { Φ , E ˜ } , 1 3 , if m E = h E , 0 , otherwise .
Then, the identity fuzzy soft function φ ψ : ( U , τ E ) ( U , τ E * ) is fuzzy soft semi-continuous, but it is neither fuzzy soft α -continuous nor fuzzy soft pre-continuous.
Example 3.4.
Let U = { u 1 , u 2 , u 3 } , E = { e 1 , e 2 } and define g E , f E ( U , E ) ˜ as follows: g E = { ( e 1 , { u 1 0 . 2 , u 2 0 . 3 , u 3 0 . 2 } ) , ( e 2 , { u 1 0 . 2 , u 2 0 . 3 , u 3 0 . 2 } ) } , f E = { ( e 1 , { u 1 0 . 3 , u 2 0 . 4 , u 3 0 . 8 } ) , ( e 2 , { u 1 0 . 3 , u 2 0 . 4 , u 3 0 . 8 } ) } . Define fuzzy soft topologies τ E , τ E * : E [ 0 , 1 ] ( U , E ) ˜ as follows: e E ,
τ e ( m E ) = 1 , if m E { Φ , E ˜ } , 1 2 , if m E = g E , 0 , otherwise ,
τ e * ( m E ) = 1 , if m E { Φ , E ˜ } , 1 3 , if m E = f E , 0 , otherwise .
Then, the identity fuzzy soft function φ ψ : ( U , τ E ) ( U , τ E * ) is fuzzy soft β -continuous, but it is not fuzzy soft pre-continuous.
Example 3.5.
Let U = { u 1 , u 2 } , E = { e 1 , e 2 } and define g E , f E ( U , E ) ˜ as follows: g E = { ( e 1 , { u 1 0 . 4 , u 2 0 . 5 } ) , ( e 2 , { u 1 0 . 4 , u 2 0 . 5 } ) } , f E = { ( e 1 , { u 1 0 . 3 , u 2 0 . 4 } ) , ( e 2 , { u 1 0 . 3 , u 2 0 . 4 } ) } . Define fuzzy soft topologies τ E , τ E * : E [ 0 , 1 ] ( U , E ) ˜ as follows: e E ,
τ e ( m E ) = 1 , if m E { Φ , E ˜ } , 1 2 , if m E = g E , 0 , otherwise ,
τ e * ( m E ) = 1 , if m E { Φ , E ˜ } , 1 4 , if m E = f E , 0 , otherwise .
Then, the identity fuzzy soft function φ ψ : ( U , τ E ) ( U , τ E * ) is fuzzy soft pre-continuous, but it is neither fuzzy soft α -continuous nor fuzzy soft semi-continuous.
Proposition 3.3.
Let ( U , τ E ) , ( V , τ F * ) and ( W , γ H ) be a FSTSs, and φ ψ : ( U , E ) ˜ ( V , F ) ˜ , φ ψ * * : ( V , F ) ˜ ( W , H ) ˜ be two fuzzy soft functions. Then φ ψ * * φ ψ is fuzzy soft δ -continuous (resp. β -continuous) if φ ψ is fuzzy soft δ -continuous (resp. β -continuous) and φ ψ * * is fuzzy soft continuous.
Proof. 
Obvious. □

4. New Types of Fuzzy Soft Functions

In this section, we introduce a weaker form of fuzzy soft continuous function [15] called fuzzy soft almost (resp. weakly) continuous function and study some properties of these functions. Also, we show that fuzzy soft continuity ⇒ fuzzy soft almost continuity ⇒ fuzzy soft weakly continuity, but the converse need not be true. Finally, we introduce a concept of continuity in a very general setting called fuzzy soft ( L , M , N , O ) -continuous functions.
Definition 4.1.
Let ( U , τ E ) and ( V , τ F * ) be a FSTSs. A fuzzy soft function φ ψ : ( U , E ) ˜ ( V , F ) ˜ is said to be fuzzy soft almost (resp. weakly) continuous if, for each e u t P t ( U ) ˜ and each g B ( V , F ) ˜ with τ k * ( g B ) r containing φ ψ ( e u t ) , there is f A ( U , E ) ˜ with τ e ( f A ) r containing e u t such that φ ψ ( f A ) I τ * ( k , C τ * ( k , g B , r ) , r ) (resp. φ ψ ( f A ) C τ * ( k , g B , r ) ).
Theorem 4.1.
Let ( U , τ E ) and ( V , τ F * ) be a FSTSs, and φ ψ : ( U , E ) ˜ ( V , F ) ˜ be a fuzzy soft function. Suppose that one of the following holds for every g B ( V , F ) ˜ , e E , ( k = ψ ( e ) ) F and r I :
(i) If τ k * ( g B ) r , φ ψ 1 ( g B ) I τ ( e , φ ψ 1 ( I τ * ( k , C τ * ( k , g B , r ) , r ) ) , r ) .
(ii) C τ ( e , φ ψ 1 ( C τ * ( k , I τ * ( k , g B , r ) , r ) ) , r ) φ ψ 1 ( g B ) , if τ k * ( g B c ) r .
Then, φ ψ is fuzzy soft almost continuous.
Proof. (i) ⇒ (ii) Let g B ( V , F ) ˜ with τ k * ( g B c ) r . From (i), it follows
φ ψ 1 ( g B c ) I τ ( e , φ ψ 1 ( I τ * ( k , C τ * ( k , g B c , r ) , r ) ) , r ) = I τ ( e , φ ψ 1 ( ( C τ * ( k , I τ * ( k , g B , r ) , r ) ) c ) , r ) = I τ ( e , ( φ ψ 1 ( C τ * ( k , I τ * ( k , g B , r ) , r ) ) ) c , r ) = ( C τ ( e , φ ψ 1 ( C τ * ( k , I τ * ( k , g B , r ) , r ) ) , r ) ) c .
Hence, C τ ( e , φ ψ 1 ( C τ * ( k , I τ * ( k , g B , r ) , r ) ) , r ) φ ψ 1 ( g B ) . Similarly, we get (ii) ⇒ (i).
Suppose that (i) holds. Let e u t P t ( U ) ˜ and g B ( V , F ) ˜ with τ k * ( g B ) r containing φ ψ ( e u t ) . Then, by (i), e u t ˜ I τ ( e , φ ψ 1 ( I τ * ( k , C τ * ( k , g B , r ) , r ) ) , r ) , and so there is f A ( U , E ) ˜ with τ e ( f A ) r containing e u t such that f A φ ψ 1 ( I τ * ( k , C τ * ( k , g B , r ) , r ) ) . Hence, φ ψ ( f A ) I τ * ( k , C τ * ( k , g B , r ) , r ) . Then, φ ψ is fuzzy soft almost continuous.
Lemma 4.1.
Every fuzzy soft continuous function [15] is fuzzy soft almost continuous.
Proof. 
It follows from Theorem 4.1. □
The converse of the above Lemma is not true, in general, as shown by Example 4.1.
Example 4.1.
Let U = { u 1 , u 2 } , E = { e 1 , e 2 } and define g E , f E ( U , E ) ˜ as follows: g E = { ( e 1 , { u 1 0 . 4 , u 2 0 . 5 } ) , ( e 2 , { u 1 0 . 4 , u 2 0 . 5 } ) } , f E = { ( e 1 , { u 1 0 . 3 , u 2 0 . 4 } ) , ( e 2 , { u 1 0 . 3 , u 2 0 . 4 } ) } . Define fuzzy soft topologies τ E , τ E * : E [ 0 , 1 ] ( U , E ) ˜ as follows: e E ,
τ e ( m E ) = 1 , if m E { Φ , E ˜ } , 1 2 , if m E = g E , 0 , otherwise ,
τ e * ( m E ) = 1 , if m E { Φ , E ˜ } , 1 4 , if m E { f E , g E } , 0 , otherwise .
Then, the identity fuzzy soft function φ ψ : ( U , τ E ) ( U , τ E * ) is fuzzy soft almost continuous, but it is not fuzzy soft continuous.
Theorem 4.2.
Let ( U , τ E ) and ( V , τ F * ) be a FSTSs, and φ ψ : ( U , E ) ˜ ( V , F ) ˜ be a fuzzy soft function. Suppose that one of the following holds for every g B ( V , F ) ˜ , e E , ( k = ψ ( e ) ) F and r I :
(i) φ ψ 1 ( g B ) I τ ( e , φ ψ 1 ( C τ * ( k , g B , r ) ) , r ) , if τ k * ( g B ) r .
(ii) C τ ( e , φ ψ 1 ( I τ * ( k , g B , r ) ) , r ) φ ψ 1 ( g B ) , if τ k * ( g B c ) r .
Then, φ ψ is fuzzy soft weakly continuous.
Proof. (i) ⇒ (ii) Let g B ( V , F ) ˜ with τ k * ( g B c ) r . From (i), it follows
φ ψ 1 ( g B c ) I τ ( e , φ ψ 1 ( C τ * ( k , g B c , r ) ) , r ) = I τ ( e , φ ψ 1 ( ( I τ * ( k , g B , r ) ) c ) , r ) = I τ ( e , ( φ ψ 1 ( I τ * ( k , g B , r ) ) ) c , r ) = ( C τ ( e , φ ψ 1 ( I τ * ( k , g B , r ) ) , r ) ) c .
Hence, C τ ( e , φ ψ 1 ( I τ * ( k , g B , r ) ) , r ) φ ψ 1 ( g B ) . Similarly, we get (ii) ⇒ (i).
Suppose that (i) holds. Let e u t P t ( U ) ˜ and g B ( V , F ) ˜ with τ k * ( g B ) r containing φ ψ ( e u t ) . Then, by (i), e u t ˜ I τ ( e , φ ψ 1 ( C τ * ( k , g B , r ) ) , r ) , and so there is f A ( U , E ) ˜ with τ e ( f A ) r containing e u t such that f A φ ψ 1 ( C τ * ( k , g B , r ) ) . Thus, φ ψ ( f A ) C τ * ( k , g B , r ) . Hence, φ ψ is fuzzy soft weakly continuous. □
Lemma 4.2.
Every fuzzy soft almost continuous function is fuzzy soft weakly continuous.
Proof. 
It follows from Definition 4.1. □
The converse of the above Lemma is not true, in general, as shown by Example 4.2.
Example 4.2.
Let U = { u 1 , u 2 , u 3 } , E = { e 1 , e 2 } and define g E , f E ( U , E ) ˜ as follows: g E = { ( e 1 , { u 1 0 . 6 , u 2 0 . 6 , u 3 0 . 5 } ) , ( e 2 , { u 1 0 . 6 , u 2 0 . 6 , u 3 0 . 5 } ) } , f E = { ( e 1 , { u 1 0 . 3 , u 2 0 , u 3 0 . 5 } ) , ( e 2 , { u 1 0 . 3 , u 2 0 , u 3 0 . 5 } ) } . Define fuzzy soft topologies τ E , τ E * : E [ 0 , 1 ] ( U , E ) ˜ as follows: e E ,
τ e ( m E ) = 1 , if m E { Φ , E ˜ } , 1 2 , if m E = g E , 0 , otherwise ,
τ e * ( m E ) = 1 , if m E { Φ , E ˜ } , 1 2 , if m E = f E , 0 , otherwise .
Then, the identity fuzzy soft function φ ψ : ( U , τ E ) ( U , τ E * ) is fuzzy soft weakly continuous, but it is not fuzzy soft almost continuous.
Then, we have the following implications:
fuzzy soft continuity
fuzzy soft almost continuity
fuzzy soft weakly continuity .
In [20], the difference between f A and g B is a fuzzy soft set defined as follows:
( f A ¯ g B ) ( e ) = 0 ̲ , i f f A ( e ) g B ( e ) , f A ( e ) ( g B ( e ) ) c , o t h e r w i s e , e E .
Let L and M : E × ( U , E ) ˜ × I I U be operators on ( U , E ) ˜ , and N and O : F × ( V , F ) ˜ × I I V be operators on ( V , F ) ˜ .
Definition 4.2.
Let ( U , τ E ) and ( V , τ F * ) be a FSTSs. φ ψ : ( U , E ) ˜ ( V , F ) ˜ is said to be fuzzy soft ( L , M , N , O ) -continuous function if L [ e , φ ψ 1 ( O ( k , g B , r ) ) , r ] ¯ M [ e , φ ψ 1 ( N ( k , g B , r ) ) , r ] = Φ for each g B ( V , F ) ˜ with τ k * ( g B ) r , e E and ( k = ψ ( e ) ) F .
In (2014), Aygünoǧlu et al. [15] defined the concept of fuzzy soft continuous functions: τ e ( φ ψ 1 ( g B ) ) τ k * ( g B ) for every g B ( V , F ) ˜ , e E and ( k = ψ ( e ) ) F . We can see that Definition 4.2 generalizes the concept of fuzzy soft continuous functions, when we choose L = identity operator, M = interior operator, N = identity operator and O = identity operator.
A historical justification of Definition 4.2:
(1) In Section 3, we introduced the concept of fuzzy soft δ -continuous functions: I τ ( e , C τ ( e , φ ψ 1 ( g B ) , r ) , r ) C τ ( e , I τ ( e , φ ψ 1 ( g B ) , r ) , r ) for each g B ( V , F ) ˜ with τ k * ( g B ) r . Here, L = interior closure operator, M = closure interior operator, N = identity operator and O = identity operator.
(2) In Section 3, we introduced the concept of fuzzy soft β -continuous functions: φ ψ 1 ( g B ) C τ ( e , I τ ( e , C τ ( e , φ ψ 1 ( g B ) , r ) , r ) , r ) for each g B ( V , F ) ˜ with τ k * ( g B ) r . Here, L = identity operator, M = closure interior closure operator, N = identity operator and O = identity operator.
(3) In Section 3, we introduced the concept of fuzzy soft semi-continuous functions: φ ψ 1 ( g B ) C τ ( e , I τ ( e , φ ψ 1 ( g B ) , r ) , r ) for each g B ( V , F ) ˜ with τ k * ( g B ) r . Here, L = identity operator, M = closure interior operator, N = identity operator and O = identity operator.
(4) In Section 3, we introduced the concept of fuzzy soft pre-continuous functions: φ ψ 1 ( g B ) I τ ( e , C τ ( e , φ ψ 1 ( g B ) , r ) , r ) for each g B ( V , F ) ˜ with τ k * ( g B ) r . Here, L = identity operator, M = interior closure operator, N = identity operator and O = identity operator.
(5) In Section 3, we introduced the concept of fuzzy soft α -continuous functions: φ ψ 1 ( g B ) I τ ( e , C τ ( e , I τ ( e , φ ψ 1 ( g B ) , r ) , r ) , r ) for each g B ( V , F ) ˜ with τ k * ( g B ) r . Here, L = identity operator, M = interior closure interior operator, N = identity operator and O = identity operator.
(6) In Section 4, we introduced the concept of fuzzy soft almost continuous functions: φ ψ 1 ( g B ) I τ ( e , φ ψ 1 ( I τ * ( k , C τ * ( k , g B , r ) , r ) ) , r ) for each g B ( V , F ) ˜ with τ k * ( g B ) r . Here, L = identity operator, M = interior operator, N = interior closure operator and O = identity operator.
(7) In Section 4, we introduced the concept of fuzzy soft weakly continuous functions: φ ψ 1 ( g B ) I τ ( e , φ ψ 1 ( C τ * ( k , g B , r ) ) , r ) for each g B ( V , F ) ˜ with τ k * ( g B ) r . Here, L = identity operator, M = interior operator, N = closure operator and O = identity operator.

5. Conclusion and Future Work

This article is lay out as follows:
I. In Section 2, some new types of fuzzy soft sets namely r-fuzzy soft δ -open (resp. semi-open and α -open) sets are introduced on fuzzy soft topological space based on the paper Aygünoǧlu et al. [15]. Also, we have the following relationships:
α o p e n
p r e o p e n s e m i o p e n δ o p e n
β o p e n
but the converse need not be true in general.
II. In Section 3, we introduce the concepts of fuzzy soft δ -continuous (resp. β -continuous, semi-continuous, pre-continuous and α -continuous) functions, and the relations of these functions with each other are investigated with the help of some illustrative examples. Moreover, a decomposition of fuzzy soft semi-continuity and a decomposition of fuzzy soft α -continuity are given.
III. In Section 4, as a weaker form of fuzzy soft continuity [15], the concepts of fuzzy soft almost (resp. weakly) continuous functions are introduced, and some properties are obtained. Also, we show that fuzzy soft continuity ⇒ fuzzy soft almost continuity ⇒ fuzzy soft weakly continuity, but the converse need not be true in general. Finally, we explore the notion of continuity in a very general setting namely fuzzy soft ( L , M , N , O ) -continuous functions. Then, we have the following results:
(1) Fuzzy soft ( i d U , I τ , i d V , i d V ) -continuous function is a fuzzy soft continuous function [15].
(2) Fuzzy soft ( I τ ( C τ ) , C τ ( I τ ) , i d V , i d V ) -continuous function is a fuzzy soft δ -continuous function.
(3) Fuzzy soft ( i d U , C τ ( I τ ( C τ ) ) , i d V , i d V ) -continuous function is a fuzzy soft β -continuous function.
(4) Fuzzy soft ( i d U , C τ ( I τ ) , i d V , i d V ) -continuous function is a fuzzy soft semi-continuous function.
(5) Fuzzy soft ( i d U , I τ ( C τ ) , i d V , i d V ) -continuous function is a fuzzy soft pre-continuous function.
(6) Fuzzy soft ( i d U , I τ ( C τ ( I τ ) ) , i d V , i d V ) ) -continuous function is a fuzzy soft α -continuous function.
(7) Fuzzy soft ( i d U , I τ , I τ * ( C τ * ) , i d V ) -continuous function is a fuzzy soft almost continuous function.
(8) Fuzzy soft ( i d U , I τ , C τ * , i d V ) -continuous function is a fuzzy soft weakly continuous function.
In upcoming articles, we will use the r-fuzzy soft δ -open sets to introduce some new separation axioms and to define the concept of δ -compact spaces on fuzzy soft topological space based on the paper Aygünoǧlu et al. [15].

Data Availability Statement

No data were used to support this study.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

  1. D. Molodtsov, “ Soft set theory-First results,” Comput. Math. Appl., vol. 37, pp. 19-31, 1999. [CrossRef]
  2. P. K. Maji, R. Biswas and A. R. Roy, “ Fuzzy soft sets,” J. Fuzzy Math., vol. 9, no. 3, pp. 589-602, 2001.
  3. L. A. Zadeh, “ Fuzzy Sets,” Inform. Control, vol. 8, pp. 338-353, 1965. [CrossRef]
  4. B. Ahmad and A. Kharal, “ On fuzzy soft sets,” Adv. Fuzzy Syst., vol. 2009, Article ID 586507, 2009.
  5. N. Çaǧman, S. Enginoǧlu and F. Çitak, “ Fuzzy soft set theory and its applications,” Iran. J. Fuzzy Syst., vol. 8, pp. 137-147, 2011.
  6. T. M. Al-shami, “ Soft somewhere dense sets on soft topological spaces,” Commun. Korean Math. Soc., vol. 33, pp. 1341-1356, 2018. [CrossRef]
  7. T. M. Al-shami, I. Alshammari and B. A. Asaad, “ Soft maps via soft somewhere dense sets,” Filomat, vol. 34, pp. 3429-3440, 2020. [CrossRef]
  8. I. M. Taha, “ A new approach to separation and regularity axioms via fuzzy soft sets,” Ann. Fuzzy Math. Inform., vol. 20, no. 2, pp. 115-123, 2020. [CrossRef]
  9. J. C. R. Alcantud, T. M. Al-shami and A. A. Azzam, “ Caliber and chain conditions in soft topologies,” Mathematics, vol. 9, pp. 1-15, 2021. [CrossRef]
  10. T. M. Al-shami, “ New soft structure: Infra soft topological spaces,” Math. Probl. Eng., vol. 156, Article ID 3361604, 12 pages, 2021. [CrossRef]
  11. I. M. Taha, “ Some new separation axioms in fuzzy soft topological spaces,” Filomat, vol. 35, no. 6, pp. 1775-1783, 2021. [CrossRef]
  12. Z. A. Ameen and M. H. Alqahtani, “ Baire category soft sets and their symmetric local properties,” Symmetry, vol. 15, pp. 1-13, 2023. [CrossRef]
  13. Z. A. Ameen and M. H. Alqahtani, “ Some classes of soft functions defined by soft open sets modulo soft sets of the first category,” Mathematics, vol. 11, pp. 1-15, 2023. [CrossRef]
  14. Z. A. Ameen and M. H. Alqahtani, “ Congruence representations via soft ideals in soft topological spaces,” Axioms, vol. 12, pp. 1-15, 2023. [CrossRef]
  15. A. Aygünoǧlu, V. Çetkin and H. Aygün, “ An introduction to fuzzy soft topological spaces,” Hacet. J. Math. Stat., vol. 43, pp. 193-208, 2014.
  16. V. Çetkin and H. Aygün, “ Fuzzy soft semiregularization spaces,” Ann. Fuzzy Math. Inform., vol. 7, pp. 687-697, 2014.
  17. A. P. Šostak, “ On a fuzzy topological structure,” In: Proceedings of the 13th winter school on abstract analysis, Section of topology, Palermo: Circolo Matematico di Palermo, pp. 89-103, 1985.
  18. I. M. Taha, “ Compactness on fuzzy soft r-minimal spaces,” Int. J. Fuzzy Logic Intell. Syst., vol. 21, no. 3, pp. 251-258, 2021. [CrossRef]
  19. S. Mishra and R. Srivastava, “ Hausdorff fuzzy soft topological spaces,” Ann. Fuzzy Math. Inform., vol. 9, no. 2, pp. 247-260, 2015.
  20. I. M. Taha, “ Some new results on fuzzy soft r-minimal spaces,” AIMS Math., vol. 7, no. 7, pp. 12458-12470, 2022. [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated