Preprint
Article

Linear Relations between Numbers of Terms and First Terms of Sums of Consecutive Squared Integers Equal to Squared Integers

Altmetrics

Downloads

69

Views

15

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

29 December 2023

Posted:

29 December 2023

You are already at the latest version

Alerts
Abstract
Sums of M consecutive squared integers (a+i)^2 equaling squared integers (for a<=1, 0<= i<= M-1) yield remarkable regular linear features when plotting values of M in function of a. These features correspond to groupings of pairs of a values for successive same values of M around straight lines of equation mu*M = 2a and are characterized in this paper for rational values of mu.
Keywords: 
Subject: Computer Science and Mathematics  -   Algebra and Number Theory

1. Introduction

The study of integer squares equal to sums of consecutive squared integers can be dated back to 1873 when Lucas stated [11] that 1 2 + . . . + n 2 is an integer square only for n = 1 and 24. Lucas proposed later in 1875 [12] the well known cannonball problem, which was proven by several authors [2,10,13,14,19,20,33].
Instead of starting at 1, finding all values of a for which the sum of M consecutive integer squares starting from a 2 1 is itself an integer square s 2 is a more general problem that was addressed by several authors (see e.g. [1,3,8,24]). More recently, this author showed [26] that there are no integer solutions if M 3 , 5 , 6 , 7 , 8 or 10 m o d 12 and that there are integer solutions for non squared integer M congruent to 0 , 9 , 24 or 33 m o d 72 , or to 1 , 2 or 16 m o d 24 , or to 11 m o d 12 , and for squared integer M congruent to 1 m o d 24 .
In this paper, we investigate and characterize the properties of groupings of pairs of a values for a same value of M that are found around inclined straight lines of equation μ M 2 a in the a , M plot for rational values of μ .

2. Linear features in the a , M plot

For M > 1 , a , i , s Z * , the sum of M consecutive squared integers a + i 2 equaling a squared integer s 2 can be written [28] as
i = 0 M 1 a + i 2 = M a + M 1 2 2 + M 2 1 12
For 1 a 10 5 and 2 M 10 5 , there are only 4078 couples of values of a and M among the approximately 10 10 possibilities such that (1) holds. Figure 1 shows the distribution of these 4078 couples in a a , M plot where several groupings of interest are seen.
The most visible is the grouping around a straight line of equation M = 2 a + c where c is a constant, corresponding to a double infinite family of a values that starts with the identity and the Pythagorean relations
0 2 + 1 2 = 1 2
3 2 + 4 2 = 5 2
for a same value of M = 2 and respectively for a = 0 and 3. This double infinite family has the characteristics that couples of a values correspond to a same value of M. There are other similar groupings and double infinite families around straight lines of general equation μ M = 2 a + c μ for certain rational values of μ > 0 and where c μ is a constant different for each value of μ . Only groupings around inclined lines are considered as the limit cases of μ = 0 and μ corresponding to groupings around respectively vertical and horizontal lines are not treated here. The horizontal case for which one or several solutions in a exist for each values of M was investigated in [26,27,28].
Definition 1. 
For 1 j 2 , M μ , k > 1 , a j , μ , k Z * , for a given value of μ Q + , two values of a j , μ , k are called a pair a 1 , μ , k , a 2 , μ , k if for a same value of M μ , k and k Z ,
a 1 , μ , k + a 2 , μ , k = μ M μ , k + 1
a 2 , μ , k a 1 , μ , k = f μ , k
hold, where f μ , k = f μ k is a linear integer function of k for each value of μ, yielding
μ M μ , k = 2 a j , μ , k ± f μ , k 1
where the upper or lower sign is taken for j = 1 or 2.
The two families of a 1 , μ , k and a 2 , μ , k are characterized for each values of μ around the straight line of equation μ M = 2 a + c μ in the following theorem. However, relations (4) to (6) hold only for certain values, called allowed values, of M μ , k and of μ that are determined further.
Theorem 1. 
For 1 j 2 , i , η , δ , M μ , k > 1 , a j , μ , k Z * , k , s j , μ , k Z , for allowed values of μ Q + , let μ = η / δ be an irreducible fraction; if a 1 , μ , k , a 2 , μ , k is a pair of  a j , μ , k values for a same value of  M μ , k and if
M μ , k = 3 f μ , k 2 1 3 μ + 1 2 + 1 = δ 2 3 f μ , k 2 1 3 η + δ 2 + δ 2
holds k Z , then the sums of squares of M μ , k consecutive integers a j , μ , k + i for i = 0 to M μ , k 1 are always equal to squared integers s j , μ , k 2 , with
a j , μ , k = 1 2 δ η M μ , k + δ M μ , k 3 η + δ 2 + δ 2 + δ 2 3
s j , μ , k = M μ , k 2 δ M μ , k 3 η + δ 2 + δ 2 + δ 2 3 η + δ
where the upper (respectively lower) sign is taken for j = 1 (resp. 2).
Proof. 
Let 1 j 2 , i , η , δ , M μ , k > 1 , a j , μ , k Z * , k , s j , μ , k Z , μ = η / δ Q + forming an irreducible fraction, i.e. gcd η , δ = 1 . Let further f μ , k be a yet unknown integer function of k for each value of μ . Replacing in the second equality of (1) M by M μ , k and a by a j , μ , k from (6) yields successively
i = 0 M μ , k 1 a j , μ , k + i 2 = M μ , k 4 2 a j , μ , k + M μ , k 1 2 + M μ , k 2 1 3 = M μ , k 4 μ + 1 M μ , k f μ , k 2 + M μ , k 2 1 3 = M μ , k 2 4 3 η + δ 2 + δ 2 M μ , k 3 δ 2 + 3 f μ , k 2 1 3 M μ , k 2 η + δ δ f μ , k ]
where the upper (respectively lower) sign in (10) is taken for j = 1 (resp. 2). For the expression between brackets in (10) to be a square, replace in (10) f μ , k by
f μ , k = M μ , k 3 η + δ 2 + δ 2 + δ 2 3 δ 2
from (7), yielding immediately (9). Replacing f μ , k (11) in (6) yields then (8). □
In addition, from Theorem 2, the following relations hold k Z
a 2 , μ , k a 1 , μ , k = M μ , k 3 η + δ 2 + δ 2 + δ 2 3 δ 2
s 2 , μ , k + s 1 , μ , k = M μ , k M μ , k 3 η + δ 2 + δ 2 + δ 2 3 δ 2
= M μ , k a 2 , μ , k a 1 , μ , k
s 2 , μ , k s 1 , μ , k = M μ , k η + δ δ
= a 2 , μ , k + a 1 , μ , k + M 1

3. Parametric expressions of f μ , k , M μ , k , a j , μ , k , s j , μ , k

Above results hold only for certain allowed values of M μ , k and of μ Q + , that can be determined as follows. Relation (7) reads also
δ f μ , k 2 M μ , k η + δ 2 = δ 2 M μ , k + 1 3
It was shown [30] that for (17) to hold:
- δ 0 m o d 6 , and η 1 or 5 m o d 6 , M μ , k 0 or 24 m o d 72 , and M μ , k m o d δ 2 / 3 0 ;
- δ 1 or 5 m o d 6 , and η 1 , 3 or 5 m o d 6 and either f μ , k 1 m o d 2 and M μ , k 2 m o d 24 , or f μ , k 0 m o d 2 and M μ , k 11 m o d 12 , and M μ , k m o d δ 2 0 .
Parametric expressions of f μ , k , M μ , k , a j , μ , k and s j , μ , k in function of k Z , μ = η / δ and initial values are found as follows.
Theorem 2. 
For 1 j 2 , η , δ , M μ , k > 1 Z + , a j , μ , k Z * , k , s j , μ , k Z , μ , ν Q + , for allowed values of μ = η / δ and for pairs a 1 , μ , k , a 2 , μ , k , f μ , k is a linear function of k, M μ , k and  a j , μ , k are quadratic functions of k, and  s j , μ , k is a cubic function of k, as follows
f μ , k = 3 η + δ 2 + δ 2 ν k + f μ , 0
M μ , k = 3 δ 2 3 η + δ 2 + δ 2 ν 2 k 2 + 6 δ 2 f μ , 0 ν k + M μ , 0 a j , μ , k = 1 2 3 η δ 3 η + δ 2 + δ 2 ν 2 k 2 + 6 η δ f μ , 0 3 η + δ 2 + δ 2 ν k
+ a j , μ , 0 s j , μ , k = 1 2 3 δ 2 3 η + δ 2 + δ 2 2 ν 3 k 3 + 3 δ 3 η + δ 2 + δ 2 3 δ f μ , 0 η + δ ν 2 k 2
+ 3 δ f μ , 0 η + δ 2 η + δ 2 + δ 2 ν k + s j , μ , 0
where ν = 1 for δ 1 or 5 m o d 6 and ν = 2 / 3 for δ 0 m o d 6 and where the upper (respectively lower) sign is taken for j = 1 (resp. 2).
Proof. 
For 1 j 2 , η , δ , x , M μ , k > 1 Z + , a j , μ , k Z * , k , s j , μ , k Z , μ , ν Q + , for allowed values of μ = η / δ and for pairs a 1 , μ , k , a 2 , μ , k , let f μ , k (5) be a linear function of k, f μ , k = x k + f μ , 0 where f μ , 0 = a 2 , μ , 0 a 1 , μ , 0 is the initial value for k = 0 of the difference (5) and x an integer function to be defined for some parameters. Then (7) yields
M μ , k = δ 2 3 x k + f μ , 0 2 1 3 η + δ 2 + δ 2 = 3 δ 2 x k x k + 2 f μ , 0 3 η + δ 2 + δ 2 + δ 2 3 f μ , 0 2 1 3 η + δ 2 + δ 2
The second term on the right of (22) is M μ , 0 by (7).
(i) If δ 1 or 5 m o d 6 , as M μ , k Z + , 3 η + δ 2 + δ 2 must divide x in the first term of (22), yielding then (18) and (19) with ν = 1 .
(ii) If δ 0 m o d 6 , simplifying the first term by 3, (22) reads
M μ , k = δ 2 x k x k + 2 f μ , 0 η + δ 2 + δ 2 / 3 + M μ , 0
As M μ , k Z + , η + δ 2 + δ 2 / 3 is a factor of x. However, as η 1 or 5 m o d 6 for δ 0 m o d 6 , η + δ 2 + δ 2 / 3 1 m o d 2 and as f μ , k m o d 2 f μ , 0 m o d 2   k Z , x must be replaced by 2 η + δ 2 + δ 2 / 3 , yielding then (18) and (19) with ν = 2 / 3 .
(iii) Further, replacing f μ , k and M μ , k by (18) and (19) in a j , μ , k from (6) and in s j , μ , k (9) with (11), yield directly (20) and (21) with the upper (or lower) sign for j = 1 (or 2). □

4. Finding allowed values of μ = η / δ and M μ , k

Finding the allowed values of μ = η / δ , M μ , 0 and f μ , 0 requires solving the generalized Pell equation (17) for k = 0 in variables δ f μ , 0 and η + δ .
In general, for X , Y , D , N , x f , y f , n Z + and D square free (i.e. D Z ), a generalized Pell equation X 2 D Y 2 = N admits either no solution, or one or several fundamental solution(s) X 1 , Y 1 and also one or several infinite branches of solutions X n , Y n . Several methods exist to find the fundamental solutions of the generalized Pell equation (see [15,19,31]). Two methods are used further: first a brute force search method, i.e. trying several values of Y until the smallest X 1 = N + D Y 1 2 Z + is found; second, Matthews’ method [16] based on an algorithm by Frattini [4,5,6] using Nagell’s bounds [18,21]. Once fundamental solution(s) X 1 , Y 1 have been found one way or another, noting x f , y f the fundamental solutions of the related simple Pell equation X 2 D Y 2 = 1 , the other solutions X n , Y n can be found by
X n + D Y n = ± X 1 + D Y 1 x f + D y f n
for a proper choice of sign ± [17], which can be written also in function of Chebyshev’s polynomials [28]
X n = X 1 T n 1 x f + D Y 1 y f U n 2 x f
Y n = X 1 y f U n 2 x f + Y 1 T n 1 x f
where T n 1 x f and U n 2 x f are Chebyshev polynomials of the first and second kinds evaluated at x f .
The generalized Pell equation (17) can be written as
λ f μ , 0 2 λ 2 M μ , 0 δ 2 η + δ 2 = λ 2 M μ , 0 + 1 3
with X = λ f μ , 0 , Y = η + δ , D = λ 2 M μ , 0 / δ 2 and N = λ 2 M μ , 0 + 1 / 3 , and where λ = 1 if δ 1 or 5 m o d 6 and λ = 3 if δ 0 m o d 6 .
To use Matthews’ method [16], the parameters D and N must be fixed with values of δ and M μ , 0 that can be chosen from the allowed congruent values (see Section 3) and be tried one by one until fundamental solutions are found. Alternatively, fixing the values of η and δ , a brute force search method can be used to find f μ , 0 Z + for the smallest value of M μ , 0 Z + , with from (11)
f μ , 0 = M μ , 0 3 η + δ 2 + δ 2 + δ 2 3 δ 2
Relation (28) yields then the allowed values of μ , M μ , 0 and f μ , 0 given in Table 2for δ = 1 , μ = η Z + , for 0 μ 100 (1)
and in [29] for δ 1 , μ = η / δ Q + , for 0 < η , δ 100 .
Once a set of values has been found for η , δ , M μ , 0 and f μ , 0 as fundamental solution(s) of the generalized Pell equation (27), other allowed values for η and f μ , 0 can be found from the other solutions of (27) using the values of δ and M μ , 0 by (25) and (26) written as
f μ n , 0 = f μ 1 , 0 T n 1 x f + λ M μ , 0 δ 2 η 1 + δ y f U n 2 x f
η n = λ f μ 1 , 0 y f U n 2 x f + η 1 + δ T n 1 x f δ
Example 1. 
For δ = 1 and μ = η = 1 , M 1 , 0 = 2 and f 1 , 0 = 3 from Table 1. Using M 1 , 0 and δ as constants in (27) with λ = 1 , it reduces to a simple Pell equation f μ , 0 2 2 μ + 1 2 = 1 (see e.g. [7,9,23,25]) which admits the single fundamental solution X 1 , Y 1 = f μ 1 , 0 , μ 1 + 1 = 3 , 2 or f μ 1 , 0 , μ 1 = 3 , 1 and an infinity of other solutions that can be found n Z + by
f μ n , 0 = 3 + 2 2 n + 3 2 2 n 2 = 3 , 17 , 99 , 577 , 3363 , . . .
μ n = 3 + 2 2 n 3 2 2 n 2 2 1 = 1 , 11 , 69 , 407 , 2377 , . . .
where μ n are the Pell numbers [32] of even indices minus one. These new values of f μ n , 0 , μ n for n > 1 define new groupings around straight lines of general equation μ n M = 2 a + c μ n , with the initial value M μ n , 0 = 2 .
For δ = 1 , η = 1 , M 1 , 0 = 2 , f 1 , 0 = 3 , ν = 1 , (19) to (21) yield
M 1 , k = 39 k 2 + 18 k + 2 ,
a 1 , 1 , k = 39 k 2 + 5 k / 2 , a 2 , 1 , k = 39 k 2 + 31 k + 6 / 2 ,
s 1 , 1 , k = 507 k 3 + 273 k 2 + 44 k + 2 / 2 , s 2 , 1 , k = 507 k 3 + 429 k 2 + 116 k + 10 / 2 ,
and values of M μ , k , a 1 , μ , k and a 2 , μ , k for 10 k 10 are given in Table 2.
Table 2. Values of M μ , k , a 1 , μ , k , a 2 , μ , k for μ = 1 , 5 , 1 / 6 and 10 k 10
Table 2. Values of M μ , k , a 1 , μ , k , a 2 , μ , k for μ = 1 , 5 , 1 / 6 and 10 k 10
μ = 1 μ = 5 μ = 1 / 6
k M 1 , k a 1 , 1 , k a 2 , 1 , k M 5 , k a 1 , 5 , k a 2 , 5 , k M 1 / 6 , k a 1 , 1 / 6 , k a 2 , 1 / 6 , k
0 2 0 3 11 18 38 312 15 38
-1 23 17 7 218 590 501 5784 532 433
1 59 22 38 458 1081 1210 12408 962 1107
-2 122 73 50 1079 2797 2599 28824 2513 2292
2 194 83 112 1559 3779 4017 42072 3373 3640
-3 299 168 132 2594 6639 6332 69432 5958 5615
3 407 183 225 3314 8112 8459 89304 7248 7637
-4 554 302 253 4763 12116 11700 127608 10867 10402
4 698 322 377 5723 14080 14536 154104 12587 13098
-5 887 475 413 7586 19228 18703 203352 17240 16653
5 1067 500 568 8786 21683 22248 236472 19390 20023
-6 1298 687 612 11063 27975 27341 296664 25077 24368
6 1514 717 798 12503 30921 31595 336408 27657 28412
-7 1787 938 850 15194 38357 37614 407544 34378 33547
7 2039 973 1067 16874 41794 42577 453912 37388 38265
-8 2354 1228 1127 19979 50374 49522 535992 45143 44190
8 2642 1268 1375 21899 54302 55194 588984 48583 49582
-9 2999 1557 1443 25418 64026 63065 682008 57372 56297
9 3323 1602 1722 27578 68445 69446 741624 61242 62363
-10 3722 1925 1798 31511 79313 78243 845592 71065 69868
10 4082 1975 2108 33911 84223 85333 911832 75365 76608
Example 2. 
For δ = 1 and μ = η = 5 , M 5 , 0 = 11 and f 5 , 0 = 20 from Table 1. Using M 5 , 0 and δ as constants in (27) with λ = 1 yield the generalized Pell equation f μ , 0 2 11 μ + 1 2 = 4 . Using Matthews’ method [16] yields the single fundamental solution f μ 1 , 0 , μ 1 + 1 = 2 , 0 which is of no use. However, as the right hand term is a squared integer, the equation can be rewritten as a simple Pell equation f μ , 0 / 2 2 11 μ + 1 / 2 2 = 1 , which admits the fundamental solution f μ 1 , 0 / 2 , μ 1 + 1 / 2 = 10 , 3 or f μ 1 , 0 , μ 1 = 20 , 5 and an infinity of other solutions n Z +
f μ n , 0 = 10 + 3 11 n + 10 3 11 n = 20 , 398 , 7940 , 158402 , . . .
μ n = 10 + 3 11 n 10 3 11 n 11 1 = 5 , 119 , 2393 , 47759 , . . .
For δ = 1 , η = 5 , M 5 , 0 = 11 , f 5 , 0 = 20 , ν = 1 , (19) to (21) yield (see Table 2)
M 5 , k = 327 k 2 + 120 k + 11 ,
a 1 , 5 , k = 1635 k 2 + 491 k + 36 / 2 , a 2 , 5 , k = 1635 k 2 + 709 k + 76 / 2 ,
s 1 , 5 , k = 35643 k 3 + 17658 k 2 + 2879 k + 154 / 2 ,
s 2 , 5 , k = 35643 k 3 + 21582 k 2 + 4319 k + 286 / 2 .
Example 3. 
For η = 1 and δ = 6 , M 1 / 6 , 0 = 312 and f 1 / 6 , 0 = 23 [29]. Using M 1 / 6 , 0 and δ as constants in (27) with λ = 3 yields 3 f μ , 0 2 78 η + 6 2 = 939 , which by [16] has two fundamental solutions 3 f μ 1 , 0 , η 1 + 6 = 69 , 7 and 381 , 43 , yielding f μ 1 , 0 , η 1 = 23 , 1 and 127 , 37 . The fundamental solutions of the related simple Pell equation X 2 78 Y 2 = 1 are x f , y f = 53 , 6 . Other values of f μ n , 0 , η n can be found on the two infinite branches corresponding to these two fundamental solutions by (29) and (30) as
f μ n , 0 = 23 T n 1 53 + 1092 U n 2 53
= 23 , 2311 , 244943 , 25961647 , 2751689639 , . . .
η n = 414 U n 2 53 + 7 T n 1 53 6
= 1 , 779 , 83197 , 8818727 , 934702489 , . . .
for the first fundamental solution, and
f μ n , 0 = 127 T n 1 53 + 6708 U n 2 53
= 127 , 13439 , 1424407 , 150973703 , 16001788111 , . . .
η n = 2286 U n 2 53 + 43 T n 1 53 6
= 37 , 4559 , 483841 , 51283211 , 5435537149 , . . .
for the second fundamental solution. For η = 1 , δ = 6 , M 1 / 6 , 0 = 312 , f 1 / 6 , 0 = 23 , ν = 2 / 3 , (19) to (21) yield (see Table 2)
M 1 / 6 , k = 8784 k 2 + 3312 k + 312 ,
a 1 , 1 / 6 , k = 732 k 2 + 215 k + 15 , a 2 , 1 / 6 , k = 732 k 2 + 337 k + 38 ,
s 1 , 1 / 6 , k = 535824 k 3 + 297924 k 2 + 55188 k + 3406 ,
s 2 , 1 / 6 , k = 535824 k 3 + 308172 k 2 + 59052 k + 3770 .

5. Conclusions

It is shown that regular linear features exist in the distribution of couples of values a and M in the a , M plot, where a and M are the first term and the number of terms in sums of consecutive squared integers equal to integer squares. These regular features correspond to groupings of pairs of a values for successive same values of M around straight lines of equation μ M 2 a for positive rational values of μ = η / δ .
For allowed values of η and δ such as η 1 m o d 2 and δ 0 , 1 or 5 m o d 6 , if M μ , k = δ 2 3 a 2 , μ , k a 1 , μ , k 2 1 / 3 η + δ 2 + δ 2 holds k Z and for pairs a 1 , μ , k , a 2 , μ , k , then the sums of M μ , k consecutive squared integers starting with a 1 , μ , k or a 2 , μ , k are always equal to squared integers s 1 , μ , k 2 or s 2 , μ , k 2 k Z . Parametric equations are found in function of k Z : linear for a 2 , μ , k a 1 , μ , k , quadratic for M μ , k , a 1 , μ , k and a 2 , μ , k , and cubic for s 1 , μ , k and s 2 , μ , k .
The allowed values of η , δ , M μ , 0 and of the difference f μ , 0 = a 2 , μ , 0 a 1 , μ , 0 are found by solving the generalized Pell equation δ f μ , 0 2 M μ , 0 η + δ 2 = δ 2 M μ , 0 + 1 / 3 and further allowed values of η n and f μ n , 0 can be calculated for fixed values of δ and M μ , 0 using Chebyshev polynomials.

Notes

1
[22] gives all values of μ + 1 such that 3 μ + 1 2 + 1 is prime for which (28) holds.

References

  1. U. Alfred, Consecutive integers whose sum of squares is a perfect square, Mathematics Magazine, 19-32, 1964.
  2. W.S. Anglin, The Square Pyramid Puzzle, American Mathematical Monthly, 97, 120-124, 1990.
  3. L. Beeckmans, Squares Expressible as Sum of Consecutive Squares, The American Mathematical Monthly, Vol. 101, No. 5, 437-442, May 1994.
  4. G. Frattini, Dell’analisi indeterminata di secondo grado, Periodico di Mat. VI, 169–180, 1891.
  5. G. Frattini, A complemento di alcuni teore mi del sig. Tchebicheff, Rom. Acc. L. Rend. 5, I No. 2, 85-91, 1892.
  6. G. Frattini, Dell’analisi indeterminata di secondo grado, Periodico di Mat. VII, 172–177, 1892.
  7. J.L. Lagrange, Solution d’un Problème d’Arithmètique, in Oeuvres de Lagrange, J.-A. Serret (ed.), Vol. 1, Gauthier-Villars, Paris, 671–731, 1867.
  8. M. Laub, Squares Expressible as a Sum of n Consecutive Squares, Advanced Problem 6552, American Mathematical Monthly, 97, 622-625, 1990.
  9. H. W. Lenstra Jr., Solving the Pell Equation, Notices of The AMS, Vol. 49, Nr 2, 182-192, 2002.
  10. W. Ljunggren, New solution of a problem proposed by E. Lucas, Norsk Mat. Tid. 34, 65-72, 1952.
  11. E. Lucas, Recherches sur l’Analyse Indeterminèe, Moulins, p. 90, 1873.
  12. E. Lucas, Question 1180, Nouvelles Annales de Mathèmatiques, Sèrie 2, 14, 336, 1875.
  13. E. Lucas, Solution de la Question 1180, Nouvelles Annales de Mathèmatiques, Sèrie 2, 15, 429-432, 1877.
  14. D.G. Ma, An Elementary Proof of the Solutions to the Diophantine Equation 6y2=x(x+1)(2x+1), Sichuan Daxue Xuebao, No. 4, 107-116, 1985.
  15. K.R. Matthews, The Diophantine Equation x2-Dy2=N, D>0, in integers, Expositiones Mathematicae, 18, 323-331, 2000.
  16. K. Matthews, Quadratic diophantine equations BCMATH programs, http://www.numbertheory.org/php/main_pell.html, last accessed 28 December 2023.
  17. K. Matthews, The Diophantine Equation x2-Dy2=N, http://www.numbertheory.org/PDFS/patz5.pdf, last accessed 28 December 2023.
  18. K. Matthews, J. Robertson, On the converse of a theorem of Nagell and Tchebicheff, http://www.numbertheory.org/PDFS/nagell2.pdf, last accessed 28 December 2023.
  19. R.A. Mollin, Fundamental Number Theory with Applications, CRC Press, New York, 294-307, 1998.
  20. M. Moret-Blanc, Question 1180, Nouvelles Annales de Mathèmatiques, Sèrie 2, 15, 46-48, 1876.
  21. T. Nagell, Introduction to Number Theory, Wiley, New York, 195-212, 1951.
  22. P. Nambi, Numbers n such that 3*n⌃2 + 1 is prime, Sequence A111051 in The On-line Encyclopedia of Integer Sequences, published electronically at http://oeis.org, last accessed 28 December 2023.
  23. J.J. O’Connor and E.F. Robertson, Pell’s equation, JOC/EFR February 2002, https://mathshistory.st-andrews.ac.uk/HistTopics/Pell/, last accessed 28 December 2023.
  24. S. Philipp, Note on consecutive integers whose sum of squares is a perfect square, Mathematics Magazine, 218-220, 1964.
  25. V. Pletser, On continued fraction development of quadratic irrationals having all periodic terms but last equal and associated general solutions of the Pell equation, Journal of Number Theory, Vol. 136, 339–353, 2013.
  26. V. Pletser, Congruence conditions on the number of terms in sums of consecutive squared integers equal to squared integers, ArXiv, http://arxiv.org/abs/1409.7969, 29 September 2014.
  27. V. Pletser, Additional congruence conditions on the number of terms in sums of consecutive squared integers equal to squared integers, ArXiv, http://arxiv.org/pdf/1409.6261v1.pdf, 20 August 2014.
  28. V. Pletser, Finding all squared integers expressible as the sum of consecutive squared integers using generalized Pell equation solutions with Chebyshev polynomials, ArXiv, http://arxiv.org/abs/1409.7972, 29 September 2014.
  29. V. Pletser, Fundamental solutions of the generalized Pell equation δf2-+δ2=δ2M+1/3 for 0<η,δ<100, Research Gate, DOI: 10.13140/2.1.1766.7208, https://www.researchgate.net/publication/264496057_Fundamental_ solutions_of_the_generalized_Pell_equation_%28f%292-M%28%292_2%28M1%293_for_0__100?ev=prf_pub, August 2014.
  30. V. Pletser, Congruent conditions on the number of terms, on the ratio number of terms to first terms and on the difference of first terms for sums of consecutive squared integers equal to squared integers, ArXiv, http://arxiv.org/abs/1410.0727, 3 October 2014.
  31. J.P. Robertson, Solving the generalized Pell equation X2-DY2=N, 31 July 2004 (see https://studylib.net/doc/18752934/solving-the-generalized-pell-equation-x2-%E2%88%92-dy-2-%3D-n-intro..., last accessed 28 December 2023).
  32. N.J.A. Sloane, Pell numbers, Sequence A000129 in The On-line Encyclopedia of Integer Sequences, published electronically at http://oeis.org, last accessed 28 December 2023.
  33. G.N. Watson, The Problem of the Square Pyramid, Messenger of Mathematics, 48, 1-22, 1918.
Figure 1. Distribution of M versus a for the 4078 couples a , M found such as (1) holds, with 1 a 10 5 and 2 M 10 5
Figure 1. Distribution of M versus a for the 4078 couples a , M found such as (1) holds, with 1 a 10 5 and 2 M 10 5
Preprints 94868 g001
Table 1. Values of M μ , 0 and f μ , 0 for 0 μ 100
Table 1. Values of M μ , 0 and f μ , 0 for 0 μ 100
μ M μ , 0 f μ , 0 μ M μ , 0 f μ , 0 μ M μ , 0 f μ , 0
1 2 3 29 26 153 63 3263 3656
5 11 20 33 299 588 67 9563 6650
7 74 69 35 479 788 69 2 99
11 2 17 39 1391 1492 77 74 671
15 194 223 43 59 338 81 1202 2843
19 122 221 49 491 1108 83 146 1015
21 983 690 53 1739 2252 85 1874 3723
25 506 585 55 383 1096 97 23 470
27 47 192 57 2327 2798
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated